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Abstract

Object detection combines object classification and ob-
Ject localization problems. Most existing object detection
methods usually locate objects by leveraging regression net-
works trained with Smooth Ly loss function to predict off-
sets between candidate boxes and objects. However, this
loss function applies the same penalties on different samples
with large errors, which results in suboptimal regression
networks and inaccurate offsets. In this paper, we propose
an offset bin classification network optimized with cross
entropy loss to predict more accurate offsets. It not only
provides different penalties for different samples but also
avoids the gradient explosion problem caused by the sam-
ples with large errors. Specifically, we discretize the contin-
uous offset into a number of bins, and predict the probability
of each offset bin. Furthermore, we propose an expectation-
based offset prediction and a hierarchical focusing method
to improve the prediction precision. Extensive experiments
on the PASCAL VOC and MS-COCO datasets demonstrate
the effectiveness of our proposed method. Our method out-
performs the baseline methods by a large margin.

1. Introduction

Object detection is a fundamental yet challenging com-
puter vision task, which includes object classification and
object localization problems. A broad set of computer vi-
sion applications, such as autonomous driving [7, 17, 39—
41], video surveillance [6,24] and robotics [38,42,45] will
benefit from accurate object localization.

Most of state-of-the-art object detection methods [1, 8,
11,12, 20,21, 26,30, 31, 35, 44] firstly generate a series of
candidate boxes and then predict offsets for these boxes to
locate objects, as shown in Figure 1 (a). Since offsets are
continuous values, these methods predict them by leverag-
ing regression networks that are optimized using the Lo or
Smooth Ly losses. However, as investigated by [9], the
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Figure 1. A comparison of typical offset regression based ob-
ject detection method and our proposed offset bin classification
method. (a) The typical object detection method locates objects
based on offset regression. (b) The proposed method locates ob-
jects based on the output probability distribution over different oft-
set bins. The typical offset regression method make limited offsets
from the candidate box towards the object, whereas this problem
is avoided by the offset bin classification method.

Lo loss [10] may cause gradient explosions when there are
large offset errors. To avoid this problem, the Smooth Ly
loss [9] weakens the effects of the samples with large errors
by clipping their gradients. Although the Smooth L; loss
solves the gradient explosion problem, it cannot penalize
enough the samples with large errors, which results in sub-
optimal regression networks and inaccurate offsets between
candidate boxes and objects. For example, in Figure 1 (a),
the train object can not be tightly surrounded by a bounding
box.

To address this problem, we propose an offset bin classi-
fication network to predict more accurate offsets, as shown
in Figure 1 (b). The proposed method adopts a classifica-
tion network trained with a cross entropy loss rather than
a Smooth Ly or Lo loss. On the one hand, it gives sam-
ples with different offset errors adequate penalties. On the
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other hand, it avoids the gradient explosion problem. Never-
theless, the classification network can only predict discrete
offset values. Therefore, we propose an expectation-based
offset prediction and a hierarchical focusing offset predic-
tion to further improve the prediction precision.

Specifically, we quantize the continuous offset into a
number of bins using the uniform discretization and then
train an offset bin classification network with a cross en-
tropy loss to predict the probability distribution of offset
bins. Inspired by [37], we turn the classification results
into the object location by calculating the softmax expected
value of discretized offset bins. Meanwhile, we propose a
hierarchical focusing offset prediction network to gradually
refine offset bins for more precise object localization. We
validate the effectiveness of our method on two common
object detection datasets, including the PASCAL VOC and
MS-COCO datasets. The results show that our proposed
method is beneficial to accurate object detection.

Our contributions can be summarized as follows:

e We propose an offset bin classification network to pre-
dict more accurate offsets instead of regression networks
optimized by Smooth L1 or Lo loss.

e To further produce more precise object localization, we
propose an expectation-based offset prediction and a hierar-
chical focusing offset prediction.

e Extensive experiments on two common datasets
demonstrate the effectiveness of the proposed methods.

2. Related Work

Object Detectors: Modern object detection frameworks
usually can be classified as two-stage and single-stage de-
tectors. In two-stage detectors [1,8,11,12,20,21,26,30,31,
35,44], a sparse set of region proposals that may contain ob-
jects are first generated, and then their features are extracted
for the following classification and localization. The repre-
sentative methods, including Faster R-CNN [35], FPN [20]
and Mask R-CNN [12], have achieved dominated perfor-
mance on various benchmarks. Compared with two-stage
detectors, single-stage detectors [18,19,21,23,32-34] reach
high inference speed, such as YOLO [32-34], SSD [23],
RetinaNet [21]. They usually skip the region proposal gen-
eration step and directly predict bounding boxes following
the anchor box scheme. Although these methods have de-
tected objects successfully, it is still a challenging problem
to achieve accurate object localization.

