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Abstract

Object detection combines object classification and ob-

ject localization problems. Most existing object detection

methods usually locate objects by leveraging regression net-

works trained with SmoothL1 loss function to predict off-

sets between candidate boxes and objects. However, this

loss function applies the same penalties on different samples

with large errors, which results in suboptimal regression

networks and inaccurate offsets. In this paper, we propose

an offset bin classification network optimized with cross

entropy loss to predict more accurate offsets. It not only

provides different penalties for different samples but also

avoids the gradient explosion problem caused by the sam-

ples with large errors. Specifically, we discretize the contin-

uous offset into a number of bins, and predict the probability

of each offset bin. Furthermore, we propose an expectation-

based offset prediction and a hierarchical focusing method

to improve the prediction precision. Extensive experiments

on the PASCAL VOC and MS-COCO datasets demonstrate

the effectiveness of our proposed method. Our method out-

performs the baseline methods by a large margin.

1. Introduction

Object detection is a fundamental yet challenging com-

puter vision task, which includes object classification and

object localization problems. A broad set of computer vi-

sion applications, such as autonomous driving [7, 17, 39–

41], video surveillance [6, 24] and robotics [38, 42, 45] will

benefit from accurate object localization.

Most of state-of-the-art object detection methods [1, 8,

11, 12, 20, 21, 26, 30, 31, 35, 44] firstly generate a series of

candidate boxes and then predict offsets for these boxes to

locate objects, as shown in Figure 1 (a). Since offsets are

continuous values, these methods predict them by leverag-

ing regression networks that are optimized using the L2 or

SmoothL1 losses. However, as investigated by [9], the
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Figure 1. A comparison of typical offset regression based ob-

ject detection method and our proposed offset bin classification

method. (a) The typical object detection method locates objects

based on offset regression. (b) The proposed method locates ob-

jects based on the output probability distribution over different off-

set bins. The typical offset regression method make limited offsets

from the candidate box towards the object, whereas this problem

is avoided by the offset bin classification method.

L2 loss [10] may cause gradient explosions when there are

large offset errors. To avoid this problem, the SmoothL1

loss [9] weakens the effects of the samples with large errors

by clipping their gradients. Although the SmoothL1 loss

solves the gradient explosion problem, it cannot penalize

enough the samples with large errors, which results in sub-

optimal regression networks and inaccurate offsets between

candidate boxes and objects. For example, in Figure 1 (a),

the train object can not be tightly surrounded by a bounding

box.

To address this problem, we propose an offset bin classi-

fication network to predict more accurate offsets, as shown

in Figure 1 (b). The proposed method adopts a classifica-

tion network trained with a cross entropy loss rather than

a SmoothL1 or L2 loss. On the one hand, it gives sam-

ples with different offset errors adequate penalties. On the
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other hand, it avoids the gradient explosion problem. Never-

theless, the classification network can only predict discrete

offset values. Therefore, we propose an expectation-based

offset prediction and a hierarchical focusing offset predic-

tion to further improve the prediction precision.

Specifically, we quantize the continuous offset into a

number of bins using the uniform discretization and then

train an offset bin classification network with a cross en-

tropy loss to predict the probability distribution of offset

bins. Inspired by [37], we turn the classification results

into the object location by calculating the softmax expected

value of discretized offset bins. Meanwhile, we propose a

hierarchical focusing offset prediction network to gradually

refine offset bins for more precise object localization. We

validate the effectiveness of our method on two common

object detection datasets, including the PASCAL VOC and

MS-COCO datasets. The results show that our proposed

method is beneficial to accurate object detection.

Our contributions can be summarized as follows:

• We propose an offset bin classification network to pre-

dict more accurate offsets instead of regression networks

optimized by SmoothL1 or L2 loss.

• To further produce more precise object localization, we

propose an expectation-based offset prediction and a hierar-

chical focusing offset prediction.

• Extensive experiments on two common datasets

demonstrate the effectiveness of the proposed methods.

