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Abstract

We are concerned with a worst-case scenario in model

generalization, in the sense that a model aims to perform

well on many unseen domains while there is only one single

domain available for training. We propose a new method

named adversarial domain augmentation to solve this Out-

of-Distribution (OOD) generalization problem. The key

idea is to leverage adversarial training to create “fictitious”

yet “challenging” populations, from which a model can

learn to generalize with theoretical guarantees. To facilitate

fast and desirable domain augmentation, we cast the model

training in a meta-learning scheme and use a Wasserstein

Auto-Encoder (WAE) to relax the widely used worst-case

constraint. Detailed theoretical analysis is provided to tes-

tify our formulation, while extensive experiments on multi-

ple benchmark datasets indicate its superior performance

in tackling single domain generalization.

1. Introduction

Recent years have witnessed rapid deployment of ma-

chine learning models for broad applications [17, 42, 3, 60].

A key assumption underlying the remarkable success is that

the training and test data usually follow similar statistics.

Otherwise, even strong models (e.g., deep neural networks)

may break down on unseen or Out-of-Distribution (OOD)

test domains [2]. Incorporating data from multiple train-

ing domains somehow alleviates this issue [21], however,

this may not always be applicable due to data acquiring

budget or privacy issue. An interesting yet seldom inves-

tigated problem then arises: Can a model generalize from

one source domain to many unseen target domains? In other

words, how to maximize the model generalization when

there is only a single domain available for training?

The discrepancy between source and target domains,

also known as domain or covariate variant [48], has been

intensively studied in domain adaptation [30, 33, 57, 24]

and domain generalization [32, 9, 22, 4]. Despite of their

1The source code and pre-trained models are publicly available at:

https://github.com/joffery/M-ADA.
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Figure 1. The domain discrepancy: (a) domain adaptation, (b) do-

main generalization, and (c) single domain generalization.

various success in tackling ordinary domain discrepancy is-

sue, however, we argue that existing methods can hardly

succeed in the aforementioned single domain generalization

problem. As illustrated in Fig. 1, the former usually expects

the availability of target domain data (either labeled or unla-

beled); While the latter, on the other hand, always assumes

multiple (rather than one) domains are available for train-

ing. This fact emphasizes the necessity to develop a new

learning paradigm for single domain generalization.

In this paper, we propose adversarial domain augmenta-

tion (Sec. 3.1) to solve this challenging task. Inspired by the

recent success of adversarial training [35, 50, 49, 36, 24],

we cast the single domain generalization problem in a

worst-case formulation [44, 20]. The goal is to use sin-

gle source domain to generate “fictitious” yet “challenging”

populations, from which a model can learn to generalize

with theoretical guarantees (Sec. 4).

However, technical barriers exist when applying adver-

sarial training for domain augmentation. On the one hand,

it is hard to create “fictitious” domains that are largely dif-

ferent from the source, due to the contradiction of seman-

tic consistency constraint [11] in worst-case formulation.

On the other hand, we expect to explore many “fictitious”

domains to guarantee sufficient coverage, which may re-

sult in significant computational overhead. To circumvent

these barriers, we propose to relax the worst-case constraint

(Sec. 3.2) via a Wasserstein Auto-Encoder (WAE) [52] to

encourage large domain transportation in the input space.

Moreover, rather than learning a series of ensemble mod-

els [56], we organize adversarial domain augmentation via

meta-learning [6] (Sec. 3.3), yielding a highly efficient

model with improved single domain generalization.
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The primary contribution of this work is a meta-learning

based scheme that enables single domain generalization, an

important yet seldom studied problem. We achieve the goal

by proposing adversarial domain augmentation, while at the

same time, relaxing the widely used worst-case constraint.

We also provide detailed theoretical understanding to tes-

tify our solution. Extensive experiments indicate that our

method marginally outperforms state of the art in single do-

main generalization of benchmark datasets including Dig-

its, CIFAR-10-C [14], and SYTHIA [37].

2. Related Work

Domain discrepancy: Domain discrepancy brought by

domain or covariance shifts [48] severely degrades the

model performance on cross-domain recognition. The mod-

els trained using Empirical Risk Minimization [16] usually

perform poorly on unseen domains. To reduce the discrep-

ancy across domains, a series of methods are proposed for

unsupervised [33, 43, 7, 38, 39] or supervised domain adap-

tation [31, 57]. Some recent work also focused on few-shot

domain adaptation [30] where only a few labeled samples

from target domain are involved in training.