Bounding Box Regression: In order to solve the prob-
lem of object localization, most of object detection meth-
ods [1,8-11, 15,26, 28, 44] leverage bounding box regres-
sion networks to predict offsets of four coordinates that
transform candidate boxes to objects. R-CNN [10] pre-
dicted these offsets by training a linear regression model
with Ly loss. However, it is easy to cause gradient explo-
sion when there are some samples with large errors. Replac-

ing Lo loss, Fast R-CNN [9] proposed Smooth Ly loss to
reduce the effects of the samples with large errors, which
has been widely accepted for regression in object detec-
tion. Balanced L1 loss [28] further increased the gradient
contribution of the samples with small errors to rebalance
the the involved classification and localization tasks as well
as samples with different attributes. A different approach
KL loss [14] took the ambiguities of ground truth bound-
ing boxes into account and learned bounding box regression
and localization variance for more accurate object localiza-
tion. In addition, UnitBox [46] and GIoU [36] directly used
the evaluation metric as object functions to address the gap
between optimizing the commonly used distance loss and
maximizing metric values. However, it is hard to optimize
different bounding boxes with the same IoU.

In addition, a series of object detectors [1, 8, 11,26,44]
attempt to improve the object localization by iteratively re-
gressing bounding boxes. They both cascaded multiple re-
gressors and fed the detection results after each iteration
into the next bounding box regressor. Cascade R-CNN
[1] considered the distribution of detection outputs and re-
sampled bounding boxes at each iteration to guarantee the
matching between the quality of detector and that of test-
ing. However, it is non-monotonic to improve the loca-
tion accuracy as the number of iterations increases. IoU-
Net [15] proposed to predict the IoU with matched ground-
truth as the localization confidence to guide the regression
of bounding box. Instead of regression network, we propose
an offset bin classification network with a cross entropy loss
to achieve more accurate object localization, which is also
effectively turned in other computer vision areas. For exam-
ple, [27] predicted the detection heatmaps and the associa-
tive embedding tags for human pose estimation. [5] trained
a depth estimation network by using an ordinal regression
loss instead of a L5 loss.

Recently, some anchor-free methods [16,43,47] directly
predict the heatmaps of keypoints of bounding boxes, and
introduce different kinds of loss functions to refine and
group these keypoints for the final detected bounding boxes.
CornerNet [16] used a SmoothL1 loss to regress the local
offsets, and pull loss and push loss to constrain the dis-
tances between keypoints. CenterNet [47] regressed local-
ization offset and object size using two L1 loss functions.
FCOS [43] employed an IoU loss to regress the area of
bounding box. Unlike the proposed method, they usually
require carefully group keypoints for final objects.

3. Approach

In this section, we first review and analyze the problem
of the conventional bounding box regressors. Then, we in-
troduce our proposed offset bin classification network to ad-
dress this problem, which is implemented based on popular
FPN [20].
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Figure 2. The overall architecture of our proposed offset bin classification method for object detection. It consists of three main parts: Rol
features extraction, offset bin labels construction and expectation-based offset prediction. The Rol features are extracted by the backbone
network FPN [20]. The offset bin labels construction is to discretize the continuous offset range to several offset bins. The expectation-
based offset predict is used to turn the classification results to offset estimation by calculating a expected value.

3.1. Revisiting Bounding Box Regression

Let (z,y,w,h) be the center coordinates of bounding
box and its width and height. Following R-CNN [10], the
common methods leverage regression networks to learn off-
sets that transform candidate boxes to ground-truth boxes.
They parameterize the offsets of four coordinates as fol-
lows:

ty = (z — xa)/waaty = (Y —Ya)/la
ty = log(w/wg), tn, = log(h/ha)

ty = (2% —24)/wa, ty, = (y*
[

(1
- ya)/ha
= log(w* /wy,),t;, = log(h*/ha)
where ty,ty,t,, tp are the predicted offsets, ty, ¢y, t7,,

are the target offsets. x, * and x,, (likewise for y, w and h)
are from the predicted box, ground-truth box and the can-
didate box (anchor or proposal box) respectively. The goal
is to minimize the errors between the predicted and target

offsets:
b

i€{z,y,w,h}

Lioe = LTEg(ti - t;k) @)

where L., is squared-error Lo loss function in R-CNN
[10]. However, it is sensitive to some samples when there is
a large offset errors.