2. Related Work

Object Detectors: Modern object detection frameworks

usually can be classified as two-stage and single-stage de-

tectors. In two-stage detectors [1,8,11,12,20,21,26,30,31,

35,44], a sparse set of region proposals that may contain ob-

jects are first generated, and then their features are extracted

for the following classification and localization. The repre-

sentative methods, including Faster R-CNN [35], FPN [20]

and Mask R-CNN [12], have achieved dominated perfor-

mance on various benchmarks. Compared with two-stage

detectors, single-stage detectors [18,19,21,23,32–34] reach

high inference speed, such as YOLO [32–34], SSD [23],

RetinaNet [21]. They usually skip the region proposal gen-

eration step and directly predict bounding boxes following

the anchor box scheme. Although these methods have de-

tected objects successfully, it is still a challenging problem

to achieve accurate object localization.

Bounding Box Regression: In order to solve the prob-

lem of object localization, most of object detection meth-

ods [1, 8–11, 15, 26, 28, 44] leverage bounding box regres-

sion networks to predict offsets of four coordinates that

transform candidate boxes to objects. R-CNN [10] pre-

dicted these offsets by training a linear regression model

with L2 loss. However, it is easy to cause gradient explo-

sion when there are some samples with large errors. Replac-

ing L2 loss, Fast R-CNN [9] proposed SmoothL1 loss to

reduce the effects of the samples with large errors, which

has been widely accepted for regression in object detec-

tion. Balanced L1 loss [28] further increased the gradient

contribution of the samples with small errors to rebalance

the the involved classification and localization tasks as well

as samples with different attributes. A different approach

KL loss [14] took the ambiguities of ground truth bound-

ing boxes into account and learned bounding box regression

and localization variance for more accurate object localiza-

tion. In addition, UnitBox [46] and GIoU [36] directly used

the evaluation metric as object functions to address the gap

between optimizing the commonly used distance loss and

maximizing metric values. However, it is hard to optimize

different bounding boxes with the same IoU.

In addition, a series of object detectors [1, 8, 11, 26, 44]

attempt to improve the object localization by iteratively re-

gressing bounding boxes. They both cascaded multiple re-

gressors and fed the detection results after each iteration

into the next bounding box regressor. Cascade R-CNN

[1] considered the distribution of detection outputs and re-

sampled bounding boxes at each iteration to guarantee the

matching between the quality of detector and that of test-

ing. However, it is non-monotonic to improve the loca-

tion accuracy as the number of iterations increases. IoU-

Net [15] proposed to predict the IoU with matched ground-

truth as the localization confidence to guide the regression

of bounding box. Instead of regression network, we propose

an offset bin classification network with a cross entropy loss

to achieve more accurate object localization, which is also

effectively turned in other computer vision areas. For exam-

ple, [27] predicted the detection heatmaps and the associa-

tive embedding tags for human pose estimation. [5] trained

a depth estimation network by using an ordinal regression

loss instead of a L2 loss.

Recently, some anchor-free methods [16,43,47] directly

predict the heatmaps of keypoints of bounding boxes, and

introduce different kinds of loss functions to refine and

group these keypoints for the final detected bounding boxes.

CornerNet [16] used a SmoothL1 loss to regress the local

offsets, and pull loss and push loss to constrain the dis-

tances between keypoints. CenterNet [47] regressed local-

ization offset and object size using two L1 loss functions.

FCOS [43] employed an IoU loss to regress the area of

bounding box. Unlike the proposed method, they usually

require carefully group keypoints for final objects.

3. Approach

In this section, we first review and analyze the problem

of the conventional bounding box regressors. Then, we in-

troduce our proposed offset bin classification network to ad-

dress this problem, which is implemented based on popular

FPN [20].
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Figure 2. The overall architecture of our proposed offset bin classification method for object detection. It consists of three main parts: RoI

features extraction, offset bin labels construction and expectation-based offset prediction. The RoI features are extracted by the backbone

network FPN [20]. The offset bin labels construction is to discretize the continuous offset range to several offset bins. The expectation-

based offset predict is used to turn the classification results to offset estimation by calculating a expected value.

3.1. Revisiting Bounding Box Regression

Let (x, y, w, h) be the center coordinates of bounding

box and its width and height. Following R-CNN [10], the

common methods leverage regression networks to learn off-

sets that transform candidate boxes to ground-truth boxes.