Different from domain adaptation, domain generaliza-

tion aims to learn from multiple source domains without

any access to target domains. Most previous methods ei-

ther tried to learn a domain-invariant space to align do-

mains [32, 9, 12, 21, 59] or aggregate domain-specific mod-

ules [29, 28]. Recently, Carlucci et al. [4] solved this prob-

lem by jointly learning from supervised and unsupervised

signals from images. In data level, gradient-based domain

perturbation [41] and adversarial training methods [56] are

proposed to improve generalization. In particular, [56] is

designed for single domain generalization and achieves bet-

ter performance through an ensemble model. Compared to

[56], we aim at creating large domain transportation for

“fictitious” domains and devising a more efficient meta-

learning scheme within a single unified model.

Adversarial training: Adversarial training [11] is pro-

posed for improving model robustness against adversarial

perturbations or attacks. Madry et al. [27] provided ev-

idence that deep neural networks is capable of resistant

to adversarial attacks through reliable adversarial training

methods. Further, Sinha et al. [44] proposed principled ad-

versarial training through the lens of distributionally robust

optimization. More recently, Stutz et al. [47] pointed out

that on-manifold adversarial training boosts generalization,

and hence models with both robustness and generalization

can be obtained at the same time. Peng et al. [35] proposed

to learn robust models via perturbed examples. In our work,

we generate “fictitious” domains through adversarial train-

ing to improve single domain generalization.

Meta-learning: Meta-learning [40, 51] is a long stand-

ing topic in how to learn new concepts or tasks fast with

a few training examples. It has been widely used in op-

timization of deep neural networks [1, 23] and few-shot

classification [15, 55, 46]. Recently, Finn et al. [6] pro-

posed a Model-Agnostic Meta-Learning (MAML) proce-

dure for few-shot learning and reinforcement learning. The

objective of MAML is to find a good initialization which

can be fast adapted to new tasks within few gradient steps.

Li et al. [22] proposed a MAML-based approach to solve

domain generalization. Balaji et al. [2] proposed to learn

an adaptive regularizer through meta-learning for cross-

domain recognition. However, neither of them is applica-

ble for single domain generalization. Instead, in this pa-

per, we propose a MAML-based meta-learning scheme to

efficiently train models on “fictitious” domains for single

domain generalization. We show that the learned model is

robust to unseen target domains while it can also be easily

leveraged for few-shot domain adaptation.

3. Method

We aim at solving the problem of single domain gener-

alization: A model is trained on only one source domain

S but is expected to generalize well on many unseen target

domains T . A promising solution of this challenging prob-

lem, inspired by many recent achievements [36, 56, 24], is

to leverage adversarial training [11, 49]. The key idea is to

learn a robust model that is resistant to out-of-distribution

perturbations. More specifically, we can learn the model by

solving a worst-case problem [44]:

min
θ

sup
T :D(S,T )≤ρ

E[Ltask(θ; T )], (1)

where D is a similarity metric to measure the domain dis-

tance and ρ denotes the largest domain discrepancy between

S and T . θ are model parameters that are optimized accord-

ing to a task-specific objective function Ltask. Here, we

focus on classification problems using cross-entropy loss:

Ltask(y, ŷ) = −
∑

i

yi log(ŷi), (2)

where ŷ is softmax output of the model; y is the one-hot

vector representing the ground truth class; yi and ŷi repre-

sent the i-th dimension of y and ŷ, respectively.

Following the worst-case formulation (1), we propose

a new method, Meta-Learning based Adversarial Domain

Augmentation (M-ADA), for single domain generalization.

Fig. 2 presents an overview of our approach. We create “fic-

titious” yet “challenging” domains by leverage adversarial

training to augment the source domain in Sec. 3.1. The task

model learns from the domain augmentations with the assis-

tance of a Wasserstein Auto-Encoder (WAE), which relaxes

the worst-case constraint in Sec. 3.2. We organize the joint

training of task model and WAE, as well as the domain aug-

mentation procedure, in a learning to learn framework as

12557
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Figure 2. Overview of adversarial domain augmentation.

described in Sec. 3.3. Finally, we present theoretical analy-

sis to prove the worst-case guarantee in Sec. 4.

3.1. Adversarial Domain Augmentation

Our goal is to create multiple augmented domains from

the source domain. Augmented domains are required to be

distributionally different from the source domain so as to

mimic unseen domains. In addition, to avoid divergence

of augmented domains, the worst-case guarantee defined in

Eq. (1) should also be satisfied.

