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Abstract

Weight and activation binarization is an effective ap-

proach to deep neural network compression and can acceler-

ate the inference by leveraging bitwise operations. Although

many binarization methods have improved the accuracy of

the model by minimizing the quantization error in forward

propagation, there remains a noticeable performance gap

between the binarized model and the full-precision one. Our

empirical study indicates that the quantization brings in-

formation loss in both forward and backward propagation,

which is the bottleneck of training accurate binary neural net-

works. To address these issues, we propose an Information

Retention Network (IR-Net) to retain the information that

consists in the forward activations and backward gradients.

IR-Net mainly relies on two technical contributions: (1)

Libra Parameter Binarization (Libra-PB): simultaneously

minimizing both quantization error and information loss of

parameters by balanced and standardized weights in forward

propagation; (2) Error Decay Estimator (EDE): minimizing

the information loss of gradients by gradually approximating

the sign function in backward propagation, jointly consid-

ering the updating ability and accurate gradients. We are

the first to investigate both forward and backward processes

of binary networks from the unified information perspective,

which provides new insight into the mechanism of network

binarization. Comprehensive experiments with various net-

work structures on CIFAR-10 and ImageNet datasets man-

ifest that the proposed IR-Net can consistently outperform

state-of-the-art quantization methods.

1. Introduction

Deep neural networks (DNNs), especially convolutional

neural networks (CNNs), have been well demonstrated in a
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wide variety of computer vision applications such as image

classification [30, 46, 47, 49, 50, 56, 63, 53], object detec-

tion [17, 16, 42, 45, 34] and semantic segmentation [15, 65].

Traditional CNNs are usually with massive parameters and

high computational complexity for the requirement of high

accuracy. Consequently, deploying the most advanced deep

CNN models requires expensive storage and computing re-

sources, which largely limits the applications of DNNs on

portable devices such as mobile phones and cameras. Binary

neural networks are appealing to the community for their tiny

storage usage and efficient inference [10, 52, 37, 64, 55, 19],

which results from the binarization of both weights and acti-

vations and the efficient convolution implemented by bitwise

operations. Although much progress has been made on bina-

rizing DNNs, the existing quantization methods remains a

significant drop of accuracy compared with the full-precision

counterparts [14, 39, 2, 28, 57, 48, 9, 40, 43].

The performance degradation of binary neural networks

is mainly caused by the limited representation ability and

discreteness of binarization, which results in severe infor-

mation loss in both forward and backward propagation. In

the forward propagation, when the activations and weights

are restricted to two values, the model’s diversity sharply

decreases, while the diversity is proved to be the key of

pursuing high accuracy of neural networks [54]. Two ap-

proaches are widely used to increase the diversity of neural

networks: increasing the number of neurons or increasing

the diversity of feature maps. For example, Bi-Real Net [38]

is targeted at the latter by adding on a full-precision short-

cut to the quantized activations, which achieves significant

performance improvement. However, with the additional

floating-point add operation, Bi-Real Net inevitably faces

worse efficiency than vanilla binary neural networks.

The diversity implies the ability to carry enough informa-

tion during the forward propagation, meanwhile, accurate
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gradients in the backward propagation provide correct in-

formation for optimization. However, during the training

process of binary neural networks, the discrete binarization

always leads to inaccurate gradients and the wrong optimiza-

tion direction. To better deal with the discreteness, different

approximations of binarization for backward propagation

have been studied [8, 38, 11, 32, 7], mainly categorized

into either improving the updating ability or reducing the

mismatching area between sign function and the approxi-

mation one. Unfortunately, the difference between the early

and later training stages is always be ignored, where in prac-

tice strong updating ability is usually highly required when

the training process starts and small gradient error becomes

more important at the end of the training. It is insufficient to

acquire as much information reflected from the loss function

as possible only focusing on one point.

To solve the above-mentioned problems, this paper is the

first to study the model binarization from the view of infor-

mation flow and proposes a novel Information Retention

Network (IR-Net) (see the overview in Fig 1). Our goal is

to train highly accurate binarized models by retaining the

information in the forward and backward propagation: (1)

IR-Net introduces a balanced and standardized quantization

method called Libra Parameter Binarization (Libra-PB) in

the forward propagation. With Libra-PB, we can minimize

the information loss in forward propagation by maximizing

the information entropy of the quantized parameters and min-

imizing the quantization error, which ensures a high diversity.

(2) In backward propagation, IR-Net adopts the Error De-

cay Estimator (EDE) to calculate gradients and minimizes

the information loss by better approximating the sign func-

tion, which ensures sufficient updating at the beginning and

accurate gradients at the end of the training.

Our IR-Net presents a new and practical perspective

to understand how the binarized network works. Besides

the strong capability of preserving the information for-

ward/backward in the deep network, it also enjoys good ver-

satility and can be optimized in a standard network training

pipeline. We evaluate our IR-Net with image classification

tasks on the CIFAR-10 and ImageNet datasets. The experi-

mental results show that our method performs remarkably

well across various network structures such as ResNet-20,

VGG-Small, ResNet-18, and ResNet-34, surpassing previ-

ous quantization methods by a wide margin. Our code is

released at https://github.com/htqin/IR-Net.