Replacing Lo loss, Fast R-CNN [9] adopts Smooth Ly
loss function to evade the above problem:

2
- <
Smooth Li(z) = ¢ 27 ol < ﬁ. (3)
|| — 5, otherwise
dSmooth Ly _ dSmooth Ly | %, x| < B
ot; oz sgn(z), otherwise
“)

where the deviation z = t; — ¢}, 5 is usually set to 1
in two-stage detectors. sgn represents symbolic function.
Note that the samples with the offset error larger than [ are
forced to clip the gradients to 1 or —1 for reducing their
effects, causing insufficient penalty for these samples. So,
the regression networks optimized by the Smooth L1 loss
function predict inaccurate offsets between candidate boxes

and objects.

3.2. Offset Bin Classification Network

To address this problem, we propose an offset bin clas-
sification network to achieve more accurate object localiza-
tion. The overall architecture of the proposed method is
illustrated in Figure 2. Given an image, we first generate
a sparse set of candidate boxes using Region Proposal Net-
work (RPN) [20] and then extract these Rols features from
the image feature maps obtained by feature pyramid net-
works (FPN) [20]. Based on the extracted Rol features, we
predict their corresponding object categories and offset bin
confidence scores instead of concrete offset values. More-
over, we use the expectation-based offset prediction and the
hierarchical focusing offset prediction in Figure 3 to further
improve the precision of predicted offsets.

3.2.1 Offset Bin Labels Construction

As shown in Figure 4, we quantize the continuous off-
set in Section 3.1 into a set of representative discrete off-
sets. Divide the offset range (—a, a) uniformly into m non-
overlapping bins. The width w of each bin in the range
(—a,a) is 22. In addition, we also separately divide the
range (—o0, —al and [a, +00) into two bins. Thus, the total
number of bins is denoted as n = m + 2. The discrete bin
labels are denoted as L € {0,1,...,n — 1}. The representa-
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Figure 3. The architecture of the proposed hierarchical focusing offset prediction. Here, we show three stages in the hierarchical focusing
offset prediction. Yellow dashed boxes filled with gray denote the offset range in each stage. Green boxes and red boxes represent predicted
boxes and ground-truth boxes in each stage. The offset range in each stage is defined within the offset bins of previous stage.
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Figure 4. Illustration of offset bin construction. The offset range
(—5,5) is uniformly discretized into five bins, and the median val-
ues of each bin stand for their representative offsets. In addition,
the range (—oo, —5] and [5, +00) uses the endpoint —5 and 5 as
their representative offset, respectively.

tive offset for each bin can be indicated as follows:

—a+(+3)*w L€[0,m]
=19 -a l=m+1 5)
a l=m+2

where ¢, is the representative offset corresponding to the
bin 1abe1 1 for the coordinate i of the bounding box. The rep-
resentative offsets for the labels from 0 to m are expressed
as the median value of each bin, and the other labels are
expressed as the offset of the endpoint.

3.2.2 Network Learning

Based on the discretized offset bin labels, it is straightfor-
ward to cast the object localization as the multi-class classi-
fication problem instead of directly regression. As shown in
Figure 2, the candidate box is fed into the BoxHead of back-
bone network FPN [20] to generate its offset bin score vec-
tor s € R*", where 4 is the four coordinates of the bound-
ing box, n is the number of offset bins. Then we reshape the

score vector to R**™ and normalize respectively the score
vector of each coordinate into the form of probability by a
softmax function as follows:
 eaplsi)
Pig = p=1,
1=0 €p(sit)
where p;; indicates the probability of the i-th coordinate
offset belongs to the [-th bin.
The loss function Ly;,, for the offset bin classifier is for-
mulated as a cross entropy loss:

(6)

Lpin(pig,1) = — Z Z Y * logpi 1 7

ie{z,y,w,h} 1=0

in which the loss is calculated when the ground-truth class
is labeled I, where y; € {0, 1}. The gradient with regard to
the output score s?, of the classifier layer can be derived as

follows:
OLuin — Zie{z,y,w,h}(}?i,z -1, yu=1 @)
aSi - Zie{:&y,w,h} (pi,l)7 Yy = 0

Based on the above formula, the gradient is bounded and its
norm is limited to [0, 1], which is more stable for all samples
compared with Lo loss function. Meanwhile, it effectively
takes into account the samples using different gradient con-
tributions based on the predicted probabilities p; ; compared
to Smooth L1 loss.