To achieve this goal, we propose Adversarial Domain

Augmentation. Our model consists of a task model and a

WAE shown in Fig. 2. In Fig. 2, the task model consists of

a feature extractor F : X → Z mapping images from input

space to embedding space, and a classifier C : Z → Y used

to predict labels from embedding space. Let z denote the

latent representation of x which is obtained by z = F (x).
The overall loss function is formulated as follows:

LADA = Ltask(θ;x)
︸ ︷︷ ︸

Classification

−αLconst(θ; z)
︸ ︷︷ ︸

Constraint

+β Lrelax(ψ;x)
︸ ︷︷ ︸

Relaxation

,

(3)

where Ltask is the classification loss defined in Eq. (2),

Lconst is the worst-case guarantee defined in Eq. (1), and

Lrelax guarantees large domain transportation defined in

Eq. (7). ψ are parameters of the WAE. α and β are two

hyper-parameter to balance Lconst and Lrelax.

Given the objective function LADA, we employ an itera-

tive way to generate the adversarial samples x+ in the aug-

mented domain S+:

x
+
t+1 ← x

+
t + γ∇

x
+

t

LADA(θ, ψ;x
+
t , z

+
t ), (4)

where γ is the learning rate of gradient ascent. A small

number of iterations are required to produce sufficient per-

turbations and create desirable adversarial samples.

Lconst imposes semantic consistency constraint to adver-

sarial samples so that S+ satisfies D (S,S+) ≤ ρ. More

Sample in Source Domain Augmented Sample

  

Figure 3. Motivation of Lrelax. Left: The augmented samples

may be close to the source domain if applying Lconst. Middle:

We expect to create out-of-domain augmentations by incorporat-

ing Lrelax. Right: This would yield an enlarged training domain.

specifically, we follow [56] to measure the Wasserstein dis-

tance between S+ and S in the embedding space:

Lconst =
1

2
‖z− z+‖22 +∞ · 1

{
y 6= y+

}
, (5)

where 1{·} is the 0-1 indicator function and Lconst will

be ∞ if the class label of x+ is different from x. Intu-

itively, Lconst controls the ability of generalization outside

the source domain measured by Wasserstein distance [54].

However, Lconst yields limited domain transportation since

it severely constrains the semantic distance between the

samples and their perturbations. Hence, Lrelax is proposed

to relax the semantic consistency constraint and create large

domain transportation. The implementation of Lrelax is dis-

cussed in Sec. 3.2.

3.2. Relaxation of Wasserstein Distance Constraint

Intuitively, we expect the augmented domains S+ are

largely different from the source domain S . In other words,

we want to maximize the domain discrepancy between S+

and S . However, the semantic consistency constraint Lconst

would severely limits the domain transportation from S to

S+, posing new challenges to generate desirable S+. To

address this issue, we propose Lrelax to encourage out-of-

domain augmentations. We illustrate the idea in Fig. 3.

Specifically, we employ Wasserstein Auto-Encoders

(WAEs) [52] to implement Lrelax. Let V denote the WAE

parameterized by ψ. V consists of an encoder Q(e|x) and

a decoder G(x|e) where x and e denote inputs and bottle-

neck embedding, respectively. Additionally, we use a dis-

tance metric De to measure the divergence between Q(x)
and a prior distribution P (e), which can be implemented as

either Maximum Mean Discrepancy (MMD) or GANs [10].

We can learn V by optimizing:

min
ψ

[‖G(Q(x))− x‖2 + λDe(Q(x), P (e))], (6)

where λ is a hyper-parameter. After pre-training V on the

source domain S offline, we keep it frozen and maximize
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Algorithm 1: The proposed Meta-Learning based

Adversarial Domain Augmentation (M-ADA).

Input: Source domain S; Pre-train WAE V on S;

Number of augmented domains K
Output: Learned model parameters θ

1 for k = 1, ...,K do

2 Generate S+k from S ∪ {S+i }
k−1
i=1 using Eq. (4)

3 Re-train V with S+k
4 Meta-train: Evaluate Ltask(θ;S) w.r.t. S

5 Compute θ̂ using Eq. (8)

6 for i = 1, ..., k do

7 Meta-test: Evaluate Ltask(θ̂;S
+
i )) w.r.t. S+i

8 end

9 Meta-update: Update θ using Eq. (9)

10 end

the reconstruction error Lrelax for domain augmentation:

Lrelax = ‖x+ − V (x+)‖2. (7)

Different from Vanilla or Variation Auto-Encoders [45],

WAEs employ the Wasserstein metric to measure the dis-

tribution distance between the input and reconstruction.

Hence, the pre-trained V can better capture the distribution

of the source domain and maximizing Lrelax creates large

domain transportation. Comparison of different Lrelax is

also provided in the supplementary.

In this work, V acts as a one-class discriminator to dis-

tinguish whether the augmentation is outside the source do-

main, which is significantly different from the traditional

discriminator of GANs [10]. And it is also different from

the domain classifier widely used in domain adaptation [24],

since there is only one source domain available. As a result,

Lrelax together with Lconst are used to “push away” S+ in

input space and “pull back” S+ in the embedding space si-

multaneously. In Sec. 4, we show that Lrelax and Lconst are

derivations of two Wasserstein distance metrics defined in

the input space and embedding space, respectively.