2. Related Work

Network binarization aims to accelerate the inference

of neural networks and save memory occupancy without

much accuracy degradation. One approach to speed up low-

precision networks is to utilize bitwise operations. By di-

rectly binarizing the 32-bit parameters in DNNs including

weights and activations, we can achieve significant acceler-

a
EDE

Libra-PB

EDE

-1 10 -1 10 -α α0

stage1 stage2

Libra-PB: reshape distribution to reduce information loss and quantization error 

EDE:  approximate quantization during training to reduce gradient information loss

Qw(w)

Qa(a)

w

Figure 1: Overview of our IR-Net training for a convolutional

layer, consisting of Libra Parameter Binarization (Libra-PB) in

forward propagation and Error Decay Estimator (EDE) in backward

propagation. Libra-PB changes the weight distribution in forward

propagation to retain the information of weights and activations.

And the shape change of EDE during the entire training process

reduces the gradient information loss in backward propagation.

ations and memory reductions. XNOR-Net [44] utilizes a

deterministic binarization scheme and minimizes the quanti-

zation error of the output matrix by employing some scalars

in each layer. TWN [33] and TTQ [62] enhance the rep-

resentation ability of neural networks with more available

quantization points. ABC-Net [36] recommends using more

binary bases for weights and activations to improve accu-

racy, while compression and acceleration ratios are reduced

accordingly. [8] proposed HWGQ considering the quanti-

zation error from the aspect of activation function. [59] fur-

ther proposed LQ-Net with more training parameters, which

achieved comparable results on the ImageNet benchmark

but increased the memory overhead.

Compared with other model compression methods, e.g.,

pruning [21, 20, 23] and matrix decomposition [58, 51], net-

work binarization can greatly reduce the memory consump-

tion of the model, and make the model fully compatible with

bitwise operations to get good acceleration. Although much

progress has been made on network binarization, the existing

quantization methods still cause a significant drop of accu-

racy compared with the full-precision models, since great

information loss still exists in the training of binary neural

networks. Therefore, to retain the information and ensure a

correct information flow during the forward and backward

propagation of binarized training, IR-Net is designed.

3. Preliminaries

The main operation in deep neural networks is expressed

as:

z = w
⊤
a, (1)
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where w ∈ R
n indicates the weight vector, a ∈ R

n indicates

the input activation vector computed by the previous network

layer.

The goal of network binarization is to represent the

floating-point weights and/or activations with 1-bit. In gen-

eral, the quantization can be formulated as:

Qx(x) = αBx, (2)

where x denotes floating-point parameters including floating-

point weights w and activations a, and Bx ∈ {−1,+1}
n

denotes binary values including binary weights Bw and

activations Ba. α denotes scalars for binary values including

αw for weights and αa for activations. And we usually use

sign function to get Bx :

Bx = sign(x) =

{

+1, if x ≥ 0

−1, otherwise.
(3)

With the quantized weights and activations, the vector

multiplications in the forward propagation can be reformu-

lated as

z = Qw(w)⊤Qa(a) = αwαa(Bw ⊙Ba), (4)

where ⊙ denotes the inner product for vectors with bitwise

operations XNOR and Bitcount.

In the backward propagation, the derivative of the sign

function is zero almost everywhere, which makes it incom-

patible with backward propagation, since exact gradients for

the original values before the discretization (pre-activations

or weights) would be zeroed. So "Straight-Through Estima-

tor (STE) [5]" is generally used to train binary models, which

propagates the gradient through Identity or Hardtanh

function.

4. Information Retention Network

In the paper, we point out that the bottleneck of training

highly accurate binary neural networks mainly lies in the

severe information loss of the training process. Information

loss caused by the forward sign function and the backward

approximation for gradient greatly harms the accuracy of

binary neural networks. In this paper, we propose a novel

model, Information Retention Network (IR-Net), which re-

tains the information in the training process and acquires

highly accurate binarized models.

4.1. Libra Parameter Binarization in Forward
Propagation

In the forward propagation, the quantization operation

brings information loss. Many quantized convolutional neu-

ral networks, including binarized models [44, 35, 59], find

the optimal quantizer by minimizing the quantization error :

min J(Qx(x)) = ‖x−Qx(x)‖
2, (5)

where x indicates the full-precision parameters, Qx(x) de-

notes the quantized parameters and J(Qx(x)) denotes the

quantization error between full-precision and binary parame-

ters. The objective function (Eq. (5)) assumes that quantized

models should completely follow the pattern of full-precision

models. However, this is not always true especially when

extremely low bit-width is applied. For binary models, the

representation ability of their parameters is limited to two val-

ues, which makes the information carried by neurons easy to

lose. The solution space of binary neural networks also quite

differs from that of full-precision neural networks. There-

fore, without retaining the information through networks,

it is insufficient and difficult to promise a good binarized

network only by minimizing the quantization error.

To retain the information and minimize the information

loss in forward propagation, we propose Libra Parameter

Binarization (Libra-PB) that jointly considers both quanti-

zation error and information loss. For a random variable

b ∈ {−1,+1} obeying Bernoulli distribution, whose proba-

bility mass function is

f(b) =

{

p, if b = +1

1− p, if b = −1,
(6)

where p is the probability of taking the value +1, p ∈ (−1, 1),
and each element in Bx can be viewed as a sample of b. The

entropy of Qx(x) in Eq. (2) can be calculated by:

H(Qx(x)) = H(Bx) = −p ln(p)− (1−p) ln(1−p). (7)

If we only pursue the goal of minimizing quantization error,

the information entropy of the quantized parameters can be

close to zero in extreme case. Therefore, Libra-PB combines

the quantization error and information entropy of quantized

values as objective function, which is defined as

min J(Qx(x))− λH(Qx(x)). (8)

