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Abstract

Adversarial examples are known as carefully perturbed

images fooling image classifiers. We propose a geometric

framework to generate adversarial examples in one of the

most challenging black-box settings where the adversary

can only generate a small number of queries, each of them

returning the top-1 label of the classifier. Our framework

is based on the observation that the decision boundary of

deep networks usually has a small mean curvature in the

vicinity of data samples. We propose an effective iterative

algorithm to generate query-efficient black-box perturba-

tions with small ℓp norms for p ≥ 1, which is confirmed

via experimental evaluations on state-of-the-art natural im-

age classifiers. Moreover, for p = 2, we theoretically show

that our algorithm actually converges to the minimal ℓ2-

perturbation when the curvature of the decision boundary

is bounded. We also obtain the optimal distribution of the

queries over the iterations of the algorithm. Finally, exper-

imental results confirm that our principled black-box attack

algorithm performs better than state-of-the-art algorithms

as it generates smaller perturbations with a reduced num-

ber of queries.1

1. Introduction

It has become well known that deep neural networks

are vulnerable to small adversarial perturbations, which are

carefully designed to cause miss-classification in state-of-

the-art image classifiers [26]. Many methods have been

proposed to evaluate adversarial robustness of classifiers in

the white-box setting, where the adversary has full access

to the target model [14, 24, 2]. However, the robustness of

classifiers in black-box settings – where the adversary has

only access to the output of the classifier – is of high rel-

evance in many real-world applications of deep neural net-

works such as autonomous systems and healthcare, where it

1The code of GeoDA is available at https://github.com/

thisisalirah/GeoDA.
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Figure 1: Linearization of the decision boundary.

poses serious security threats. Several black-box evaluation

methods have been proposed in the literature. Depending

on what the classifier gives as an output, black-box evalua-

tion methods are either score-based [25, 5, 18] or decision-

based [3, 1, 20].

In this paper, we propose a novel geometric framework

for decision-based black-box attacks in which the adversary

only has access to the top-1 label of the target model. In-

tuitively small adversarial perturbations should be searched

in directions where the classifier decision boundary comes

close to data samples. We exploit the low mean curvature

of the decision boundary in the vicinity of the data sam-

ples to effectively estimate the normal vector to the decision

boundary. This key prior permits to considerably reduces

the number of queries that are necessary to fool the black-

box classifier. Experimental results confirm that our Geo-

metric Decision-based Attack (GeoDA) outperforms state-

of-the-art black-box attacks, in terms of required number

of queries to fool the classifier. Our main contributions are

summarized as follows:

• We propose a novel geometric framework based on lin-

earizing the decision boundary of deep networks in the

vicinity of samples. The error for the estimation of

the normal vector to the decision boundary of clas-

sifiers with flat decision boundaries, including linear

classifiers, is shown to be bounded in a non-asymptotic

regime. The proposed framework is general enough to

be deployed for any classifier with low curvature deci-

sion boundary.
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• We demonstrate how our proposed framework can be

used to generate query-efficient ℓp black-box perturba-

tions. In particular, we provide algorithms to generate

perturbations for p ≥ 1, and show their effectiveness

via experimental evaluations on state-of-the-art natu-

ral image classifiers. In the case of p = 2, we also

prove that our algorithm converges to the minimal ℓ2-

perturbation. We further derive the optimal number of

queries for each step of the iterative search strategy.

• Finally, we show that our framework can incorporate

different prior information, particularly transferability

and subspace constraints on the adversarial perturba-

tions. We show theoretically that having prior infor-

mation can bias the normal vector estimation search

space towards a more accurate estimation.

2. Related work
Adversarial examples can be crafted in white-box set-

ting [14, 24, 2], score-based black-box setting [25, 5, 18] or

decision-based black-box scenario [3, 1, 20]. The latter set-

tings are obviously the most challenging as little is known

about the target classification settings. Yet, there are several

recent works on the black-box attacks on image classifiers

[18, 19, 29]. However, they assume that the loss function,

the prediction probabilities, or several top sorted labels are

available, which may be unrealistic in many real-world sce-

narios. In the most challenging settings, there are a few at-

tacks that exploit only the top-1 label information returned

by the classifier, including the Boundary Attack (BA) [1],

the HopSkipJump Attack (HSJA) [4], the OPT attack [7],

and qFool [20]. In [1], by starting from a large adversar-

ial perturbation, BA can iteratively reduce the norm of the

perturbation. In [4], the authors provided an attack based

on [1] that improves the BA taking the advantage of an esti-

mated gradient. This attack is quite query efficient and can

be assumed as the state-of-the-art baseline in the black-box

setting. In [7], an optimization-based hard-label black-box

attack algorithm is introduced with guaranteed convergence

rate in the hard-label black-box setting which outperforms

the BA in terms of number of queries. Closer to our work,

in [20], a heuristic algorithm based on the estimation of the

normal vector to decision boundary is proposed for the case

of ℓ2-norm perturbations.