3.3. MetaLearning Single Domain Generalization

To efficiently organize the model training on the source

domain S and augmented domains S+, we leverage a meta-

learning scheme to train a single model. To mimic real

domain-shifts between the source domain S and target do-

main T , at each learning iteration, we perform meta-train

on the source domain S and meta-test on all augmented

domains S+. Hence, after many iterations, the model is

expected to achieve good generalization on the final target

domain T during evaluation.

Formally, the proposed Meta-Learning based Adversar-

ial Domain Augmentation (M-ADA) approach consists of

three parts in each iteration during the training procedure:

meta-train, meta-test and meta-update. In meta-train, Ltask

is computed on samples from the source domain S , and

the model parameters θ is updated via one or more gradi-

ent steps with a learning rate of η:

θ̂ ← θ − η∇θLtask(θ;S). (8)

Then we compute Ltask(θ̂;S
+
k ) on each augmented domain

S+k in meta-test. At last, in meta-update, we update θ by the

gradients calculated from a combined loss where meta-train

and meta-test are optimised simultaneously:

θ ← θ − η∇θ[Ltask(θ;S) +

K∑

k=1

Ltask(θ̂;S
+
k )], (9)

where K is the number of augmented domains.

The entire training pipeline is summarized in Alg. 1. Our

method has following merits. First, in contrast to prior

work [56] that learns a series of ensemble models, our

method achieves a single model for efficiency. In Sec. 5.4,

we prove that M-ADA outperforms [56] marginally in terms

of memory, speed and accuracy. Second, the meta-learning

scheme prepares the learned model for fast adaptation: One

or a small number of gradient steps will produce improved

behavior on a new target domain. This enables M-ADA for

few-shot domain adaptation as shown in Sec 5.5.

4. Theoretical Understanding

We provide a detailed theoretical analysis of the pro-

posed Adversarial Domain Augmentation. Specifically, we

show that the overall loss function defined in Eq. (3) is a

direct derivation of a relaxed worst-case problem.

Let c : Z × Z → R+ ∪ {∞} be the “cost” for

an adversary to perturb z to z+ in the embedding space.

Let d : X × X → R+ ∪ {∞} be the “cost” for an

adversary to perturb x to x+ in the input space. The

Wasserstein distances between S and S+ can be formu-

lated as: Wc(S,S
+) := infMz∈Π(S,S+) EMz

[c (z, z+)] and

Wd(S,S
+) := infMx∈Π(S,S+) EMx

[d (x,x+)], where Mz

and Mx are measures in the embedding and input space, re-

spectively; Π(S,S+) is the joint distribution of S and S+.

Then, the relaxed worst-case problem can be formulated as:

θ∗ = min
θ

sup
S+∈D

E[Ltask(θ;S
+)], (10)

where D = {S+ : Wc(S,S
+) ≤ ρ,Wd(S,S

+) ≥ η}. We

note that D covers a robust region that is within ρ distance

of S in the embedding space and η distance away from S
in the input space under the Wasserstein distance measures

Wc and Wd, respectively.

For deep neural networks, Eq. (10) is intractable with

arbitrary ρ and η. Consequently, we consider its Lagrangian

relaxation with fixed penalty parameters α ≥ 0 and β ≥ 0:

min
θ
{sup
S+

{
E[Ltask(θ;x

+)]−Wc,d

}
= E[φα,β(θ, ψ;x)]},
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Figure 4. Visualization of domains and convex hulls in the embedding space (the first three figures) and classification space (the last figure).

From left to right: (a) source domain S and unseen target domains T ; (b) augmented domains S+ w/o Lrelax; (c) S+ w/ Lrelax; (d) the

classification result of M-ADA. Different colors denote different categories. The numbers mark the corresponding cluster centers. Note

that 1: cluster center of S; 1+: cluster center of S+. Best viewed in color and zoom in for details.

and we have Wc,d(S,S
+) = αWc(S,S

+)− βWd(S,S
+),

φα,β(θ, ψ;x) = sup
x
+ {Ltask(θ;x

+)− Lc,d}, and Lc,d =
αc (z, z+) − βd (x,x+). Thus the problem in Eq. (10) is

transformed to minimize the robust surrogate φα,β .