Under the Bernoulli distribution assumption, when p = 0.5,

the information entropy of the quantized values takes the

maximum value. This means the quantized values should

be evenly distributed. Therefore, we balance weights with

zero-mean attribute by subtracting the mean of full-precision

weights. Moreover, to make the training more stable without

negative effect deriving from the weight magnitude and thus

the gradient, we further normalize the balanced weight. The

standardized balanced weights ŵstd are obtained through

standardization and balance operations as follows:

ŵstd =
ŵ

σ(ŵ)
, ŵ = w −w. (9)

where the σ(·) denotes the standard deviation. ŵstd has two

characteristics: (1) zero-mean, which maximizes the ob-

tained binary weights’ information entropy. (2) unit-norm,
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Figure 2: Comparison on information entropy of binary weights

quantized with Libra-PB Qx(x) and sign function, respectively.

Owing to the balance characteristic brought by Libra-PB, the in-

formation entropy of Qx(x) is larger than sign(x), where Qx(x)
and sign(x) have a probability of 0.5 and 0.2 to take value 1 under

Bernoulli distribution, respectively.

which makes the full-precision weights involved in binariza-

tion more dispersed. Therefore, compared with the direct use

of the balanced progress, the use of standardized balanced

progress makes the weights steadily updated, and makes the

binary weights Qw(ŵstd) more stable during the training.

Since the value of Qw(ŵstd) depends on the sign of ŵstd

and the distribution of w is almost symmetric [24, 4], the

balanced operation can maximize the information entropy

of quantized Qw(ŵstd) on the whole. And when Libra-PB

is used for weights, the information flow of activations in

the network can also be maintained. Supposing quantized

activations Qa(a) have mean E[Qa(a)] = µ1, the mean of

z can be calculated by:

E[z] = Qw(ŵstd)
⊤
E[Qa(a)] = Qw(ŵstd)

⊤
µ1. (10)

Because of using Libra-PB for weights in each layer, we have

Qw(ŵstd)
⊤
1 = 0, the mean of output is zero. Therefore,

the information entropy of activations in each layer can be

maximized, which means that the information in activations

can be retained.

To further minimize the quantization error and avoid extra

expensive floating-point calculation in previous binarization

methods, Libra-PB introduces an integer bit-shift scalar s
to expand the representation ability of binary weights. The

optimal bit-shift scalar can be solved by:

B
∗

w
, s∗ = argmin

Bw,s

‖ŵstd −Bw ≪≫ s‖2 s.t. s ∈ N

(11)

where ≪≫ stands for left or right bit-shift. B∗
w

is calculated

by B
∗
w
= sign(ŵstd), thus s∗ can be solved as:

s∗ = round(log2(‖ŵstd‖1/n)). (12)

where n and ‖ŵstd‖1 denote the dimension and L1-norm of

the vector, respectively.

Therefore, our Libra Parameter Binarization for the for-

ward propagation can be presented as below:

Qw(ŵstd) = Bw≪≫s = sign(ŵstd)≪≫s,

Qa(a) = Ba = sign(a).
(13)

The main operations in IR-Net can be expressed as:

z = (Bw ⊙Ba) ≪≫ s. (14)

As shown in Fig 2, the parameters quantized by Libra-PB

have the maximum information entropy under the Bernoulli

distribution. We call our binarization method "Libra Parame-

ter Binarization" because the parameters are balanced before

the binarization to retain information.

Note that Libra-PB serves an implicit rectifier that re-

shapes the data distribution before binarization. In the lit-

erature, a few studies also realized this positive effect on

the performance of BNNs and adopted empirical settings

to redistribute parameters [44, 13]. For example, [13] pro-

posed the specific degeneration problem of binarization and

solved it using a specially designed additional regularization

loss. Different from these works, we first straightforwardly

present the information view to rethink the impact of param-

eter distribution before binarization, and promise the optimal

solution by maximizing the information entropy. Moreover,

in this framework, Libra-PB can accomplish the distribu-

tion adjustment by simply balancing and standardizing the

weights before the binarization. This means that our method

can be easily and widely applied to various neural network ar-

chitectures and be directly plugged into the standard training

pipeline with a very limited extra computation cost.

4.2. Error Decay Estimator in Backward Propaga-
tion

Limited by the discontinuity of binarization, approxima-

tion of gradients is inevitable for the backward propagation.

Thus, huge information loss is caused because the influence

of quantization cannot be exactly modeled with the approxi-

mation. The approximation can be formulated as:

∂L

∂w
=

∂L

∂Qw(ŵstd)

∂Qw(ŵstd)

∂w
≈

∂L

∂Qw(ŵstd)
g′(w),

(15)

where L(w) represents the loss function, g(w) denotes the

approximation of the sign function and g′(w) is the deriva-

tive of g(w). There are two common practices for approxi-

mation used in previous works:

Identity : y = x or Clip : y = Hardtanh(x). (16)

The Identity function straightly passes the gradient in-

formation of output values to input values and completely

neglects the effect of binarization. As shown in the shaded

area of Fig 3(a), the gradient error is huge and will accumu-

late during the backward propagation. It is highly required

to retain correct gradient information to avoid unstable train-

ing rather than ignore the noise caused by Identity for

utilizing the Stochastic Gradient Descent Algorithm.