To end up, we use the loss function L to end-to-end train
our network for accurate object detection:

L= Lcls + Abianin (9)

where L s denotes the loss for classification of objects, The
offset bin classification loss L;, is used for localization of
objects. Ap;y, is the weight that control the balance among
these losses. In this paper, we set \y;;, to 1.
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Method Expectation Hierarchical ‘ AP ‘ APsg APsg AP, APsg APy
Bounding Box Regression [20] 45.0 | 74.5 69.5 576 36.0 6.6
Bin Classification 45.8 | 73.3 679 572  39.6 9.8
Bin Classification v 475 | 740 69.0 588 415 13.6
Bin Classification v 475 | 72.8 679 581 420 16.0
Bin Classification v v 49.0 | 73.2 684 59.0 44.3 19.6

Table 1. The effects of each component in the proposed method. Results are reported on the VOC2007 fest set [4]. The baseline method
with ResNet-50-FPN [20] locates object by bounding box regression method. Expectation and Hierarchical represent the expectation-based

offset prediction and hierarchical focusing offset prediction.

3.2.3 Expectation-based Offset Prediction

Since offsets are continuous values with high precision, the
classification network only predicts discrete offset values.
Thus, we propose two different methods to improve the pre-
cision of detection results: the expectation-based offset pre-
diction and the hierarchical focusing offset prediction.

For the expectation-based offset prediction method in
Figure 2, we utilize the probability distribution over differ-
ent offset bins to estimate the predicted offset ¢;, which is
calculated by a softmax expected value instead of a max
value, as follows:

ti = E(T})

ipzl*t
=0

where T} = {t] o, t} 1, ..., t] ,,_; } denotes the set of repre-
sentative discrete offsets for n bins. The symbol E indicates
the expectation of discrete offsets.

(10)

3.2.4 Hierarchical Focusing Offset Prediction

Furthermore, we propose a hierarchical focusing offset pre-
diction with a coarse-to-fine strategy to gradually refine the
bin interval as shown in Figure 3. The discretized value
will be closer to the target value when the bin interval is
very small. Assume that there are K stages and nj bins
in the k-th stage. In each stage, the offset range (—ay, ax)
is defined within the offset bins of previous stage. So, the

width wy, of bins can be denoted as w’“;l . Then, we predict

the offset ¢ of each stage similar to Section 3.2.3. The final
predicted offset can be calculated as:

K
ti=y tf
k=1

As shown in Figure 3, in the first stage, we predict off-
sets between candidate boxes generated by RPN and ob-
jects within the offset range (—ay,aq). Subsequently, at
each stage, we predict finer offsets within the previous off-
set bin. By progressively classifying offsets, we can obtain
more precise bounding boxes.

(an

4. Experiments

To evaluate the effectiveness of the proposed offset bin

classification network, we conduct extensive experiments
on two standard object detection datasets, including the
PASCAL VOC dataset [4] and the MS-COCO dataset [22].
Datasets. The PASCAL VOC dataset [4] contains 20 ob-
ject categories, which consists of the PASCAL VOC2007
dataset and the PASCAL VOC2012 dataset. Following [35],
we train our network on the union of VOC 2007 trainval and
VOC2012 trainval sets, including 5011 and 11540 images,
respectively, and evaluate on the VOC2007 fest set contain-
ing 4952 images. The MS-COCO dataset [22] involves 80
object categories, which has larger scale than the PASCAL
VOC dataset. Following the common practice [20, 28], we
use the train-2017 set with 115K images for training and
report the final results on the test-dev set with 20k images.
Evaluation Metrics. We adopt the standard COCO-style
Average Precision (AP) to measure the detection perfor-
mance of various qualities, which averages mAP across dif-
ferent IoU thresholds from 0.5 to 0.95 with an interval of
0.05. It also includes AP across small scale APg, medium
scale APy, and large scale APy,.
Implementation Details. For fair comparison, we imple-
ment all experiments based on PyTorch [29] and MMDe-
tection [2]. We employ FPN [20] based on ResNet-50
and ResNet-101 [13] as the baseline networks. Following
the typical convention, we adopt the input image scale of
1000 x 600 on the PASCAL VOC dataset [4] and a scale
of 1333 x 800 on the MS-COCO dataset [22]. We train de-
tectors end-to-end with 2 GPUs (2 images per GPU) for 12
epoch. The initial learning rate is set to 0.005 and decreased
by a factor 0.1 after 8 epochs and 11 epochs. Unless other-
wise specified, all other hyper-parameters follow the default
settings in MMDetection [2]. The loss weights Ap;,, are set
to 1. The offset range a and the number of bins n are set
to 3 and 20, respectively. In the hierarchical focusing offset
prediction, the number of stages K is set to 2.