According to [44], φα is smooth w.r.t. θ if α is large

enough and the assumption of Lipschitzian smoothness

holds. Since ψ and θ are independent with each other, φα,β
is still smooth w.r.t. θ. The gradient can be computed as:

∇θφα,β(θ, ψ;x) = ∇θLtask(θ;x
⋆(x, θ, ψ)),

where x⋆(x, θ, ψ) = argmax
x
+ [Ltask(θ;x

+) − Lc,d] =
argmax

x
+ LADA(θ, ψ;x

+, z+), which is exactly the adver-

sarial perturbation defined in Eq. (3).

5. Experiments

We begin by introducing the experimental setups and im-

plementation details in Secs. 5.1 and 5.2, respectively. In

Sec. 5.3, we carry out detailed ablation study to validate the

strength of the proposed relaxation, the efficiency of meta-

learning scheme, and the selection and trade-off of key hy-

perparameters. In Sec. 5.4, we compare M-ADA with state

of the arts on benchmark datasets. In Sec. 5.5, we further

evaluate M-ADA in few-shot domain adaptation.

5.1. Datasets and Settings

Datasets and settings: (1) Digits consists of five sub-

datasets: MNIST [19], MNIST-M [8], SVHN [34], SYN

[8], and USPS [5], and each of them can be viewed as

a different domain. Each image in these datasets con-

tains one single digit with different styles. This dataset

is mainly employed for ablation studies. We use the first

10,000 samples in the training set of MNIST for training,

and evaluate models on all other domains. (2) CIFAR-10-

C [14] is a robustness benchmark consisting of 19 corrup-

tions types with five levels of severities applied to the test

set of CIFAR-10. The corruptions come from four main

categories: noise, blur, weather and digital. Each corrup-

tion has five-level severities and “5” indicates the most cor-

rupted one. All the models are trained on CIFAR-10 and

evaluated on CIFAR-10-C. (3) SYTHIA [37] is a dataset syn-

thesized for semantic segmentation in the context of driving

scenarios. This dataset consists of the same traffic situa-

tion but under different locations (Highway, New York-like

City and Old European Town are selected) and different

weather/illumination/season conditions (Dawn, Fog, Night,

Spring and Winter are selected). Following the protocol in

[56], we only use the images from the left front camera and

900 images are randomly sample from each source domain.

Evaluation metrics: For Digits and CIFAR-10-C, we

compute the mean accuracy on each unseen domain. For

CIFAR-10-C, accuracy may not be sufficient to comprehen-

sively evaluate the performance of models without measur-

ing relative gain over baseline models (ERM [16]) and rel-

ative error evaluated on the clean dataset, i.e., the test set of

CIFAR-10 without any corruption. Inspired by the robust-

ness metrics proposed in [14], two metrics are formulated

to evaluate the robustness against image corruptions in the

context of domain generalization: mean Corruption Error

(mCE) and Relative mCE (RmCE). They are defined as:

mCE = 1
N

∑N
i=1E

f
i /E

ERM
i , RmCE = 1

N

∑N
i=1(E

f
i −

Efclean )/(E
ERM
i − EERM

clean ), where N is the number of cor-

ruptions. mCE is used for evaluating the robustness of the

classifier f compared with ERM [16]. RmCE measures

the relative robustness compared with the clean data. For

SYTHIA, we compute the standard mean Intersection Over

Union (mIoU) on each unseen domain.

5.2. Implementation Details

Task models: We design specific task models and em-

ploy different training strategies accordingly for the three

datasets. Please refer to the supplementary material for
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Figure 5. Validation of meta-learning scheme. Five levels of sever-

ity on Impulse Noise (left) and Shot Noise (right) are evaluated.

Method # of params. Inference time Accuracy

GUD [56] 31.9M 22.1ms 55.8%

M-ADA (full) 4.54M 3.07ms 59.5%

Table 1. Efficiency comparison in single domain generalization.

GUD has to learn a series of ensemble models. M-ADA leverages

meta-learning scheme to achieve a single model. M-ADA outper-

forms GUD marginally in terms of memory, speed, and accuracy.

more details. For Digits dataset, we use a ConvNet [18]

with architecture conv-pool-conv-pool-fc-fc-softmax. All

images are resized to 32×32, and the channels of MNIST

and USPS are duplicated to make them as RGB images.

We use Adam with the learning rate η = 0.0001. The

batch size is 32 and the total number of iterations is 10,000.

For CIFAR-10-C, we use Wide Residual Network (WRN)

[58] with 16 layers and the width is 4. Following the train-

ing procedure in [58], we use SGD with Nesterov momen-

tum and set the batch size to 128. The initial learning

rate is 0.1 with a linear decay and the number of epochs

is 200. For SYTHIA, we use FCN-32s [25] with the back-

bone of ResNet-50 [13]. We use Adam with the learning

rate α = 0.0001. We set the batch size to 8 and the number

of epochs to 50.