The Clip function takes the clipping attribute of binariza-

tion into account to reduce the gradient error. But it can only
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(a) Identity (b) Clip (c) EDE

Figure 3: Error caused by gradient approximation, represented by the area of gray shades. As is shown, (a) Identity approximation suffers

huge error. (b) Clip approximation does not update the values outside the clipping interval. (c) EDE maintains the updating ability at early

stage and progressively reduces the error. S1 shrinks during Stage 1 by decreasing the clipping value and S2 shrinks during Stage 2 by

increasing the derivate.

pass the gradient information inside the clipping interval. It

can be seen in Fig 3(b) that for parameters outside [-1, +1],

the gradient is clamped to 0. This means once the value

jumps outside the clamping interval, it cannot be updated

anymore. This characteristic greatly harms the updating abil-

ity of backward propagation, which can be proved by the fact

that ReLU is a superior activation function compared with

Tanh. Thus the Clip approximation increases the difficulty

for optimization and decreases the accuracy in practice. It

is crucial to ensure enough updating possibility, especially

during the beginning of the training process.

Identity function loses the gradient information of

quantization while Clip function loses the gradient informa-

tion outside the clipping interval. There is a contradiction

between these two kinds of gradient information loss. To

make a balance and acquire the optimal approximation of

backward gradient, we design Error Decay Estimator:

g(x) = k tanh tx (17)

where g(x) is the backward approximation substitute for the

forward sign function, k and t are control variables varying

during the training process:

t = Tmin10
i

N
×log

Tmax

Tmin , k = max(
1

t
, 1) (18)

where i is the current epoch and N is the number of epochs,

Tmin = 10−1 and Tmax = 101.

To retain the information deriving from loss function in

the backward propagation, EDE introduces a progressive

two-stage approach to approximate gradients.

Stage 1: Retain the updating ability of the backward

propagation algorithm. We keep the gradient estimation

function’s derivative value close to one, and then progres-

sively reduce the clipping value from a large number to

one. With this rule, our estimation function evolves from

Identity to Clip approximation, which ensures the update

ability at the early stage of training.

Stage 2: Retain the accurate gradients for parameters

around zero. We keep the clipping value as one and grad-

ually push the derivative curse to the shape of the staircase

function. With this rule, our estimation function evolves

from Clip approximation to sign function, which ensures

the consistency of forward and backward propagation.

The shape change of EDE for each stage is shown in

Fig 3(c). Our EDE updates all parameters in the first stage,

and further makes the parameters more accurate in the sec-

ond stage. Based on the two-stage estimation, EDE reduces

the gap between the forward binarization function and the

backward approximation function and meanwhile all param-

eters can be reasonably updated.

Algorithm 1 Forward and backward propagation for BNN

training by the proposed IR-Net.

1: Require: the input data a ∈ R
n, pre-activation z ∈ R, full-

precision weights w ∈ R
n.

2: Forward propagation

3: Compute binary weight by Libra-PB [Eq. (13)]:

ŵstd = w−w

σ(w−w))
, s∗ = round(log2

‖ŵstd‖1
n

)

Qw(ŵstd) = Bw ≪≫ s = sign(ŵstd) ≪≫ s

4: Compute balanced binary input data [Eq. (13)]:

Qa(a) = Ba = sign(a);
5: Calculate the output: z = (Bw ⊙Ba) ≪≫ s

6: Back propagation

7: Update the g′(·) via EDE:

Get current t and k by Eq. (18)

Update the g′(·): g′(x) = kt(1− tanh2(tx))
8: Calculate the gradients w.r.t. a:

∂L
∂a

= ∂L
∂Qa(a)

g′(a)
9: Calculate the gradients w.r.t. w:

∂L
∂w

= ∂L
∂Qw(ŵstd)

g′(ŵstd)2
s

10: Parameters Update

11: Update w: w = w − η ∂L
∂w

, where η is learning rate.

4.3. Analysis and Discussions

The training process of our IR-Net is summarized in

Algorithm 1. In this section, we will analyze IR-Net from

different aspects.

4.3.1 Complexity Analysis

Since Libra-PB is applied on weights, there is extra opera-

tion for binarizing activations in IR-Net. And in Libra-PB,

with the novel bit-shift scales, the computation costs are

reduced compared with the existing solutions with floating-

point scalars (e.g., XNOR-Net, and LQ-Net), as shown in
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Table 1: The additional floating-point operations consumed by

different binarization methods.

Method Float Operations Bitwise Operations

XNOR-Net C1 C1 × C2

LQ-Net C1 C1 × C2

Ours 0 C1 × C2 + C1

* C1 = wout × hout × cout and C2 = wk × hk × cin, where cout, cin, wk,

hk, wout, hout denote the number of output channels, input channels, kernel

width, kernel height, output width, and output height, respectively. The

Bitwise operation mainly consists of XNOR, Bitcount and Bit-shift.

Table 1. Later, we further test the real speed of deployment

on hardware and the results can be seen in the Deployment

Efficiency Section.

4.3.2 Stabilize Training

In Libra Parameter Binarization, weight standardization is in-

troduced for reducing the gap between full-precision weights

and the binarized ones, avoiding the noise caused by bina-

rization. Fig 4 shows the data distribution of weights without

standardization, obviously more concentrated around 0. This

phenomenon means the signs of most weights are easy to

change during the process of optimization, which directly

causes unstable training of binary neural networks. By re-

distributing the data, weight standardization implicitly sets

up a bridge between the forward Libra-PB and backward

EDE, contributing to a more stable training of binary neural

networks.