4.1. Ablation Study

In this section, we validate the effectiveness on the base-
line ResNet-50-FPN [20]. Without loss generality, we per-
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Method ‘ AP ‘ APsg APsg APxq APy APy
L Loss [10] | 447 | 726 67.6 56.8 37.4 7.8
Smooth L1 Loss [20]
B=1.0 45.0 74.5 69.5 57.6 36.0 6.6
B=15 44.3 73.9 68.6 56.5 34.9 6.4
B =20 44.2 74.3 68.9 56.1 33.9 6.2
Bin Classification | 47.5 | 74.0 69.0 58.8 41.5 13.6

Table 2. The effectiveness of different loss functions. 3 denotes the division point in the Smooth L1 loss function. Results are reported on

the VOC2007 test set [4].

Stage ‘ AP ‘ AP50 APGO AP7O APgO APQO
K=1|475 | 74.0 69.0 588 415 13.6
K=2|49.0| 732 684 59.0 44.3 19.6
K=3]488 | 733 683 585 43.6 19.1

Table 3. The effectiveness of number of stages in the proposed hi-
erarchical focusing offset prediction method. Results are reported
on the VOC2007 test set [4].

form ablation studies to reveal the effect of each component
in our proposed method on the PASCAL VOC dataset [4].
Main Component Analysis. We analyze the effect of each
proposed component in Table 1. Simply estimating ob-
ject localization by the proposed offset bin classification
method improves the AP by 0.8% compared with the base-
line bounding box regression method [20]. Introducing
expectation-based offset prediction and hierarchical focus-
ing offset prediction both achieve gain of 2.5% compared
with the baseline, which further boost the prediction pre-
cise. The expectation-based offset prediction takes into ac-
count the probability of samples in other offset bins to es-
timate offsets, and consistently improves AP with differ-
ent IoU metrics. The hierarchical focusing offset prediction
performs better in the high IoU metrics. The reason is that
it predicts more precise offsets within finer offset bin. Ulti-
mately, our full method outperforms the baseline bounding
box regression method by 4.0%. The result demonstrates
that the effectiveness of the proposed method in terms of
more accurate object detection, especially performing bet-
ter in the high IoU metrics.

Effectiveness of Different Loss Function for Predicting
Offsets. The effectiveness of different loss function for
predicting offsets is shown in Table 2. Based on the same
backbone network ResNet-50-FPN [20], we adjust the di-
vision point 5 of regression loss Smooth L1 to make more
samples be treated based on enough gradient contributions.
However, the detection performance AP is decreased when
we set (3 to a larger value. One possible reason is that the
network learning is dominated by some samples with large
distance error. Compared with the Smooth Ly loss and the
Lo loss, our method performs better performance as shown

——2a=1
——2a=3
—c

a=o

42
10 20 30 40 50

Number of Bins n
Figure 5. The effectiveness of bin classification for offset bin labels
with different hyper-parameters.The horizontal axis represents the
number of bins n, the vertical axis stands for detection perfor-
mance AP. The blue line, the red line and the green line indicate
the offset range a = 1, 3, 5, respectively.

in Table 2, which alleviates the problem by the offset bin
classification.

Setting of Offset Bin Labels. Figure 5 shows the ef-
fectiveness of bin classification for offset bin labels with
different hyper-parameters. a and n respectively denote
the endpoint of the divided offset range and the number of
bins. When the number of bins n is fixed, it can be seen
that the detection performance is decreased for a = 1,
while the performance is similar for ¢ = 3 and @ = 5.
This is because many samples with offset greater than 1 are
ignored during training if @ = 1. When the endpoint @ = 3
or 5, it can be observed that the detection performance are
very close to each other when the number of bins 7 is set
from 20 to 50, thereby is robust to a long range of offset
bin numbers. In addition, the detection performance is
relatively poor when n is small (i.e. n = 10). To balance
the performance with the bin numbers, we choose a = 3
and n = 20 in our experiments.

Number of Stages in Hierarchical Focusing Offset
Prediction. The effectiveness of number of stages in
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Figure 6. Visualization comparison between the baseline method and the proposed offset bin classification method on the VOC2007 fest
set [4]. The first and third columns show the detection results of the baseline method. The second and fourth columns show that the

detection results of our method.