Wasserstein Auto-Encodes: We follow [52] to imple-

ment WAEs but slightly modify architectures for dataset

adaptation. The encoder and decoder are built with Fully-

Connected (FC) layers for Digits dataset. We utilize

two convolutional neural networks to implement the auto-

encoders for CIFAR-10-C and SYTHIA. When training

WAEs, we use WAE-GAN [52] to minimize the JS diver-

gence between P (e) and Q(e|x) in the latent space. An

additional discriminator implemented by FC layers is used

for distinguishing the true points from P (e) and fake points

from Q(e|x). Due to the space limitation, we suggest read-

ers refer to the supplementary material for detailed setups.

5.3. Ablation Study

Validation of Lrelax: To give an intuitive understanding

of how Lrelax affects the distribution of augmented domains
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Figure 6. Hyper-parameter tuning of K and β. We set K = 3 and

β = 2.0× 10
3 according to the best classification accuracy.

Method Level 1 Level 2 Level 3 Level 4 Level 5

ERM [16] 87.8±0.1 81.5±0.2 75.5±0.4 68.2±0.6 56.1±0.8

GUD [56] 88.3±0.6 83.5±2.0 77.6±2.2 70.6±2.3 58.3±2.5

M-ADA (full) 90.5±0.3 86.8±0.4 82.5±0.6 76.4±0.9 65.6±1.2

↑ to ERM 3.08% 6.50% 9.27% 12.0% 16.9%

↑ to GUD 2.49% 3.95% 6.31% 8.22% 12.5%

Table 2. Accuracy comparison (%) on CIFAR-10-C. Boosts (↑) be-

come more significant as corruption severity level (1-5) increases.

S+, we use t-SNE [26] to visualize S+ with and without

Lrelax in the embedding space. Their results are shown in

Fig. 4 (b) and (c), respectively. We observe that the convex

hull of S∪ S+ with Lrelax covers an enlarged region than

that of S ∪ S+ without Lrelax. This indicates that S+ con-

tains more distributional variance and better overlaps with

unseen domains. Further, we compute Wasserstein distance

to quantitatively measure the difference between S and S+.

The distance between S and S+ with Lrelax is 0.078, while

if Lrelax is not employed, the distance decreases to 0.032,

indicating an improvement of 58.9% by introducing Lrelax.

These results demonstrate that Lrelax is capable of push-

ing S+ away from S , which guarantees significant domain

transportation in the input space.

Validation of meta-learning scheme: The comparisons

of M-ADA with and without meta-learning (ML) scheme

are presented in Tabs. 3 and 4. We observe that with the

help of this meta-learning scheme, the results on average

accuracy of Digits and CIFAR-10-C are improved by 0.94%

and 1.37%, respectively. Specially, the results of two kinds

of unseen corruptions are shown in Fig. 5. As seen, M-

ADA can significantly reduce variance and yield better per-

formance across all levels of severity. The experimental re-

sults prove that the meta-learning scheme plays a key role

to improve the training stability and classification accuracy.

This is extremely important when performing adversarial

domain augmentation in challenging conditions.

Hyper-parameter tuning of K and β: We study the

effect of two important hyper-parameters of M-ADA: the

number of augmented domains (K) and the deviation be-

tween the source and augmented domain (β). We plot
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Method SVHN MNIST-M SYN USPS Avg.

ERM [16] 27.83 52.72 39.65 76.94 49.29

CCSA [31] 25.89 49.29 37.31 83.72 49.05

d-SNE [57] 26.22 50.98 37.83 93.16 52.05

JiGen [4] 33.80 57.80 43.79 77.15 53.14

GUD [56] 35.51 60.41 45.32 77.26 54.62

M-ADA w/o Lrelax 37.33 61.43 45.58 77.37 55.43

M-ADA w/o Lconst 41.36 67.28 47.94 78.22 58.70

M-ADA w/o ML 41.45 67.86 48.76 76.12 58.55

M-ADA (full) 42.55 67.94 48.95 78.53 59.49

Table 3. Single domain generalization comparison (%) on Digits.

Models are trained on MNIST. The variant (w/o Lrelax) has the

most significant performance decrease, indicating it is crucial to

perform Wasserstein relaxation for single domain generalization.

the accuracy curve under different K and β in Fig. 6. In

Fig. 6 (left), we find that the accuracy reaches the summit

when K = 3 and keeps falling with K increasing. This

is due to the fact that excessive adversarial samples above

a certain threshold will increase the instability and degrade

the robustness of the model. In Fig. 6 (right), we observe

that the accuracy reaches the summit when β = 2.0 × 103

and drops slightly when β increases. This is because large

β will produce domains too far way from the source S and

even reach out of the manifold in the embedding space.