5. Experiments

In this section, we conduct experiments on two

benchmark datasets: CIFAR-10 [29] and ImageNet

(ILSVRC12) [12] to verify the effectiveness of the proposed

IR-Net and compare it with other state-of-the-art (SOTA)

methods.

IR-Net: We implement our IR-Net using PyTorch be-

cause of its high flexibility and powerful automatic differen-

tiation mechanism. When constructing a binarized model,

we simply replace the convolutional layers in the origin

models with the binary convolutional layer binarized by our

method.

Network Structures: We employ the widely-used net-

work structures including VGG-Small [59], ResNet-18,

ResNet-20 for CIFAR-10, and ResNet-18, ResNet-34 [22]

for ImageNet. To prove the versatility of our IR-Net, we

evaluate it on both the normal structure and the Bi-Real [38]

structure of ResNet. All convolutional and fully-connected

layers except the first and last one are binarized, and we

select Hardtanh as our activation function instead of ReLU

when we binarize the activation.

Initialization: Our IR-Net is trained from scratch (ran-

dom initialization) without leveraging any pre-trained model.

To evaluate our IR-Net on various network architectures, we

−4 −2 0 2 4
0.0

0.1

0.2

0.3

0.4
FP

IR-Net

Figure 4: Full-precision weights (in red) in neural networks have a

small data range and always gather around 0, and thus their signs are

highly possible to flip in backward propagation. IR-Net balances

and standardizes the weights (in blue) before the binarization for

stabilizing training.

mostly follow the hyper-parameter settings of their original

papers [44, 59, 38]. Among the experiments, we apply SGD

as our optimization algorithm.

5.1. Ablation Study

In this part, we investigate the behaviors and effects of

the proposed Libra-PB and EDE techniques on BNN perfor-

mance.

5.1.1 Effect of Libra-PB

Our Libra-PB can maximize the information entropy of bi-

nary weights and binary activations in IR-Net by adjusting

the distribution of weights in the network. Since an explicit

balance operation is used before the binarization, the bi-

nary weights of each layer in the network have maximum

information entropy. Binary activations affected by binary

weights in IR-Nets also have maximum information entropy.

To demonstrate the information retention of Libra-PB in IR-

Net, in Fig 5, we show the information loss of each layer’s

binary activations in the networks quantized by vanilla bi-

narization and Libra-PB. Vanilla binarization suffers a large

reduction in the information entropy of the binary activations.

In the network quantized by Libra-PB, the activation of each

layer is close to the maximum information entropy under the

Bernoulli distribution. And in the forward propagation, the

information loss of binary activations caused by vanilla bina-

rization accumulates layer by layer. Fortunately, the results

in Fig 5 show that Libra-PB can retain the information in the

binary activation of each layer.

5.1.2 Effect of EDE

To demonstrate the necessity and effect of our well-designed

EDE, we show the data distribution of weights in different

stages of training, as shown in Fig 6. The figures in the

first row show the distribution and the figures in the sec-

ond row show the corresponding derivative curve. Among

the derivative curves, the blue one represents EDE and the
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Figure 5: Libra-PB’s effect on information entropy of activations

of each layer in ResNet-20. The ratio of information entropy re-

duction (compared with the maximum information entropy under

the Bernoulli distribution) quantized by Libra-PB is significantly

larger than vanilla binarization.

yellow one represents the common STE (with clipping). It

can be seen that during the first stage of EDE (epoch 10 to

epoch 200 in Fig 6), there is much data outside the range [-1,

+1], thus there should not be much clipping which will be

harmful to update ability. Besides, the peakedness of weight

distribution is high and much data gather around zero at

the beginning of training. EDE keeps the derivative similar

to Identity function at this stage to ensure the derivative

around zero not too large, and thus avoids severely unstable

training. Fortunately, with the binarization introduced into

training, the weights will gradually approach -1/+1 in the

later stages of training. Thus we can slowly increase the

value of derivative and approximate a standard sign func-

tion to reduce the gradient mismatch. The visualized results

prove that our EDE approximation for backward propagation

agrees with the real data distribution, which is the key to

improving accuracy.

5.1.3 Ablation Performance

We further investigate the performance using different parts

of IR-Net with the ResNet-20 model on CIFAR-10, which

helps understand how our IR-Net works in practice. Table 2

shows the performance in different settings. From the table,

we can see that using Libra-PB or EDE alone can improve

the accuracy, and the weight standardization in Libra-PB

also plays an important role. Moreover, the improvements

brought by these parts together can be superimposed, that is

why our method can train highly accurate binarized models.

5.2. Comparison with SOTA methods

We further comprehensively evaluate IR-Net by compar-

ing it with the existing SOTA methods.

5.2.1 CIFAR-10

Table 3 lists the performance using different methods on

CIFAR-10, including RAD [13] over ResNet-18 (based

Figure 6: EDE takes full account of the impact of weight distri-

butions (after standardization) in different epochs (10, 200 and

400) during training. The weight distributions are shown in the

upper part. In the lower part, the blue line is the derivative of EDE,

the yellow and the pink lines are the derivative of STE and sign

function, respectively. And the shade indicates the error between

the derivative of EDE/STE and that of the sign function. In the

first stage of EDE, all weights can be effectively updated. In the

second stage, the weights around 0 are more accurately updated

due to the decrease of gradient error.

Table 2: Ablation study for IR-Net.