Method ‘ Backbone ‘ AP ‘ APsg APsy AP,y APyy APy
Faster R-CNN* [35] ResNet-50-FPN | 45.0 | 74.5 69.5 57.6 36.0 6.6

Our +Faster R-CNN [35] ResNet-50-FPN | 49.0 | 73.2 68.4 59.0 44.3 19.6
Faster R-CNN* [35] ResNet-101-FPN | 47.8 | 75.5 70.6 60.3 41.3 10.5
Our+Faster R-CNN [35] ResNet-101-FPN | 50.8 | 74.0 69.5 60.8 47.2 22.5
Cascade R-CNN* [1] ResNet-50-FPN | 49.5 | 73.1 69.0 61.0 45.9 18.1
Our+Cascade R-CNN [1] | ResNet-50-FPN | 50.4 | 73.3 68.9 60.4 46.5 22.2
Cascade R-CNN* [1] ResNet-101-FPN | 51.0 | 73.6 69.6 61.9 48.3 21.1
Our+Cascade R-CNN [1] | ResNet-101-FPN | 51.9 | 73.9 69.8 62.1 48.7 25.0

Table 4. Comparison with state-of-the-art methods on VOC2007 fest set [4]. The symbol * represents our re-implement results based on

MMDetection [2].

hierarchical focusing offset prediction is shown in Table 3.
According to the analysis in Figure 5, we set the number of
bins ny, in each stage to be same (n, = 20, k = 1,2, 3) and
the endpoint a; = 3 in the first stage. Thus, the end point
of offset range ay in second stage and a3 in third stage
are set to 0.15 and 0.015, respectively. It can be seen that
the detection results AP is improved by 1.6% compared
with only one stage when the number of stages K = 2.
In the second stage, the width of bin is already within a
very small range. Adding the third stage, the detection
performance is close to the second stage. It can be seen that
the bin classification with two stages can achieve the better
detection performance.

Visualization Comparison. Figure 6 shows the visu-
alization comparison between the baseline method [20]
and the proposed offset bin classification method. It can
be observed that the baseline method [20] assigns some
bounding boxes that do not tightly surround objects in the

first row images of Figure 6, while our method can detect
objects more accurately. The second row images of Figure
6 show that the car object and the person object are missed
detection in the baseline method [20] due to the low quality
bounding boxes.

4.2. Comparison With State-of-the-art Methods

Results on Pascal VOC Dataset. We compare our method
with two baselines [1,20] on VOC2007 test set [4] in Table
4. For fair comparison, we adopt the same parameter setting
for our method and the corresponding baselines. We re-
place the bounding box regression network by the proposed
method to validate their effectiveness. Because Cascade R-
CNN [1] is a multi-stage object detector, we replace the re-
gression branch of each stage in Cascade R-CNN with our
offset bin class branch in Figure 2. To reduce the number
of parameters, the offset bin classification branch here does
not include the hierarchical focusing in Figure 3. We set the
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Method Backbone ‘ AP ‘ APs5g APqs APg APy APy,
YOLOV2 [33] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5
SSD512 [23] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8
RetinaNet [21] ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2
Faster R-CNN [20] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
Deformable R-FCN [3] Inception-ResNet-v2 37.5 58.0 40.8 194 40.1 52.5
Mask R-CNN [12] ResNet-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2
Libra R-CNN [28] ResNet-101-FPN 40.3 61.3 43.9 22.9 43.1 51.0
KL Loss [14] ResNet-50-FPN 39.2 57.6 42.5 21.2 41.8 52.5
Grid R-CNN [25] ResNet-101-FPN 41.5 60.9 44.5 23.3 44.9 53.1
IoU-Net [15] ResNet-101-FPN 40.6 59.0 - - - -

Cascade R-CNN [1] ResNet-101-FPN 42.8 62.1 46.3 23.7 45.5 55.2
Faster R-CNN* [20] ResNet-50-FPN 36.6 58.8 39.6 21.6 39.8 45.0
Our+Faster R-CNN ResNet-50-FPN 40.5 59.6 43.1 22.6 43.1 51.0
Faster R-CNN* [20] ResNet-101-FPN 38.8 60.9 42.1 22.6 42.4 48.5
Our+Faster R-CNN ResNet-101-FPN 42.5 61.7 45.4 23.9 45.6 53.8
Faster R-CNN* [20] ResNeXt-101-FPN 41.9 63.9 45.9 25.0 45.3 52.3
Our+Faster R-CNN ResNeXt-101-FPN 43.2 62.7 46.3 24.7 46.4 54.8
Cascade R-CNN* [1] ResNet-50-FPN 40.7 59.3 44.1 23.1 43.6 51.4
Our+Cascade R-CNN ResNet-50-FPN 42.3 60.4 45.8 23.9 44.8 53.6
Cascade R-CNN* [1] ResNet-101-FPN 42.4 61.1 46.1 23.6 45.0 54.4
Our+Cascade R-CNN ResNet-101-FPN 44.4 62.6 48.3 24.7 47.5 56.7
Cascade R-CNN* [1] ResNeXt-101-FPN 43.7 62.6 47.5 25.3 46.7 55.5
Our+Cascade R-CNN ResNeXt-101-FPN 44.7 63.1 48.5 25.3 47.8 57.1