They parameterize the offsets of four coordinates as fol-

lows:

tx = (x− xa)/wa, ty = (y − ya)/ha

tw = log(w/wa), th = log(h/ha)

t∗x = (x∗ − xa)/wa, t
∗
y = (y∗ − ya)/ha

t∗w = log(w∗/wa), t
∗
h = log(h∗/ha)

(1)

where tx, ty, tw, th are the predicted offsets, t∗x, t
∗
y, t

∗
w, t

∗
h

are the target offsets. x, x∗ and xa (likewise for y, w and h)

are from the predicted box, ground-truth box and the can-

didate box (anchor or proposal box) respectively. The goal

is to minimize the errors between the predicted and target

offsets:

Lloc =
∑

i∈{x,y,w,h}

Lreg(ti − t∗i ) (2)

where Lreg is squared-error L2 loss function in R-CNN

[10]. However, it is sensitive to some samples when there is

a large offset errors.

Replacing L2 loss, Fast R-CNN [9] adopts SmoothL1

loss function to evade the above problem:

SmoothL1(x) =

{

x2

2β
, |x| ≤ β

|x| − β
2
, otherwise

(3)

∂SmoothL1

∂ti
=

∂SmoothL1

∂x

{

x
β
, |x| ≤ β

sgn(x), otherwise
(4)

where the deviation x = ti − t∗i , β is usually set to 1
in two-stage detectors. sgn represents symbolic function.

Note that the samples with the offset error larger than β are

forced to clip the gradients to 1 or −1 for reducing their

effects, causing insufficient penalty for these samples. So,

the regression networks optimized by the SmoothL1 loss

function predict inaccurate offsets between candidate boxes

and objects.

3.2. Offset Bin Classification Network

To address this problem, we propose an offset bin clas-

sification network to achieve more accurate object localiza-

tion. The overall architecture of the proposed method is

illustrated in Figure 2. Given an image, we first generate

a sparse set of candidate boxes using Region Proposal Net-

work (RPN) [20] and then extract these RoIs features from

the image feature maps obtained by feature pyramid net-

works (FPN) [20]. Based on the extracted RoI features, we

predict their corresponding object categories and offset bin

confidence scores instead of concrete offset values. More-

over, we use the expectation-based offset prediction and the

hierarchical focusing offset prediction in Figure 3 to further

improve the precision of predicted offsets.

3.2.1 Offset Bin Labels Construction

As shown in Figure 4, we quantize the continuous off-

set in Section 3.1 into a set of representative discrete off-

sets. Divide the offset range (−a, a) uniformly into m non-

overlapping bins. The width w of each bin in the range

(−a, a) is 2a
m

. In addition, we also separately divide the

range (−∞,−a] and [a,+∞) into two bins. Thus, the total

number of bins is denoted as n = m + 2. The discrete bin

labels are denoted as L ∈ {0, 1, ..., n− 1}. The representa-
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Figure 3. The architecture of the proposed hierarchical focusing offset prediction. Here, we show three stages in the hierarchical focusing

offset prediction. Yellow dashed boxes filled with gray denote the offset range in each stage. Green boxes and red boxes represent predicted

boxes and ground-truth boxes in each stage. The offset range in each stage is defined within the offset bins of previous stage.
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Figure 4. Illustration of offset bin construction. The offset range

(−5, 5) is uniformly discretized into five bins, and the median val-

ues of each bin stand for their representative offsets. In addition,

the range (−∞,−5] and [5,+∞) uses the endpoint −5 and 5 as

their representative offset, respectively.

tive offset for each bin can be indicated as follows:

tri,l =

⎧

⎪

⎨

⎪

⎩

−a+ (l + 1

2
) ∗ w l ∈ [0,m]

−a l = m+ 1

a l = m+ 2

(5)

where tri,l is the representative offset corresponding to the

bin label l for the coordinate i of the bounding box. The rep-

resentative offsets for the labels from 0 to m are expressed

as the median value of each bin, and the other labels are

expressed as the offset of the endpoint.

3.2.2 Network Learning

Based on the discretized offset bin labels, it is straightfor-

ward to cast the object localization as the multi-class classi-

fication problem instead of directly regression. As shown in

Figure 2, the candidate box is fed into the BoxHead of back-

bone network FPN [20] to generate its offset bin score vec-

tor s ∈ R4n, where 4 is the four coordinates of the bound-

ing box, n is the number of offset bins. Then we reshape the

score vector to R4×n and normalize respectively the score

vector of each coordinate into the form of probability by a

softmax function as follows:

pi,l =
exp(si,l)

∑n−1

l=0
exp(si,l)

(6)

where pi,l indicates the probability of the i-th coordinate

offset belongs to the l-th bin.

