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Abstract

Existing deep learning based matting algorithms pri-

marily resort to high-level semantic features to improve the

overall structure of alpha mattes. However, we argue that

advanced semantics extracted from CNNs contribute un-

equally for alpha perception and we are supposed to recon-

cile advanced semantic information with low-level appear-

ance cues to refine the foreground details. In this paper,

we propose an end-to-end Hierarchical Attention Matting

Network (HAttMatting), which can predict the better struc-

ture of alpha mattes from single RGB images without addi-

tional input. Specifically, we employ spatial and channel-

wise attention to integrate appearance cues and pyramidal

features in a novel fashion. This blended attention mech-

anism can perceive alpha mattes from refined boundaries

and adaptive semantics. We also introduce a hybrid loss

function fusing Structural SIMilarity (SSIM), Mean Square

Error (MSE) and Adversarial loss to guide the network to

further improve the overall foreground structure. Besides,

we construct a large-scale image matting dataset comprised

of 59, 600 training images and 1000 test images (total 646
distinct foreground alpha mattes), which can further im-

prove the robustness of our hierarchical structure aggrega-

tion model. Extensive experiments demonstrate that the pro-

posed HAttMatting can capture sophisticated foreground

structure and achieve state-of-the-art performance with sin-

gle RGB images as input.

1. Introduction

Image matting refers to precisely estimate the fore-

ground opacity from an input image. This problem as well

as its inverse process (known as image composition) have

been well studied by both academia and industry. Image

matting serves as a prerequisite technology for a broad set

*Joint first authors. †Joint corresponding authors, and they led this

project. Project page: https://wukaoliu.github.io/HAttMatting/.
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Figure 1: The alpha mattes produced by our HAttMatting

on the Composition-1k test set [37].

of applications, including online image editing, mixed real-

ity and film production. Formally, it is modeled by solving

the following image synthesis equation:

Iz = αzFz + (1− αz)Bz, αz ∈ [0, 1] (1)

where z denotes the pixel position in the input image I. αz ,

Fz and Bz refer to the alpha estimation, foreground (FG)

and background (BG) at pixel z separately. The problem

is highly ill-posed, for each pixel in a given RGB image, 7

values need to be solved but only 3 values are known.

The digital matting is a pixel-wise FG regression es-

sentially, and we hold that the structure of FG resides two

aspects: adaptive semantics and refined boundaries, corre-

sponding to αz = 1 and αz ∈ (0, 1) in Eq. 1. Existing

matting methods usually solve Eq. 1 by introducing user-

provided trimaps as assistant input. The trimap is composed

of black, gray and white, representing BG, transition region

and absolute FG respectively. The transition region indi-

cates FG boundaries, combined with FG to jointly guide

matting algorithms. Given an RGB image and the corre-

sponding trimap, traditional matting methods explore color

distribution to predict an alpha matte. However, the color

features are inapplicable for structure representation, pos-

sibly resulting in artifacts and loss of details when FG and

BG have indistinguishable colors.
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Deep Image Matting (DIM) [37] formally imports deep

learning into matting, and they argue that matting objects

share a common structure which can be represented by

high-level features. It is noting that DIM involves RGB

images in the refinement stage to combine advanced se-

mantics with appearance cues. Advanced semantics indi-

cate FG category and profiles, while appearance cues re-

veal texture and boundary details. Subsequent matting net-

works [3, 15, 23, 34] mostly design complicated architec-

tures for advanced semantics extraction, and fuse appear-

ance cues from input images or low-level CNN features.

However, their appearance cues and advanced semantics

are all dependent on trimaps as auxiliary and expensive in-

put. A well-defined trimap involves fussy manual labeling

efforts and time consumption, which is difficult for novice

users in practical applications. Some matting works [5, 7]

rely on segmentation to generate trimaps, which partly de-

press the precision of alpha mattes. The Late Fusion [40]

blends FG and BG weight map from segmentation network

with initial CNN features to predict alpha mattes with single

RGB images as input. However, when semantic segmen-

tation encounters difficulties, the late fusion will compro-

mise. The above methods directly feed advanced semantics

and appearance cues to optimization or fusion stage, while

we hold that they require proper filtration before combina-

tion. On one hand, natural image matting is a regression

problem substantially and not entirely dependent on image

semantics, which means semantic properties extracted by

deep network contribute unequally for FG structure. On

the other hand, as illustrated in Fig. 3, while appearance

cues retain sophisticated image texture, they also contain

the details outside FG. However, existing matting networks

neglect the profound excavation and distillation of such hi-

erarchical features.