5.4. Evaluation of Single Domain Generalization

We compare our method with the following five state-of-

the-art methods. (1) Empirical Risk Minimization (ERM)

[53, 16] are models trained with cross-entropy loss, with-

out any auxiliary loss and data augmentation scheme.

(2) CCSA [31] uses semantic alignment to regularize the

learned feature subspace for domain generalization. (3)

d-SNE [57] minimizes the largest distance between the

samples from the same class and maximizes the small-

est distance between the samples from different classes.

(4) GUD [56] proposes an adversarial data augmentation

method for single domain generalization, which is the re-

lated work to M-ADA. (5) JiGen [4] learns to classify and

predict the order of shuffled image patches at the same time

for domain generalization.

Comparison on Digits: We train all models on MNIST

and test them on unseen domains, i.e., MNIST-M, SVHN,

SYN, and USPS. We report the results in Tab. 3. We ob-

serve that M-ADA outperforms GUD with a large margin

on SVHN, MNIST-M and SYN. The improvement on USPS

is not as significant as those on other domains, mainly due to

its great similarity with MNIST. On the contrary, CCSA and

d-SNE obtain large improvements on USPS but perform

poorly on other ones. We also compare M-ADA with an

ensemble model of GUD, which aggregates prediction re-

sults of several models under different semantic constraints.

Results are shown in Tab. 1. As seen, M-ADA outperforms

sky building road sidewalk vegetation polecar pedestrianbicycle traffic light lanemarking

Figure 7. Examples of semantic segmentation on SYNTHIA [37].

From left to right: (a) images from unseen domains; (b) ground

truth; (c) results of ERM [16]; (d) results of GUD [56]; and (e)

results of M-ADA. Best viewed in color and zoom in for details.

GUD ensemble models in terms of generalization accuracy

but with much less model parameters and even faster in-

ference speed. The strong results, once again, testify the

efficiency of the proposed learning to learn framework.

Comparison on CIFAR-10-C: We train all models on

the clean data, i.e., CIFAR-10, and test them on the corrup-

tion data, i.e., CIFAR-10-C. In this case, there are totally 19
unseen testing domains. Results on CIFAR-10-C across five

levels of corruption severity are shown in Tab. 2. As seen,

The gap between GUD and M-ADA gets larger with the

level of severity increasing, and M-ADA can significantly

reduce standard deviations across all levels. In addition, we

present the result of each corruption with the highest sever-

ity in Tab. 4. We observe that M-ADA substantially out-

performs other methods on most corruptions. Specially, in

several corruptions such as Snow, Glass blur, Pixelate and

corruptions related with Noise, M-ADA outperforms ERM

[16] with more than 10%. More importantly, M-ADA has

the lowest values on mCE and RmCE, indicating its strong

robustness against image corruptions.

Comparison on SYTHIA: In this experiment, Highway

is the source domain, and New York-like City together with

Old European Town are unseen target domains. We report

semantic segmentation results in Tab. 5 and show some ex-

amples in Fig. 7. Unseen domains are from different loca-

tions and other conditions. We observe that M-ADA obtains

the highest values on average mIoUs across three source do-

mains, suggesting its capability of coping with changes of

locations, weather and time. Improvements over ERM [16]

and GUD [56] are not significant compared with the other

two datasets, mainly owing to the limited number of train-

ing images and high reliance of unseen domains.

5.5. Evaluation of FewShot Domain Adaptation

Settings: Although M-ADA is designed for single do-

main generalization, as mentioned in Sec. 3.3, we also show

that M-ADA can be easily applied for few-shot domain

adaptation [30]. In few-shot learning, models are usually
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Weather Blur Noise Digital

Fog Snow Frost Zoom Defocus Glass Speckle Shot Impulse Jpeg Pixelate Spatter Avg. mCE RmCE

ERM [16] 65.92 74.36 61.57 59.97 53.71 49.44 41.31 35.41 25.65 69.90 41.07 75.36 56.15 1.00 1.00

CCSA [31] 66.94 74.55 61.49 61.96 56.11 48.46 40.12 33.79 24.56 69.68 40.94 77.91 56.31 0.99 0.99

d-SNE [57] 65.99 75.46 62.25 58.47 53.71 50.48 45.30 39.93 27.95 70.20 38.46 73.40 56.96 0.99 1.00

GUD [56] 68.29 76.75 69.94 62.95 56.41 53.45 38.45 36.87 22.26 74.22 53.34 80.27 58.26 0.97 0.95

M-ADA w/o Lrelax 66.99 80.09 74.93 54.15 44.67 60.57 59.88 59.18 43.46 76.45 53.13 80.75 61.92 0.90 0.86