Method
Bit-width

(W/A)
Acc.(%)

FP 32/32 90.8

Binary 1/1 83.8

Libra-PB (without weight standardization) 1/1 84.3

Libra-PB (without bit-shift scales) 1/1 84.6

Libra-PB 1/1 84.9

EDE 1/1 85.2

IR-Net (Libra-PB & EDE) 1/1 86.5

on [31]), DoReFa-Net [61], LQ-Net [59], DSQ [18] over

ResNet-20 (based on [3]) and BNN [27], LAB [25], RAD,

XNOR-Net [44] over VGG-Small. In all cases, our IR-Net

obtains the best performance. More importantly, our method

gets a significant improvement over the SOTA methods when

using 1-bit weights and 1-bit activations (1W/1A), whether

we use the original ResNet structure or the Bi-Real struc-

ture. For example, in the 1W/1A bit-width setting, compared

with SOTA on ResNet-20, the absolute accuracy increase

is as high as 2.4%, and the gap to its full-precision (FP)

counterpart is reduced to 4.3%.

5.2.2 ImageNet

For the large-scale ImageNet dataset, we study the perfor-

mance of IR-Net over ResNet-18 and ResNet-34. Table 4

shows a number of SOTA quantization methods over ResNet-

18 and ResNet-34, including BWN [44], HWGQ [35],

TWN [33], LQ-Net [59], DoReFa-Net [61], ABC-Net [36],

Bi-Real [38], XNOR++ [6], BWHN [26], SQ-BWN and

SQ-TWN [1]. We can observe that when only quantizing

weights over ResNet-18, IR-Net using 1-bit outperforms

most other methods by large margins, and even surpasses

TWN using 2-bit weights. And in the 1W/1A setting, the
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Table 3: Accuracy comparison with SOTA methods on CIFAR-10.

Topology Method Bit-width (W/A) Acc.(%)

ResNet-18

FP 32/32 93.0

RAD 1/1 90.5

Ours1 1/1 91.5

ResNet-20

FP 32/32 91.7

DoReFa 1/1 79.3

DSQ 1/1 84.1

Ours1 1/1 85.4

Ours2 1/1 86.5

FP 32/32 91.7

DoReFa 1/32 90.0

LQ-Net 1/32 90.1

DSQ 1/32 90.2

Ours1 1/32 90.8

VGG-Small

FP 32/32 91.7

LAB 1/1 87.7

XNOR 1/1 89.8

BNN 1/1 89.9

RAD 1/1 90.0

Ours 1/1 90.4

Top-1 accuracy of IR-Net is also significantly better than that

of the SOTA methods (e.g., 58.1% vs. 56.4% for ResNet-

18). The experimental results prove that our IR-Net is more

competitive than the existed methods.

5.3. Deployment Efficiency

To further validate the efficiency of IR-Net when de-

ployed into the real-world mobile devices, we further im-

plement our IR-Net on Raspberry Pi 3B, which has a 1.2

GHz 64-bit quad-core ARM Cortex-A53, and test its real

speed in practice. We utilize the SIMD instruction SSHL

on ARM NEON to make inference framework daBNN [60]

compatible with our IR-Net. We have to point out that till

now there have been very few studies that reported their

inference speed in real-world devices, especially when using

1-bit binarization. In Table 5, we compare our IR-Net with

the existing high-performance inference implementation in-

cluding NCNN [41] and DSQ [18]. From the table, we can

easily find that the inference speed of IR-Net is much faster,

the model size of IR-Net can be greatly reduced and the

bit-shift scales in IR-Net bring almost no extra inference

time and storage consumption.

6. Conclusion

In this paper, we propose IR-Net to retain the information

propagated in binary neural networks, mainly consisting of

two novel techniques: Libra-PB for keeping diversity in for-

ward propagation and EDE for reducing the gradient error in

1Results of ResNet with normal structure [22].
2Results of ResNet with Bi-Real structure [38].

Table 4: Accuracy comparison with SOTA methods on ImageNet.

Topology Method Bit-width (W/A) Top-1(%) Top-5(%)

ResNet-18

FP 32/32 69.6 89.2

ABC-Net 1/1 42.7 67.6

XNOR 1/1 51.2 73.2

BNN+ 1/1 53.0 72.6

DoReFa 1/2 53.4 –

Bi-Real 1/1 56.4 79.5

XNOR++ 1/1 57.1 79.9

Ours2 1/1 58.1 80.0

FP 32/32 69.6 89.2

SQ-BWN 1/32 58.4 81.6

BWN 1/32 60.8 83.0

HWGQ 1/32 61.3 83.2

TWN 2/32 61.8 84.2

SQ-TWN 2/32 63.8 85.7

BWHN 1/32 64.3 85.9

Ours1 1/32 66.5 86.8

ResNet-34

FP 32/32 73.3 91.3

ABC-Net 1/1 52.4 76.5

Bi-Real 1/1 62.2 83.9

Ours2 1/1 62.9 84.1

FP 32/32 73.3 91.3

Ours1 1/32 70.4 89.5

Table 5: Comparison of time cost of ResNet-18 with different bits

(single thread).

Method
Bit-width

(W/A)
Size (Mb) Time (ms)

FP 32/32 46.77 1418.94

NCNN 8/8 – 935.51

DSQ 2/2 – 551.22

Ours (without bit-shift scales) 1/1 4.20 252.16

Ours 1/1 4.21 261.98

backward propagation. Libra-PB conducts a simple yet effec-

tive transformation on weights from the view of information

entropy, which simultaneously reduces the information loss

of both weights and activations, without additional operation

on activations. Thus, the diversity of binary neural networks

can be kept as much as possible and meanwhile the efficiency

will not be harmed. Besides, the well-designed gradient esti-

mator EDE retains the gradient information during backward

propagation. Owing to the sufficient updating ability and

accurate gradients, the performance with EDE surpasses

that with STE by a large margin. Extensive experiments

prove that the IR-Net consistently outperforms the existed

state-of-the-art binary neural networks.