This paper explores advanced semantics and appearance

cues synthetically, and contributes an end-to-end Hierar-

chical Attention Matting Network (HAttMatting) enabling

such hierarchical structure aggregation. Advanced seman-

tics can provide FG category and profiles, while appearance

cues furnish texture and boundary details. To deeply inte-

grate this hierarchical structure, we perform channel-wise

attention on advanced semantics to select matting-adapted

features and employ spatial attention on appearance cues

to filtrate image texture details, and finally aggregate them

to predict alpha mattes. Moreover, a hybrid loss com-

posed of Mean Square Error (MSE), Structural SIMilarity

(SSIM) [35] and Adversarial Loss [13] is exploited to opti-

mize the whole network training. Extensive experiments

show that our attention-guided hierarchical structure ag-

gregation can perceive high-quality alpha mattes with only

RGB images as input.

The main contributions of this paper are:

• We present an end-to-end Hierarchical Attention Mat-

ting Network (HAttMatting), which can achieve high-

quality alpha mattes without any additional input. The

HAttMatting is very convenient for novice users and

can be effectively applied to different kinds of objects.

• We design a hierarchical attention mechanism which

can aggregate appearance cues and advanced pyrami-

dal features to produce fine-grained boundaries and

adaptive semantics.

• We resort to a hybrid loss consist of Mean Square Error

(MSE), Structural SIMilarity (SSIM) and Adversarial

Loss [13] to improve alpha perception, providing effi-

cient guidance for our HAttMatting training.

• We create a large-scale matting dataset with 59, 600
training images and 1000 test images, total 646 distinct

foreground alpha mattes. To the best of our knowl-

edge, this is the biggest matting dataset with diverse

foreground objects, which can further improve the ro-

bustness of our HAttMatting.

2. Related Work

Deep learning brings a huge evolution for natural image

matting with the highly abstract representation of FG struc-

ture, and we briefly review image matting from two cate-

gories: traditional and deep-learning methods.

Traditional matting. Existing matting methods mostly

achieve FG opacity by virtue of additional input: trimaps

or scribbles. The trimap is composed of FG, BG and transi-

tion region to partition the input RGB image, while scribbles

indicate these three labels by several user-specified scrib-

bles. The transition region suggests FG boundaries, which

is the key point for image matting. Although scribbles ap-

proaches [19, 20, 32, 39] are convenient for novice users,

they significantly deteriorate alpha mattes because there is

insufficient information can be referenced. Therefore, a ma-

jority of methods harness trimaps as essential assistance to

perceive FG structure.

Traditional matting methods primarily resort to color

features extracted from the input image to confine transi-

tion regions. According to the different ways of using color

features, they can be divided into two categories: sampling-

based and affinity-based methods. Sampling-based meth-

ods [9, 11, 17, 26, 28, 33] solve alpha mattes by represent-

ing each pixel inside transition regions with a pair of certain

FG/BG pixels. Affinity-based methods [1, 6, 14, 18, 19, 20,

29] perceive FG boundaries via the affinities of neighbour-

ing pixels between certain labels and transition region. Both

sampling and affinity methods primarily leverage color fea-

tures to predict alpha mattes, incapable of describing the

advanced structure of FG. When FG and BG share similar

colors, traditional approaches usually produce obvious arti-

facts.

Deep-learning matting. Similar to other computer vi-

sion tasks, matting objects also possess a general struc-
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Figure 2: Pipeline of our HAttMatting. The orange box (Pyramidal Features Distillation) indicates channel-wise attention to

distill pyramidal information extracted from ASPP [4]. The gray box (Appearance Cues Filtration) represents spatial attention

to filter appearance cues, which are extracted from block1 in the feature extraction module.

ture that can be represented by high-level semantic features.