The loss function Lbin for the offset bin classifier is for-

mulated as a cross entropy loss:

Lbin(pi,l, l) = −
∑

i∈{x,y,w,h}

n−1
∑

l=0

yl ∗ logpi,l (7)

in which the loss is calculated when the ground-truth class

is labeled l, where yl ∈ {0, 1}. The gradient with regard to

the output score sbil of the classifier layer can be derived as

follows:

∂Lbin

∂si
=

{

−
∑

i∈{x,y,w,h}(pi,l − 1), yl = 1

−
∑

i∈{x,y,w,h}(pi,l), yl = 0
(8)

Based on the above formula, the gradient is bounded and its

norm is limited to [0, 1], which is more stable for all samples

compared with L2 loss function. Meanwhile, it effectively

takes into account the samples using different gradient con-

tributions based on the predicted probabilities pi,l compared

to SmoothL1 loss.

To end up, we use the loss function L to end-to-end train

our network for accurate object detection:

L = Lcls + λbinLbin (9)

where Lcls denotes the loss for classification of objects, The

offset bin classification loss Lbin is used for localization of

objects. λbin is the weight that control the balance among

these losses. In this paper, we set λbin to 1.
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Method Expectation Hierarchical AP AP50 AP60 AP70 AP80 AP90

Bounding Box Regression [20] 45.0 74.5 69.5 57.6 36.0 6.6
Bin Classification 45.8 73.3 67.9 57.2 39.6 9.8
Bin Classification � 47.5 74.0 69.0 58.8 41.5 13.6
Bin Classification � 47.5 72.8 67.9 58.1 42.0 16.0
Bin Classification � � 49.0 73.2 68.4 59.0 44.3 19.6

Table 1. The effects of each component in the proposed method. Results are reported on the VOC2007 test set [4]. The baseline method

with ResNet-50-FPN [20] locates object by bounding box regression method. Expectation and Hierarchical represent the expectation-based

offset prediction and hierarchical focusing offset prediction.

3.2.3 Expectation-based Offset Prediction

Since offsets are continuous values with high precision, the

classification network only predicts discrete offset values.

Thus, we propose two different methods to improve the pre-

cision of detection results: the expectation-based offset pre-

diction and the hierarchical focusing offset prediction.

For the expectation-based offset prediction method in

Figure 2, we utilize the probability distribution over differ-

ent offset bins to estimate the predicted offset ti, which is

calculated by a softmax expected value instead of a max

value, as follows:

ti = E(T r
i )

=

n−1
∑

l=0

(pi,l ∗ t
r
i,l)

(10)

where T r
i = {tri,0, t

r
i,1, ..., t

r
i,n−1

} denotes the set of repre-

sentative discrete offsets for n bins. The symbol E indicates

the expectation of discrete offsets.

3.2.4 Hierarchical Focusing Offset Prediction

Furthermore, we propose a hierarchical focusing offset pre-

diction with a coarse-to-fine strategy to gradually refine the

bin interval as shown in Figure 3. The discretized value

will be closer to the target value when the bin interval is

very small. Assume that there are K stages and nk bins

in the k-th stage. In each stage, the offset range (−ak, ak)
is defined within the offset bins of previous stage. So, the

width wk of bins can be denoted as
wk−1

nk

. Then, we predict

the offset tki of each stage similar to Section 3.2.3. The final

predicted offset can be calculated as:

ti =
K
∑

k=1

tki (11)

As shown in Figure 3, in the first stage, we predict off-

sets between candidate boxes generated by RPN and ob-

jects within the offset range (−a1, a1). Subsequently, at

each stage, we predict finer offsets within the previous off-

set bin. By progressively classifying offsets, we can obtain

more precise bounding boxes.

4. Experiments

To evaluate the effectiveness of the proposed offset bin

classification network, we conduct extensive experiments

on two standard object detection datasets, including the

PASCAL VOC dataset [4] and the MS-COCO dataset [22].