Acknowledgement This work was supported by National

Natural Science Foundation of China (61872021, 61690202),

and Beijing Nova Program of Science and Technology

(Z191100001119050).

2257



References

[1] Learning accurate low-bit deep neural networks with stochas-

tic quantization. BMVC, 2017. 7

[2] T. Ajanthan, P. K. Dokania, R. Hartley, and P. H. S. Torr.

Proximal mean-field for neural network quantization. In

IEEE ICCV, 2019. 1

[3] akamaster. pytorch_resnet_cifar10. https://github.com/

akamaster/pytorch_resnet_cifar10. 7

[4] R. Banner, Y. Nahshan, E. Hoffer, and D. Soudry. Post

training 4-bit quantization of convolution networks for rapid-

deployment. CoRR, abs/1810.05723, 2018. 4

[5] Y. Bengio, N. Léonard, and A. Courville. Estimating or prop-

agating gradients through stochastic neurons for conditional

computation. arXiv preprint arXiv:1308.3432, 2013. 3

[6] A. Bulat and G. Tzimiropoulos. Xnor-net++: Improved binary

neural networks. CoRR, abs/1909.13863, 2019. 7

[7] A. Bulat, G. Tzimiropoulos, J. Kossaifi, and M. Pantic. Im-

proved training of binary networks for human pose estimation

and image recognition. CoRR, abs/1904.05868, 2019. 2

[8] Z. Cai, X. He, J. Sun, and N. Vasconcelos. Deep learning

with low precision by half-wave gaussian quantization. In

IEEE CVPR, 2017. 2

[9] S. Cao, L. Ma, W. Xiao, C. Zhang, Y. Liu, L. Zhang, L. Nie,

and Z. Yang. Seernet: Predicting convolutional neural net-

work feature-map sparsity through low-bit quantization. In

IEEE CVPR, 2019. 1

[10] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect:

Training deep neural networks with binary weights during

propagations. In NeurIPS. 2015. 1

[11] S. Darabi, M. Belbahri, M. Courbariaux, and V. P. Nia. BNN+:

improved binary network training. CoRR, abs/1812.11800,

2018. 2

[12] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and F. F. Li.

Imagenet: a large-scale hierarchical image database. In IEEE

CVPR, 2009. 6

[13] R. Ding, T.-W. Chin, Z. Liu, and D. Marculescu. Regularizing

activation distribution for training binarized deep networks.

In IEEE CVPR, June 2019. 4, 7

[14] Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, and

K. Keutzer. Hawq: Hessian aware quantization of neural

networks with mixed-precision. In IEEE ICCV, 2019. 1

[15] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The pascal visual object classes challenge.

IJCV. 1

[16] R. Girshick. Fast r-cnn. In IEEE ICCV, 2015. 1

[17] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and semantic

segmentation. In IEEE CVPR, 2014. 1

[18] R. Gong, X. Liu, S. Jiang, T. Li, P. Hu, J. Lin, F. Yu, and J. Yan.

Differentiable soft quantization: Bridging full-precision and

low-bit neural networks. In IEEE ICCV, 2019. 7, 8

[19] J. Gu, J. Zhao, X. Jiang, B. Zhang, J. Liu, G. Guo, and R. Ji.

Bayesian optimized 1-bit cnns. In IEEE ICCV, 2019. 1

[20] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural network with pruning, trained quantiza-

tion and huffman coding. ICLR, 2016. 2

[21] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning

both weights and connections for efficient neural networks.

NeurIPS, 2015. 2

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In IEEE CVPR, 2016. 6, 8

[23] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating

very deep neural networks. In IEEE ICCV, Oct 2017. 2

[24] Z. He and D. Fan. Simultaneously optimizing weight and

quantizer of ternary neural network using truncated gaussian

approximation. In IEEE CVPR, 2019. 4

[25] L. Hou, Q. Yao, and J. T. Kwok. Loss-aware binarization of

deep networks. ICLR, 2017. 7

[26] Q. Hu, P. Wang, and J. ChengT. From hashing to cnns: Train-

ing binary weight networks via hashing. In AAAI, 2018. 7

[27] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and

Y. Bengio. Binarized neural networks. In NeurIPS. 2016.

7

[28] S. Jung, C. Son, S. Lee, J. Son, J.-J. Han, Y. Kwak, S. J.

Hwang, and C. Choi. Learning to quantize deep networks

by optimizing quantization intervals with task loss. In IEEE

CVPR, 2019. 1

[29] A. Krizhevsky, V. Nair, and G. Hinton. The cifar-10 dataset.

online: http://www. cs. toronto. edu/kriz/cifar. html, 2014. 6

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NeurIPS. 2012. 1

[31] kuangliu, ypwhs, fducau, and bearpaw. pytorch-cifar. https:

//github.com/kuangliu/pytorch-cifar. 7

[32] F. Lahoud, R. Achanta, P. Márquez-Neila, and S. Süsstrunk.