Table 5. Comparison with state-of-the-art methods on MS-COCO fest-dev set [22]. The symbol * represents our re-implement results based

on MMDetection [2].

number of stages of Cascade R-CNN to 2. The IoU thresh-
olds are set to 0.5 and 0.7 in the first and second stages,
respectively. These baselines are consistently improved by
our methods, which demonstrates the advantage and gener-
ality of the proposed methods.

Results on MS-COCO Dataset. Furthermore, we also
compare the proposed method with some state-of-the-art
object detection methods on the large-scale MS-COCO
test-dev set [22] in Table 5. It can be observed that the
proposed method significantly outperforms these state-of-
the-art methods. The proposed offset bin classification
method can improve the AP of Faster R-CNN [20,35] with
ResNet-50-FPN, ResNet-101-FPN and ResNeXt-101-FPN
by 3.9%, 3.7% and 1.3%, respectively. The results AP can
achieve a considerable accuracy 42.3%, 44.4% and 44.7%
when we introduce Cascade R-CNN [1] to our method. The
superior performance demonstrates the effectiveness of the
proposed offset bin classification method.

5. Conclusion

In this paper, we have proposed an offset bin classifi-
cation network to achieve more accurate object detection.

The offset bin labels construction is first used to discretize
the continuous offset into several bins. Then the offset bin
classification network predicts the probability distribution
of offset bins. Furthermore, the expectation-based offset
prediction and the hierarchical focusing offset prediction
methods are introduced to turn the discretized classification
results into more precise offsets. Our method both achieve
superior performance on the PASCAL VOC and MS-COCO
object detection datasets. The results demonstrate the effec-
tiveness of our proposed method.

Acknowledgement. This work was supported in part
by National Natural Science Foundation of China (No.
61525102, 61831005, 61971095 and 61871078).

References

[1]1 Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-
ing into high quality object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 6154-6162, 2018.

[2] Kai Chen, Jiagi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-

13195



[3

—_—

(4]

[5

—_

(6

—_

[7

—

[8

—_—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019.

Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object
detection via region-based fully convolutional networks. In
Advances in neural information processing systems, pages
379-387, 2016.

Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88(2):303-338, 2010.

Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-
manghelich, and Dacheng Tao. Deep ordinal regression net-
work for monocular depth estimation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2002-2011, 2018.

Zhihang Fu, Yaowu Chen, Hongwei Yong, Rongxin Jiang,
Lei Zhang, and Xian-Sheng Hua. Foreground gating and
background refining network for surveillance object detec-
tion. IEEE Transactions on Image Processing, 28(12):6077-
6090, 2019.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 3354-3361. IEEE, 2012.

Spyros Gidaris and Nikos Komodakis. Object detection via
a multi-region and semantic segmentation-aware cnn model.
In Proceedings of the IEEE international conference on com-
puter vision, pages 1134-1142, 2015.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440-1448,
2015.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580-587, 2014.

Jicheng Gong, Zhao Zhao, and Nic Li. Improving multi-
stage object detection via iterative proposal refinement.
Kaiming He, Georgia Gkioxari, Piotr Dolldr, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961-2969, 2017.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016.

Yihui He, Chenchen Zhu, Jianren Wang, Marios Savvides,
and Xiangyu Zhang. Bounding box regression with uncer-
tainty for accurate object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2888-2897, 2019.

Borui Jiang, Ruixuan Luo, Jiayuan Mao, Tete Xiao, and Yun-
ing Jiang. Acquisition of localization confidence for accurate
object detection. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 784-799, 2018.

[1e]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

13196

Hei Law and Jia Deng. Cornernet: Detecting objects as
paired keypoints. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 734750, 2018.
Buyu Li, Wanli Ouyang, Lu Sheng, Xingyu Zeng, and Xiao-
gang Wang. Gs3d: An efficient 3d object detection frame-
work for autonomous driving. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1019-1028, 2019.

Wei Li, Hongliang Li, Qingbo Wu, Xiaoyu Chen, and
King Ngi Ngan. Simultaneously detecting and counting
dense vehicles from drone images. IEEE Transactions on
Industrial Electronics, 66(12):9651-9662, 2019.