Datasets. The PASCAL VOC dataset [4] contains 20 ob-

ject categories, which consists of the PASCAL VOC2007

dataset and the PASCAL VOC2012 dataset. Following [35],

we train our network on the union of VOC 2007 trainval and

VOC2012 trainval sets, including 5011 and 11540 images,

respectively, and evaluate on the VOC2007 test set contain-

ing 4952 images. The MS-COCO dataset [22] involves 80

object categories, which has larger scale than the PASCAL

VOC dataset. Following the common practice [20, 28], we

use the train-2017 set with 115K images for training and

report the final results on the test-dev set with 20k images.

Evaluation Metrics. We adopt the standard COCO-style

Average Precision (AP) to measure the detection perfor-

mance of various qualities, which averages mAP across dif-

ferent IoU thresholds from 0.5 to 0.95 with an interval of

0.05. It also includes AP across small scale APS , medium

scale APM and large scale APL.

Implementation Details. For fair comparison, we imple-

ment all experiments based on PyTorch [29] and MMDe-

tection [2]. We employ FPN [20] based on ResNet-50

and ResNet-101 [13] as the baseline networks. Following

the typical convention, we adopt the input image scale of

1000 × 600 on the PASCAL VOC dataset [4] and a scale

of 1333× 800 on the MS-COCO dataset [22]. We train de-

tectors end-to-end with 2 GPUs (2 images per GPU) for 12

epoch. The initial learning rate is set to 0.005 and decreased

by a factor 0.1 after 8 epochs and 11 epochs. Unless other-

wise specified, all other hyper-parameters follow the default

settings in MMDetection [2]. The loss weights λbin are set

to 1. The offset range a and the number of bins n are set

to 3 and 20, respectively. In the hierarchical focusing offset

prediction, the number of stages K is set to 2.

4.1. Ablation Study

In this section, we validate the effectiveness on the base-

line ResNet-50-FPN [20]. Without loss generality, we per-
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Method AP AP50 AP60 AP70 AP80 AP90

L2 Loss [10] 44.7 72.6 67.6 56.8 37.4 7.8

SmoothL1 Loss [20]

β = 1.0 45.0 74.5 69.5 57.6 36.0 6.6
β = 1.5 44.3 73.9 68.6 56.5 34.9 6.4
β = 2.0 44.2 74.3 68.9 56.1 33.9 6.2

Bin Classification 47.5 74.0 69.0 58.8 41.5 13.6

Table 2. The effectiveness of different loss functions. β denotes the division point in the SmoothL1 loss function. Results are reported on

the VOC2007 test set [4].

Stage AP AP50 AP60 AP70 AP80 AP90

K = 1 47.5 74.0 69.0 58.8 41.5 13.6
K = 2 49.0 73.2 68.4 59.0 44.3 19.6

K = 3 48.8 73.3 68.3 58.5 43.6 19.1

Table 3. The effectiveness of number of stages in the proposed hi-

erarchical focusing offset prediction method. Results are reported

on the VOC2007 test set [4].

form ablation studies to reveal the effect of each component

in our proposed method on the PASCAL VOC dataset [4].

Main Component Analysis. We analyze the effect of each

proposed component in Table 1. Simply estimating ob-

ject localization by the proposed offset bin classification

method improves the AP by 0.8% compared with the base-

line bounding box regression method [20]. Introducing

expectation-based offset prediction and hierarchical focus-

ing offset prediction both achieve gain of 2.5% compared

with the baseline, which further boost the prediction pre-

cise. The expectation-based offset prediction takes into ac-

count the probability of samples in other offset bins to es-

timate offsets, and consistently improves AP with differ-

ent IoU metrics. The hierarchical focusing offset prediction

performs better in the high IoU metrics. The reason is that

it predicts more precise offsets within finer offset bin. Ulti-

mately, our full method outperforms the baseline bounding

box regression method by 4.0%. The result demonstrates

that the effectiveness of the proposed method in terms of

more accurate object detection, especially performing bet-

ter in the high IoU metrics.

Effectiveness of Different Loss Function for Predicting

Offsets. The effectiveness of different loss function for

predicting offsets is shown in Table 2. Based on the same

backbone network ResNet-50-FPN [20], we adjust the di-

vision point β of regression loss SmoothL1 to make more

samples be treated based on enough gradient contributions.