Cho et al. [8] concatenated results from [19] and [6] with

input image, and employed this 5-channels input to pre-

dict alpha mattes. Xu et al. [37] proposed deep image mat-

ting (DIM), which integrated RGB images with trimaps as

conjunct input, utilizing advanced semantics to estimate al-

pha mattes. Tang et al. [30] proposed a hybrid sampling-

and learning-based approach to matting. Cai et al. [3] and

Hou et al. [15] both established two branches to perceive

alpha mattes, and these two branches mutually reinforced

each other to refine the final results. Hao et al. [23] unified

upsampling operators with the index function to improve

encoder-decoder network. However, all these matting net-

works rely on trimap to enhance their semantic distillation,

while producing trimap is difficult for common users. Some

matting frameworks [5, 7] leverage segmentation to gen-

erate trimaps, which usually causes FG profiles or bound-

aries incomplete. Yang et al. [38] used LSTM and rein-

forcement learning to produce competent trimap, requiring

simple user interaction and extra feedback time. While the

multi-scale features combination in [2] can generate alpha

mattes automatically, it has a very slow execution. Zhang et

al. [40] investigated semantic segmentation variant for FG

and BG weight map fusion to obtain alpha mattes. Although

they implement matting without trimaps, failure cases occur

when segmentation is inapplicable.

3. Methodology

3.1. Overview

We can conclude from Eq. 1 that the complete object

FG should consist of two parts: 1) the main body indicat-

ing FG category and profiles (αz = 1), and 2) the internal

texture and boundary details located in the transition region

(αz ∈ (0, 1)). The former can be suggested by advanced se-

mantics, while the latter usually comes from input images

or low-level CNN features, termed as appearance cues, and

their combination can achieve alpha mattes. In this paper,

we argue that advanced semantics and appearance cues need

proper processing before combination. First, natural image

matting is supposed to handle different types of FG objects,

which suggests that we should distill advanced semantics to

attend FG information, and appropriately suppress them to

reduce their sensitivity to object classes. Second, as shown

in Fig. 3, appearance cues involve unnecessary BG details,

which need to be erased in alpha mattes.

Based on the above analysis, the core idea of our ap-

proach is to select matting-adapted semantic information

and eliminate redundant BG texture in appearance cues,

then aggregate them to predict alpha mattes. For this pur-

pose, we adopt channel-wise attention to distill advanced

semantics extracted from Atrous Spatial Pyramid Pooling

(ASPP) [4], and perform spatial attention on appearance

cues to eliminate image texture details outside FG simul-

taneously. Our well-designed hierarchical attention mech-

anism can perceive FG structure from adaptive semantics

and refined boundaries, and their aggregation can achieve

better alpha mattes. Moreover, we design a hybrid loss

to guide network training by combining Mean Square Er-

ror (MSE), Structural SIMilarity (SSIM) and Adversarial

loss [13], which are respectively responsible for pixel-wise

precision, structure consistency and visual quality.

3.2. Network Architecture

Overall network design. The pipeline of our pro-

posed HAttMatting is unfolded in Fig. 2. We harness
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Figure 3: The input images and corresponding appearance

cues extracted from the ResNeXt block1. Here we select

one of the 256 channels for better visual presentation.

ResNeXt [36] as the backbone network in consideration of

their powerful ability to extract high-level semantic infor-

mation. A series of parameter adjustments are performed

on the backbone to obtain a larger receptive field. The ad-

vanced feature maps from block4 are then fed to ASPP [4]

module for multi-scale semantics capture. Correspondingly,

we average the feature maps of block1 as appearance cues

in our method (Fig. 3). The HAttMatting employs channel-

wise attention to distill pyramidal features, and performs

spatial attention on appearance cues to suppress redundant

BG details. Besides, we utilize the discriminator network

refer to PatchGAN [16, 42] to enhance the visual quality of

alpha mattes.

Pyramidal features distillation. The extracted pyrami-

dal features devote unequally to FG structure regression,

hence we perform channel-wise attention on pyramidal fea-

tures to distill adaptive semantic attributes. As the orange

box is shown in Fig. 2, we upsample pyramidal features

with factor 4, and then utilize global pooling to generalize

the feature maps. Then a shared MLP is employed to dis-

till semantic attributes. We use a sigmoid layer to compute

channel-wise attention map, and multiply it times upsam-

pled pyramidal features to achieve semantics distillation.

The channel-wise attention can select pyramidal features

adapted to image matting, and retain FG profiles and cat-

egory attributes. The pyramidal features are learned from

deep ResNext block, which are highly abstract semantic in-

formation, thus we need appearance cues to generate details

in alpha mattes.