Wei Li, Hongliang Li, Qingbo Wu, Fanman Meng, Linfeng
Xu, and King Ngi Ngan. Headnet: An end-to-end adaptive
relational network for head detection. IEEE Transactions on
Circuits and Systems for Video Technology, 2019.

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117-2125, 2017.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollar. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980-2988, 2017.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dolldr, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740-755.
Springer, 2014.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European con-
Sference on computer vision, pages 21-37. Springer, 2016.
Wei Liu, Shengcai Liao, and Weidong Hu. Perceiving mo-
tion from dynamic memory for vehicle detection in surveil-
lance videos. IEEE Transactions on Circuits and Systems for
Video Technology, 2019.

Xin Lu, Buyu Li, Yuxin Yue, Quanquan Li, and Junjie Yan.
Grid r-cnn. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 7363-7372,
2019.

Mahyar Najibi, Mohammad Rastegari, and Larry S Davis.
G-cnn: an iterative grid based object detector. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2369-2377, 2016.

Alejandro Newell and Jia Deng. Pixels to graphs by associa-
tive embedding. In Advances in neural information process-
ing systems, pages 2171-2180, 2017.

Jiangmiao Pang, Kai Chen, Jianping Shi, Huajun Feng,
Wanli Ouyang, and Dahua Lin. Libra r-cnn: Towards bal-
anced learning for object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 821-830, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.



[30]

[31]

[32

—

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Hegian Qiu, Hongliang Li, Qingbo Wu, Fanman Meng,
King Ngi Ngan, and Hengcan Shi. A2rmnet: Adaptively as-
pect ratio multi-scale network for object detection in remote
sensing images. Remote Sensing, 11(13):1594, 2019.
Hegian Qiu, Hongliang Li, Qingbo Wu, Fanman Meng, Lin-
feng Xu, King N Ngan, and Hengcan Shi. Hierarchical con-
text features embedding for object detection. /IEEE Transac-
tions on Multimedia, 2020.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779-788, 2016.
Joseph Redmon and Ali Farhadi. Yolo9000: better, faster,
stronger. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7263-7271, 2017.
Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018.
Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information pro-
cessing systems, pages 91-99, 2015.

Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir
Sadeghian, Ian Reid, and Silvio Savarese. Generalized in-
tersection over union: A metric and a loss for bounding box
regression. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 658-666, 2019.
Rasmus Rothe, Radu Timofte, and Luc Van Gool. Dex: Deep
expectation of apparent age from a single image. In Pro-
ceedings of the IEEE International Conference on Computer
Vision Workshops, pages 10-15, 2015.

Hengcan Shi, Hongliang Li, Fanman Meng, and Qingbo Wu.
Key-word-aware network for referring expression image seg-
mentation. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 38-54, 2018.

Hengcan Shi, Hongliang Li, Fanman Meng, Qingbo Wu,
Linfeng Xu, and King Ngi Ngan. Hierarchical parsing net:
Semantic scene parsing from global scene to objects. /IEEE
Transactions on Multimedia, 20(10):2670-2682, 2018.
Hengcan Shi, Hongliang Li, Qingbo Wu, Fanman Meng, and
King N Ngan. Boosting scene parsing performance via reli-
able scale prediction. In Proceedings of the 26th ACM inter-
national conference on Multimedia, pages 492-500, 2018.
Hengcan Shi, Hongliang Li, Qingbo Wu, and Zichen
Song. Scene parsing via integrated classification model and
variance-based regularization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 5307-5316, 2019.

Bugra Tekin, Sudipta N Sinha, and Pascal Fua. Real-time
seamless single shot 6d object pose prediction. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 292-301, 2018.

Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:
Fully convolutional one-stage object detection. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 9627-9636, 2019.

Bin Yang, Junjie Yan, Zhen Lei, and Stan Z Li. Craft ob-
jects from images. In Proceedings of the IEEE Conference

[45]

[46]

[47]

13197

on Computer Vision and Pattern Recognition, pages 6043—
6051, 2016.

Tsun-Yi Yang, Yi-Ting Chen, Yen-Yu Lin, and Yung-Yu
Chuang. Fsa-net: Learning fine-grained structure aggrega-
tion for head pose estimation from a single image. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1087-1096, 2019.

Jiahui Yu, Yuning Jiang, Zhangyang Wang, Zhimin Cao, and
Thomas Huang. Unitbox: An advanced object detection net-
work. In Proceedings of the 24th ACM international confer-
ence on Multimedia, pages 516-520. ACM, 2016.

Xingyi Zhou, Dequan Wang, and Philipp Krihenbiihl. Ob-
jects as points. arXiv preprint arXiv:1904.07850, 2019.