Self-binarizing networks. CoRR, abs/1902.00730, 2019. 2

[33] F. Li, B. Zhang, and B. Liu. Ternary weight networks. CoRR,

abs/1605.04711, 2016. 2, 7

[34] R. Li, Y. Wang, F. Liang, H. Qin, J. Yan, and R. Fan. Fully

quantized network for object detection. In IEEE CVPR, 2019.

1

[35] Z. Li, B. Ni, W. Zhang, X. Yang, and W. Gao. Performance

guaranteed network acceleration via high-order residual quan-

tization. In IEEE ICCV, 2017. 3, 7

[36] X. Lin, C. Zhao, and W. Pan. Towards accurate binary convo-

lutional neural network. In NeurIPS. 2017. 2, 7

[37] C. Liu, W. Ding, X. Xia, B. Zhang, J. Gu, J. Liu, R. Ji, and

D. S. Doermann. Circulant binary convolutional networks:

Enhancing the performance of 1-bit dcnns with circulant back

propagation. In IEEE CVPR, 2019. 1

[38] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K.-T. Cheng.

Bi-real net: Enhancing the performance of 1-bit cnns with

improved representational capability and advanced training

algorithm. In ECCV, 2018. 1, 2, 6, 7, 8

[39] S. Morozov and A. Babenko. Unsupervised neural quantiza-

tion for compressed-domain similarity search. In IEEE ICCV,

2019. 1

[40] M. Nagel, M. v. Baalen, T. Blankevoort, and M. Welling.

Data-free quantization through weight equalization and bias

correction. In IEEE ICCV, 2019. 1

[41] nihui, BUG1989, Howave, gemfield, Corea, and eric612.

ncnn. https://github.com/Tencent/ncnn. 8

2258



[42] J. Pang, K. Chen, J. Shi, H. Feng, W. Ouyang, and D. Lin.

Libra r-cnn: Towards balanced learning for object detection.

In IEEE CVPR, 2019. 1

[43] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe. Binary

neural networks: A survey. Pattern Recognition, 2020. 1

[44] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-

net: Imagenet classification using binary convolutional neural

networks. In ECCV, 2016. 2, 3, 4, 6, 7

[45] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

NeurIPS. 2015. 1

[46] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 1

[47] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper

with convolutions. In IEEE CVPR, 2015. 1

[48] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han. Haq: Hardware-

aware automated quantization with mixed precision. In IEEE

CVPR, 2019. 1

[49] Y. Wang, W. Gan, W. Wu, and J. Yan. Dynamic curriculum

learning for imbalanced data classification. In IEEE ICCV,

2019. 1

[50] Y. Wang, W. Gan, J. Yang, W. Wu, and J. Yan. Dynamic

curriculum learning for imbalanced data classification. In

ICCV, October 2019. 1

[51] Y. Wang, C. Xu, C. Xu, and D. Tao. Packing convolutional

neural networks in the frequency domain. IEEE TPAMI, 2019.

2

[52] Z. Wang, J. Lu, C. Tao, J. Zhou, and Q. Tian. Learning

channel-wise interactions for binary convolutional neural net-

works. In IEEE CVPR, 2019. 1

[53] Y. Wu, Y. Wu, R. Gong, Y. Lv, K. Chen, D. Liang, X. Hu,

X. Liu, and J. Yan. Rotation consistent margin loss for effi-

cient low-bit face recognition. In CVPR, June 2020. 1

[54] B. Xie, Y. Liang, and L. Song. Diverse neural network learns

true target functions. In Artificial Intelligence and Statistics,

2017. 1

[55] Y. Xu, X. Dong, Y. Li, and H. Su. A main/subsidiary network

framework for simplifying binary neural networks. In IEEE

CVPR, June. 1

[56] J. Yang, J. Fan, Y. Wang, Y. Wang, W. Gan, L. Liu, and W. Wu.

Hierarchical feature embedding for attribute recognition. In

CVPR, June 2020. 1

[57] J. Yang, X. Shen, J. Xing, X. Tian, H. Li, B. Deng, J. Huang,

and X.-s. Hua. Quantization networks. In IEEE CVPR, 2019.

1

[58] X. Yu, T. Liu, X. Wang, and D. Tao. On compressing deep

models by low rank and sparse decomposition. In IEEE

CVPR, 2017. 2

[59] D. Zhang, J. Yang, D. Ye, and G. Hua. Lq-nets: Learned

quantization for highly accurate and compact deep neural

networks. In ECCV, 2018. 2, 3, 6, 7

[60] J. Zhang, Y. Pan, T. Yao, H. Zhao, and T. Mei. dabnn: A

super fast inference framework for binary neural networks on

ARM devices. In ACM MM, 2019. 8

[61] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-

net: Training low bitwidth convolutional neural networks

with low bitwidth gradients. CoRR, abs/1606.06160, 2016. 7

[62] C. Zhu, S. Han, H. Mao, and W. J. Dally. Trained ternary

quantization. In ICLR, 2017. 2

[63] F. Zhu, R. Gong, F. Yu, X. Liu, Y. Wang, Z. Li, X. Yang, and

J. Yan. Towards unified int8 training for convolutional neural

network. In CVPR, June 2020. 1

[64] S. Zhu, X. Dong, and H. Su. Binary ensemble neural network:

More bits per network or more networks per bit? In IEEE

CVPR, 2019. 1

[65] B. Zhuang, C. Shen, M. Tan, L. Liu, and I. Reid. Structured

binary neural networks for accurate image classification and

semantic segmentation. In IEEE CVPR, 2019. 1

2259