Appearance cues filtration. Image matting requests

precise FG boundaries, while high-level pyramidal features

are incapable of providing such texture details. Therefore,

we bridge a skip connection between ResNeXt block1 and

upsampling (Fig. 2) operation, which can transport appear-

ance cues for alpha matte generation. The block1 can cap-

ture image texture and details from the input image, sharing

the same spatial resolution as the first upsampling. The fea-

ture maps extracted from block1 are illustrated in the second

row of Fig. 3, we take these low-level features as our appear-

ance cues. These appearance cues can depict sophisticated

image texture, compatible with the boundary accuracy re-

quired by alpha matte perception.

The proposed HAttMatting can leverage appearance cues

to enhance FG boundaries in the results. Despite the appear-

ance cues exhibit sufficient image texture, only the regions

inside or surrounding FG can contribute to alpha mattes.

Therefore, we import spatial attention to filter appearance

cues located in BG and emphasize the ones inside FG si-

multaneously. Specifically, we use kernel size 1 ∗ 7 and

7 ∗ 1 to execute horizontal and vertical direction attention

respectively. The gray box in Fig. 2 shows our spatial at-

tention. The attended pyramidal semantics are further dis-

posed of via two parallel convolutions with the above two

fiter kernels. Then their concatenation serves as attention

mechanism to handle initial appearance cues, removing the

texture and details that belong to BG. After this, we con-

catenate the filtered appearance cues and distilled pyrami-

dal features to achieve alpha mattes. The aggregation of

channel-wise and spatial attention jointly optimize the alpha

matte generation: one responsible for pyramidal features se-

lection and the other responsible for appearance cues filtra-

tion. This well-designed hierarchical attention mechanism

can efficiently attend low-level and semantic features, and

their aggregation produce high-quality alpha mattes with

fine-grained details.

3.3. Loss Function

Pixel regression related loss functions (L1 or MSE loss)

are usually adopted as the loss function for alpha matte pre-

diction [3, 37]. They can generate competent alpha mat-

tes via pixel-wise supervision. However, such regression

loss only measures the difference in absolute pixels space,

without consideration of FG structure. Therefore, we in-

troduce SSIM loss (LSSIM ) to calculate structure similar-

ity between the predicted alpha mattes and ground truth.

Structural SIMilarity (SSIM) [35] has demonstrated a strik-

ing ability to boost structure consistency in the predicted

images [25, 31]. Apart from the aforementioned loss func-

tions, we add adversarial loss (Ladv) [13] to promote the vi-

sual quality of the predicted alpha mattes. In the proposed

HAttMatting, we employ this hybrid loss function to guide

the network training, achieving effective alpha matte opti-

mization. Our loss function is defined as follows:

Ltotal = λ1Ladv + λ2LMSE + λ3LSSIM , (2)

Ladv , LMSE and LSSIM can improve alpha mattes from

visual quality, pixel-wise accuracy and FG structure simi-

larity separately. λ1, λ2 and λ3 represent balance coeffi-
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cients for loss functions. Ladv is defined as:

Ladv = E(I,A)[log(D(I, A))+ log(1−D(I,G(I)))], (3)

where I represents the input image and A is the predicted

alpha matte. LMSE is expressed as:

LMSE =
1

|Ω|

Ω∑

i

(αi
p − αi

g)
2, αi

p, α
i
g ∈ [0, 1], (4)

where Ω represents pixels set and |Ω| is the number of pix-

els (i.e. the size of the input image). αi
p and αi

g are the

predicted and ground truth alpha values at pixel i respec-

tively. LMSE can ensure the pixel-wise accuracy of alpha

matte estimation. We establish FG structure optimization

via LSSIM as:

LSSIM = 1−
(2µpµg + c1)(2σpg + c2)

(µ2
p + µ2

g + c1)(σ2
p + σ2

g + c2)
. (5)

here µp, µg and σp, σg are the mean and standard deviations

of αi
p and αi

g separately. With LSSIM as guidance, our

method can further improve FG structure.