M-ADA w/o ML 67.68 80.91 76.20 65.70 56.87 62.14 60.01 59.63 40.04 77.62 52.49 81.02 64.22 0.85 0.80

M-ADA (full) 69.36 80.59 76.66 68.04 61.18 61.59 60.88 60.58 45.18 77.14 52.25 80.62 65.59 0.82 0.77

Table 4. Robustness comparison on CIFAR-10-C [14]. The models are generalized from the clean data to different corruptions. We report

the classification accuracy (%) of 19 corruptions (only 12 are shown) under the corruption level of “5” (the severest). We also report the

mean Corruption Error (mCE) and relative mCE (RmCE) in the last two columns. The lower the better for mCE and RmCE.

New York-like City Old European Town

Source Domain Method Dawn Fog Night Spring Winter Dawn Fog Night Spring Winter Avg.

Highway/Dawn

ERM [16] 27.80 2.73 0.93 6.80 1.65 52.78 31.37 15.86 33.78 13.35 18.70

GUD [56] 27.14 4.05 1.63 7.22 2.83 52.80 34.43 18.19 33.58 14.68 19.66

M-ADA 29.10 4.43 4.75 14.13 4.97 54.28 36.04 23.19 37.53 14.87 22.33

Highway/Fog

ERM [16] 17.24 34.80 12.36 26.38 11.81 33.73 55.03 26.19 41.74 12.32 27.16

GUD [56] 18.75 35.58 12.77 26.02 13.05 37.27 56.69 28.06 43.57 13.59 28.53

M-ADA 21.74 32.00 9.74 26.40 13.28 42.79 56.60 31.79 42.77 12.85 29.00

Highway/Spring

ERM [16] 26.75 26.41 18.22 32.89 24.60 51.72 51.85 35.65 54.00 28.13 35.02

GUD [56] 28.84 29.67 20.85 35.32 27.87 52.21 52.87 35.99 55.30 29.58 36.85

M-ADA 29.70 31.03 22.22 38.19 28.29 53.57 51.83 38.98 55.63 25.29 37.47

Table 5. Semantic segmentation comparison on SYNTHIA [37]. The models are generalized from one source domain to many unseen

environment settings. We report the standard mean Intersection Over Unions (mIoUs) and demonstrate visual results in Fig. 7.

Method |T | U →M M → S S →M Avg.

I2I [33]

All

92.20 - 92.10 -

DIRT-T [43] - 54.50 99.40 -

SE [7] 98.07 13.96 99.18 70.40

SBADA [38] 97.60 61.08 76.14 78.27

G2A [39] 90.80 - 92.40 -

FADA [30] 7 91.50 47.00 87.20 75.23

CCSA [31] 10 95.71 37.63 94.57 75.97

M-ADA

0 71.19 36.61 60.14 55.98

7 92.33 56.33 89.90 79.52

10 93.67 57.16 91.81 80.88

Table 6. Few-shot domain adaptation comparison on MNIST(M),

USPS(U), and SVHN(S) in terms of accuracy (%). |T | denotes the

number of target samples (per class) used during model training.

first pre-trained on the source domain S and then fine-tuned

on the target domain T . More specifically, we first train M-

ADA on S using all training images. Then we randomly

pick out 7 or 10 images per class from T . These images are

used to fine-tune the pre-trained model with a learning rate

of 0.0001 and a batch size of 16.

Discussions: We compare our method with the state-of-

the-art methods for few-shot domain adaptation. We also

report the results of some unsupervised methods which use

images in the target domain for training. Results on MNIST,

USPS, and SVHN are shown in Tab. 6. We observe that M-

ADA obtains competitive results compared with FADA [30]

and CCSA [31]. And M-ADA also outperforms several un-

supervised methods which take advantage of unlabeled im-

ages from the target domain. More importantly, we note

that both FADA [30] and CCSA [31] are trained in a man-

ner where samples from S and T are strongly coupled. This

means that when the target domain changes, an entirely new

model has to be trained. On the other hand, for a new tar-

get domain, M-ADA only needs to fine-tune the pre-trained

model with a few samples within a small number of itera-

tions. This demonstrates the high flexibility of M-ADA.

6. Conclusion

In this paper, we present Meta-Learning based Adversar-

ial Domain Augmentation (M-ADA) to address the prob-

lem of single domain generalization. The core idea is to

use a meta-learning based scheme for efficiently organizing

the training of augmented “fictitious” domains, which are

OOD from source domain and created by adversarial train-

ing. In the future, we expect to further extend our work to

address regression problems, or knowledge transferring in

multimodal learning.
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