However, the detection performance AP is decreased when

we set β to a larger value. One possible reason is that the

network learning is dominated by some samples with large

distance error. Compared with the SmoothL1 loss and the

L2 loss, our method performs better performance as shown

A
P

Number of Bins n

Figure 5. The effectiveness of bin classification for offset bin labels

with different hyper-parameters.The horizontal axis represents the

number of bins n, the vertical axis stands for detection perfor-

mance AP . The blue line, the red line and the green line indicate

the offset range a = 1, 3, 5, respectively.

in Table 2, which alleviates the problem by the offset bin

classification.

Setting of Offset Bin Labels. Figure 5 shows the ef-

fectiveness of bin classification for offset bin labels with

different hyper-parameters. a and n respectively denote

the endpoint of the divided offset range and the number of

bins. When the number of bins n is fixed, it can be seen

that the detection performance is decreased for a = 1,

while the performance is similar for a = 3 and a = 5.

This is because many samples with offset greater than 1 are

ignored during training if a = 1. When the endpoint a = 3
or 5, it can be observed that the detection performance are

very close to each other when the number of bins n is set

from 20 to 50, thereby is robust to a long range of offset

bin numbers. In addition, the detection performance is

relatively poor when n is small (i.e. n = 10). To balance

the performance with the bin numbers, we choose a = 3
and n = 20 in our experiments.

Number of Stages in Hierarchical Focusing Offset

Prediction. The effectiveness of number of stages in
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Baseline Method Our Method Baseline Method Our Method

Figure 6. Visualization comparison between the baseline method and the proposed offset bin classification method on the VOC2007 test

set [4]. The first and third columns show the detection results of the baseline method. The second and fourth columns show that the

detection results of our method.

Method Backbone AP AP50 AP60 AP70 AP80 AP90

Faster R-CNN* [35] ResNet-50-FPN 45.0 74.5 69.5 57.6 36.0 6.6
Our +Faster R-CNN [35] ResNet-50-FPN 49.0 73.2 68.4 59.0 44.3 19.6

Faster R-CNN* [35] ResNet-101-FPN 47.8 75.5 70.6 60.3 41.3 10.5
Our+Faster R-CNN [35] ResNet-101-FPN 50.8 74.0 69.5 60.8 47.2 22.5

Cascade R-CNN* [1] ResNet-50-FPN 49.5 73.1 69.0 61.0 45.9 18.1
Our+Cascade R-CNN [1] ResNet-50-FPN 50.4 73.3 68.9 60.4 46.5 22.2

Cascade R-CNN* [1] ResNet-101-FPN 51.0 73.6 69.6 61.9 48.3 21.1
Our+Cascade R-CNN [1] ResNet-101-FPN 51.9 73.9 69.8 62.1 48.7 25.0

Table 4. Comparison with state-of-the-art methods on VOC2007 test set [4]. The symbol * represents our re-implement results based on

MMDetection [2].

hierarchical focusing offset prediction is shown in Table 3.

According to the analysis in Figure 5, we set the number of

bins nk in each stage to be same (nk = 20, k = 1, 2, 3) and

the endpoint a1 = 3 in the first stage. Thus, the end point

of offset range a2 in second stage and a3 in third stage

are set to 0.15 and 0.015, respectively. It can be seen that

the detection results AP is improved by 1.6% compared

with only one stage when the number of stages K = 2.

In the second stage, the width of bin is already within a

very small range. Adding the third stage, the detection

performance is close to the second stage. It can be seen that

the bin classification with two stages can achieve the better

detection performance.

Visualization Comparison. Figure 6 shows the visu-

alization comparison between the baseline method [20]

and the proposed offset bin classification method. It can

be observed that the baseline method [20] assigns some

bounding boxes that do not tightly surround objects in the

first row images of Figure 6, while our method can detect

objects more accurately. The second row images of Figure

6 show that the car object and the person object are missed

detection in the baseline method [20] due to the low quality

bounding boxes.