3.4. Implementation Details

We implement HAttMatting using PyTorch. For train-

ing, all input images are randomly cropped to 512 × 512

and 640 × 640 and 800 × 800. Then, they were resized to

a resolution of 512 × 512 and augmented by horizontally

random flipping. In order to accelerate the training process

and prevent over-fitting, we use the pre-trained ResNeXt-

101 network [36] as the feature extraction network, while

the other layers are randomly initialized from a Gaussian

distribution. For loss optimization, we use the stochastic

gradient descent (SGD) optimizer with the momentum of

0.9 and a weight decay of 0.0005. The learning rate is ini-

tialized to 0.007, adjusted by the ”poly” policy [22] with the

power of 0.9 for 20 epochs. The balance coefficients λ1, λ2

and λ3 in Eq. 2 are 0.05, 1 and 0.1 during the first epoch

and revised as 0.05, 1 and 0.025 for subsequent 19 epochs.

Our HAttMatting is trained on a single GPU with a mini-

batch size of 4, and it takes about 58 hours for the network

to converge on Tesla P100 graphics cards.

4. Experiments

In this section, we evaluate HAttMatting on two

datasets: the public Adobe Composition-1k [37] and our

Distinctions-646. We first compare HAttMatting with state-

of-the-art methods both quantitatively and qualitatively.

Then we perform an ablation study for HAttMatting on both

datasets to demonstrate the significance of several crucial

components. Finally, we execute HAttMatting on real sce-

narios to generate alpha mattes.

4.1. Datasets and Evaluation Metrics

Datasets. The first dataset is the public Adobe

Composition-1k [37]. The training set consists of 431 FG

objects with the corresponding ground truth alpha mattes.

Each FG image is combined with 100 BG images from MS

COCO dataset [21] to composite the input images. For test

set, the Composition-1k contains 50 FG images as well as

the corresponding alpha mattes, and 1000 BG images from

PASCAL VOC2012 dataset [10]. The training and test sets

were synthesized through the algorithm provided by [37].

The second is our Distinctions-646 dataset. The Adobe

Composition-1K contains many consecutive video frames,

and cropped patches from the same image, and there are ac-

tually only about 250 dissimilar FG objects in their training

set. To improve the versatility and robustness of the mat-

ting network during training, we construct our Distinctions-

646 dataset comprised of 646 distinct FG images. We di-

vide these FG examples into 596 and 50, and then produce

59, 600 training images and 1000 test images according to

the composition rules in [37].

Evaluation metrics. We evaluate the alpha mattes fol-

lowing four common quantitative metrics: the sum of abso-

lute differences (SAD), mean square error (MSE), the gra-

dient (Grad) and connectivity (Conn) proposed by [27]. A

better image matting method shall produce high-quality al-

pha mattes, thus reducing the values of the above all four

metrics.

4.2. Comparison to the Stateoftheart

Evaluation on the Composition-1k test set. Here we

compare HAttMatting with 6 traditional matting methods:

Shared Matting [12], Learning Based [41], Global Mat-

ting [26], ClosedForm [19], KNN Matting [6], Information-

Flow [1], and 8 deep learning based methods: DCNN [8],

DIM [37], AlphaGAN [24], SSS [2], SampleNet [30],

Context-aware [15], IndexNet [23], Late Fusion [40]. SSS,

Late Fusion and our HAttMatting can generate alpha mat-

tes without trimap. For the other methods, we feed RGB

images and trimaps produced by 25 pixels random dilation

refer to [37]. We use full-resolution input images for fair

contrast and the visual results are illustrated in Fig. 4. The

quantitative comparisons are reported in Tab. 1, and the four

metrics are all calculated on the whole image.

The HAttMatting exhibits significant superiority over

traditional methods, which can be clearly observed in Fig. 4

and Tab. 1. Compared to deep learning based approaches,

the HAttMatting has more sophisticated details than DCNN,

DIM, SSS and Late Fusion, and is better than SampleNet,

since we employ hierarchical attention mechanism to distill

advanced semantics and appearance cues, and their aggre-

gation achieves complete FG profiles and boundaries. Our

HAttMatting is slightly inferior to Context-Aware and In-

dexNet. The former establishes two branches and resorts
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Input Image Trimap Closed Form [19] DCNN [8] SSS [2] DIM [37]

SampleNet [30] IndexNet [23] Context-Aware [15] Late Fusion [40] HAttMatting (Ours) Ground Truth

Input Image Trimap Closed Form [19] DCNN [8] SSS [2] DIM [37]

SampleNet [30] IndexNet [23] Context-Aware [15] Late Fusion [40] HAttMatting (Ours) Ground Truth

Input Image Trimap Closed Form [19] DCNN [8] SSS [2] DIM [37]

SampleNet [30] IndexNet [23] Context-Aware [15] Late Fusion [40] HAttMatting (Ours) Ground Truth

Figure 4: The visual comparisons on the Composition-1k test set. The segments in SSS [2] are hand-picked.

to FG image supervision to predict alpha mattes, while the

latter learns index functions to capture texture and bound-

ary details. Although they both generate high-quality alpha

mattes, trimaps are strongly required during their training

and inference phase, which restricts their effectiveness in

practical applications. Our HAttMatting only need single

RGB images as input, which is very convenient for novice

users.

Evaluation on our Distinctions-646. For our

Distinctions-646 dataset, we compare HAttMatting with

8 recent state-of-the-art matting methods, including

Shared Matting [12], Learning Based [41], Global Mat-

ting [26], ClosedForm [19], KNN Matting [6], DCNN [8],

Information-Flow [1] and DIM [37]. For other deep learn-

ing based methods, since their training codes are unavail-

able for us, we can not evaluate them on our dataset.

We also use random dilation to generate high-quality

trimaps [37] and relevant metrics are computed on the

whole image.

The quantitative comparisons are displayed in Tab. 2.

Our HAttMatting shows a clear advantage on all four met-

rics compared to all the traditional methods, and is better

than DIM [37] on Grad and Conn metrics, while slightly

worse than it in SAD metric. It is noting that only our

method can generate alpha mattes without trimaps, and all

the other methods demand trimaps to confine the transi-

tion region, which effectively improves the performance of

these methods. Fig. 5 illustrates the visual comparison with

DIM [37] network. Here we enlarge the transition region

to reduce the accuracy of trimap, and the corresponding al-

pha mattes with DIM are shown in the fourth column. The

deterioration in visual quality is evident with the transition
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Input Image Trimap DIM [37] DIM+Large HAttMatting (Ours) Ground Truth

Figure 5: The visual comparisons on our Distinctions-646 test set. The ”DIM+Large” means that we feed DIM with trimaps

that have larger transition region, while our method can generate high-quality alpha mattes without trimaps.

Methods SAD↓ MSE↓ Grad↓ Conn↓

Shared Matting [12] 125.37 0.029 144.28 123.53

Learning Based [41] 95.04 0.018 76.63 98.92

Global Matting [26] 156.88 0.042 112.28 155.08

ClosedForm [19] 124.68 0.025 115.31 106.06

KNN Matting [6] 126.24 0.025 117.17 131.05

DCNN [8] 115.82 0.023 107.36 111.23

Information-Flow [1] 70.36 0.013 42.79 70.66

DIM [37] 48.87 0.008 31.04 50.36

AlphaGAN [24] 90.94 0.018 93.92 95.29

SampleNet [30] 48.03 0.008 35.19 56.55

Context-Aware [15] 38.73 0.004 26.13 35.89

IndexNet [23] 44.52 0.005 29.88 42.37

Late Fusion [40] 58.34 0.011 41.63 59.74

HAttMatting (Ours) 44.01 0.007 29.26 46.41

Basic 126.31 0.025 111.35 118.71

Basic + SSIM 102.79 0.021 88.04 110.14

Basic + Low 89.39 0.016 56.67 90.03

Basic + CA 96.67 0.018 73.94 95.08

Basic + Low + CA 72.73 0.013 49.53 65.92

Basic + Low + SA 54.91 0.011 46.21 60.40

Basic + Low + CA + SA 49.67 0.009 41.11 53.76

Table 1: The quantitative comparisons on Composition-1k

test set. The methods in gray (the Late Fusion and our

HAttMatting) only take RGB images as input, while the oth-

ers require trimap as assistance to guarantee the accuracy of

alpha mattes. ”Basic” means our baseline network, and the

corresponding ”Basic+” represent that we assemble differ-

ent components on the baseline to generate alpha mattes.

region expanded, which can verify that DIM has a strong

dependence on the quality of trimaps. The alpha mattes pro-

duced by HAttMatting exhibit sophisticated texture details,

which mainly benefits from the aggregation of adaptive se-

mantics and valid appearance cues in our model.