4.2. Comparison With State-of-the-art Methods

Results on Pascal VOC Dataset. We compare our method

with two baselines [1, 20] on VOC2007 test set [4] in Table

4. For fair comparison, we adopt the same parameter setting

for our method and the corresponding baselines. We re-

place the bounding box regression network by the proposed

method to validate their effectiveness. Because Cascade R-

CNN [1] is a multi-stage object detector, we replace the re-

gression branch of each stage in Cascade R-CNN with our

offset bin class branch in Figure 2. To reduce the number

of parameters, the offset bin classification branch here does

not include the hierarchical focusing in Figure 3. We set the
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Method Backbone AP AP50 AP75 APS APM APL

YOLOv2 [33] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5
SSD512 [23] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8
RetinaNet [21] ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2
Faster R-CNN [20] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
Deformable R-FCN [3] Inception-ResNet-v2 37.5 58.0 40.8 19.4 40.1 52.5
Mask R-CNN [12] ResNet-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2
Libra R-CNN [28] ResNet-101-FPN 40.3 61.3 43.9 22.9 43.1 51.0
KL Loss [14] ResNet-50-FPN 39.2 57.6 42.5 21.2 41.8 52.5
Grid R-CNN [25] ResNet-101-FPN 41.5 60.9 44.5 23.3 44.9 53.1
IoU-Net [15] ResNet-101-FPN 40.6 59.0 - - - -

Cascade R-CNN [1] ResNet-101-FPN 42.8 62.1 46.3 23.7 45.5 55.2

Faster R-CNN* [20] ResNet-50-FPN 36.6 58.8 39.6 21.6 39.8 45.0
Our+Faster R-CNN ResNet-50-FPN 40.5 59.6 43.1 22.6 43.1 51.0

Faster R-CNN* [20] ResNet-101-FPN 38.8 60.9 42.1 22.6 42.4 48.5
Our+Faster R-CNN ResNet-101-FPN 42.5 61.7 45.4 23.9 45.6 53.8

Faster R-CNN* [20] ResNeXt-101-FPN 41.9 63.9 45.9 25.0 45.3 52.3
Our+Faster R-CNN ResNeXt-101-FPN 43.2 62.7 46.3 24.7 46.4 54.8

Cascade R-CNN* [1] ResNet-50-FPN 40.7 59.3 44.1 23.1 43.6 51.4
Our+Cascade R-CNN ResNet-50-FPN 42.3 60.4 45.8 23.9 44.8 53.6

Cascade R-CNN* [1] ResNet-101-FPN 42.4 61.1 46.1 23.6 45.0 54.4
Our+Cascade R-CNN ResNet-101-FPN 44.4 62.6 48.3 24.7 47.5 56.7

Cascade R-CNN* [1] ResNeXt-101-FPN 43.7 62.6 47.5 25.3 46.7 55.5
Our+Cascade R-CNN ResNeXt-101-FPN 44.7 63.1 48.5 25.3 47.8 57.1

Table 5. Comparison with state-of-the-art methods on MS-COCO test-dev set [22]. The symbol * represents our re-implement results based

on MMDetection [2].

number of stages of Cascade R-CNN to 2. The IoU thresh-

olds are set to 0.5 and 0.7 in the first and second stages,

respectively. These baselines are consistently improved by

our methods, which demonstrates the advantage and gener-

ality of the proposed methods.

Results on MS-COCO Dataset. Furthermore, we also

compare the proposed method with some state-of-the-art

object detection methods on the large-scale MS-COCO

test-dev set [22] in Table 5. It can be observed that the

proposed method significantly outperforms these state-of-

the-art methods. The proposed offset bin classification

method can improve the AP of Faster R-CNN [20,35] with

ResNet-50-FPN, ResNet-101-FPN and ResNeXt-101-FPN

by 3.9%, 3.7% and 1.3%, respectively. The results AP can

achieve a considerable accuracy 42.3%, 44.4% and 44.7%
when we introduce Cascade R-CNN [1] to our method. The

superior performance demonstrates the effectiveness of the

proposed offset bin classification method.

5. Conclusion

In this paper, we have proposed an offset bin classifi-

cation network to achieve more accurate object detection.

The offset bin labels construction is first used to discretize

the continuous offset into several bins. Then the offset bin

classification network predicts the probability distribution

of offset bins. Furthermore, the expectation-based offset

prediction and the hierarchical focusing offset prediction

methods are introduced to turn the discretized classification

results into more precise offsets. Our method both achieve

superior performance on the PASCAL VOC and MS-COCO

object detection datasets. The results demonstrate the effec-

tiveness of our proposed method.
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