Methods SAD↓ MSE↓ Grad↓ Conn↓

Shared Matting [12] 119.56 0.026 129.61 114.37

Learning Based [41] 105.04 0.021 94.16 110.41

Global Matting [26] 135.56 0.039 119.53 136.44

ClosedForm [19] 105.73 0.023 91.76 114.55

KNN Matting [6] 116.68 0.025 103.15 121.45

DCNN [8] 103.81 0.020 82.45 99.96

Information-Flow [1] 78.89 0.016 58.72 80.47

DIM [37] 47.56 0.009 43.29 55.90

Basic 129.94 0.028 124.57 120.22

Basic + SSIM 121.79 0.025 110.21 117.41

Basic + Low 98.88 0.020 84.11 92.88

Basic + CA 104.23 0.022 90.87 101.9

Basic + Low + CA 85.57 0.015 79.16 88.38

Basic + Low + SA 78.14 0.014 60.87 71.90

Basic + Low + CA + SA 57.31 0.011 52.14 63.02

HAttMatting (Ours) 48.98 0.009 41.57 49.93

Table 2: The quantitative comparisons on our Distinctions-

646 test set. The definition of ”Basic” is the same with

Tab. 1.

4.3. Ablation Study

The core idea of our HAttMatting is to extract adaptive

pyramidal features and filter low-level appearance cues, and

then aggregate them to generate alpha mattes. To accom-

plish this goal, we employ channel-wise attention (CA) and

spatial attention (SA) to re-weight pyramidal features and
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(a) Input Image (b) Basic (c) Basic + Low + CA

(d) Basic + Low + SA (e) HAttMatting (f) Ground Truth

Figure 6: The visual comparison of different components.

Each component has a significant improvement for alpha

mattes.

appearance cues separately. We also introduce SSIM in

our loss function to further improve the FG structure. And

here we make different combinations of these components,

and verify the significance of them on the Composition-1k

and our Distinctions-646 datasets. Basic: This is our base-

line network, which only uses original pyramidal features to

generate alpha mattes, and optimized by LMSE and Ladv .

Basic + SSIM: LSSIM is involved in our loss function. Ba-

sic + Low: Low-level appearance cues are directly aggre-

gated with pyramidal features, which can furnish sophisti-

cated texture and details for alpha mattes. Basic + CA: On

the basis of baseline, we perform channel-wise attention to

distill pyramidal features. CA can effectively suppress un-

necessary advanced semantics and reduce the sensitivity of

the trained model to FG classes, which means the network

can handle diverse FG objects and the model versatility is

enhanced. Basic + Low + CA: This combination integrates

the advantages of the above two modules to promote perfor-

mance. Basic + Low + SA: Our modified SA can eliminate

the BG texture in appearance cues, improving subsequent

aggregation process. Basic + Low + CA + SA: We assem-

ble CA, Low and SA to achieve competent alpha mattes

without SSIM.

The quantitative results are shown in Tab. 1 and Tab. 2.

It can be clearly seen that each component can significantly

improve our results. The visual comparison is illustrated in

Fig. 6. CA can furnish FG profiles (Fig. 6c) while SA can

exhibit fine-grained internal texture and boundary details

(Fig. 6d), and their aggregation can generate high-quality

alpha mattes (Fig. 6e).

4.4. Results on Realworld Images

Fig. 7 shows our matting results on real-world images*.

The evaluation model is trained on the Composition-1k

*Please see the supplementary material for more matting results.

Input Image Alpha Matte

Figure 7: The results on real world images.

dataset. We can see that HAttMatting is able to achieve

high-quality alpha mattes without any external input or user

interaction. However, if the input image has some blur (the

hairs below the mouth of the dog), the HAttMatting can only

predict ambiguous FG boundaries. The blur in the input

images can obstruct our appearance cues filtration, and dis-

count subsequent aggregation process.

5. Conclusions and Future work

In this paper, we propose an Hierarchical Attention Mat-

ting Network (HAttMatting), which can predict high-quality

alpha mattes from single RGB images. The HAttMatting

employs channel-wise attention to extract matting-adapted

semantics and performs spatial attention to filtrate appear-

ance cues. Extensive experiments demonstrate that our hi-

erarchical structure aggregation can effectively distill high-

level and low-level features from the input images, and

achieve high-quality alpha mattes without external trimaps.

In the future, we will explore more effective strategies

to improve our attention mechanism, which we believe can

more effectively aggregate advanced semantics and appear-

ance cues, thus further improve the versatility and robust-

ness of our network.
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