Most of the aforementioned attacks are however specifi-

cally designed for minimizing perturbation metrics such ℓ2
and ℓ∞ norms, and mostly use heuristics. In contrast, we

introduce a powerful and generic framework grounded on

the geometric properties of the decision boundary of deep

networks, and propose a principled approach to design effi-

cient algorithms to generate general ℓp-norm perturbations,

in which [20] can be seen as a special case. We also provide

convergence guarantees for the ℓ2-norm perturbations. We

obtained the optimal distribution of queries over iterations

theoretically as well which permits to use the queries in a

more efficient manner. Moreover, the parameters of our al-

gorithm are further determined via empirical and theoretical

analysis, not merely based on heuristics as done in [20].

3. Problem statement
Let us assume that we have a pre-trained L-class classi-

fier with parameters θ represented as f : Rd → R
L, where

x ∈ R
d is the input image and k̂(x) = argmaxk fk(x) is

the top-1 classification label where fk(x) is the kth compo-

nent of f(x) corresponds to the kth class. We consider the

non-targeted black-box attack, where an adversary without

any knowledge on θ computes an adversarial perturbation

v to change the estimated label of an image x to any in-

correct label, i.e., k̂(x + v) 6= k̂(x). The distance metric

D(x,x + v) can be any function including the ℓp norms.

We formulate an optimization problem with the goal to fool

the classifier while D(x,x+ v) is minimized as:

min
v

D(x,x+ v)

s.t. k̂(x+ v) 6= k̂(x).
(1)

Finding a solution for (1) is a hard problem in general. To

obtain an efficient approximate solution, one can try to es-

timate the point of the classifier decision boundary that is

the closest to the data point x. Crafting an small adver-

sarial perturbation then consists in pushing the data point

beyond the decision boundary in the direction of its nor-

mal. The normal to the decision boundary is thus critical

in a geometry-based attack. While it can be obtained us-

ing back-propagation in white box settings (e.g., [24]), its

estimation in black-box settings becomes challenging.

The key idea here is to exploit the geometric proper-

ties of the decision boundary in deep networks for effec-

tive estimation in black-box settings. In particular, it has

been shown that the decision boundaries of the state-of-the-

art deep networks have a quite low mean curvature in the

neighborhood of data samples [11]. Specifically, the deci-

sion boundary at the vicinity of a data point x can be locally

approximated by a hyperplane passing through a boundary

point xB close to x, with a normal vector w [13, 12]. Thus,

by exploiting this property, the optimization problem in (1)

can be locally linearized as:

min
v

D(x,x+ v)

s.t. wT (x+ v)−wTxB = 0
(2)

Typically, xB is a point on the boundary, which can be

found by binary search with a small number of queries.

However, solving the problem (2) is quite challenging in

black-box settings as one does not have any knowledge

about the parameters θ and can only access the top-1 la-

bel k̂(x) of the image classifier. A query is a request that

results in the top-1 label of an image classifier for a given

input, which prevents the use of zero-order black box op-

timization methods [31, 30] that need more information to
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compute adversarial perturbations. The goal of our method

is to estimate the normal vector to the decision boundary

w resorting to geometric priors with a minimal number of

queries to the classifier.

4. The estimator

We introduce an estimation method for the normal vec-

tor of classifiers with flat decision boundaries. It is worth

noting that the proposed estimation is not limited to deep

networks and applies to any classifier with low mean cur-

vature boundary. We denote the estimate of the vector w

normal to the flat decision boundary in (2) with ŵN when

N queries are used. Without loss of generality, we assume

that the boundary point xB is located at the origin. Thus,

according to (2), the decision boundary hyperplane passes

through the origin and we have wTx = 0 for any vector x

on the decision boundary hyperplane. In order to estimate

the normal vector to the decision boundary, the key idea is

to generate N samples ηi, i ∈ {1, . . . , N} from a multi-

variate normal distribution ηi ∼ N (0,Σ). Then, we query

the image classifier N times to obtain the top-1 label output

for each xB + ηi, ∀i ∈ N . For a given data point x, if

wTx ≤ 0, the label is correct; if wTx ≥ 0, the classifier is

fooled. Hence, if the generated perturbations are adversar-

ial, they belong to the set

Sadv = {ηi | k̂(xB + ηi) 6= k̂(x)}
= {ηi | wTηi ≥ 0}. (3)

Similarly, the perturbations on the other side of the hyper-

plane, which lead to correct classification, belong to the set

Sclean = {ηi | k̂(xB + ηi) = k̂(x)}
= {ηi | wTηi ≤ 0}. (4)

The samples in each of the sets Sadv and Sclean can be as-

sumed as samples drawn from a hyperplane (wTx = 0)

truncated multivariate normal distribution with mean 0 and

covariance matrix Σ. We define the PDF of the d dimen-

sional zero mean multivariate normal distribution with co-

variance matrix Σ as φd(η|Σ). We define Φd(b|Σ) =
∫∞
b

φd(η|Σ)dη as cumulative distribution function of the

univariate normal distribution.

Lemma 1. Given a multivariate Gaussian distribution

N (0,Σ) truncated by the hyperplane wTx ≥ 0, the mean

µ and covariance matrix R of the hyperplane truncated dis-

tribution are given by:

µ = c1Σw (5)

where c1 = (Φd(0))
−1φd(0) and the covariance matrix

R = Σ − ΣwwT
Σ(Φd(0)

2γ2)−1φd(0))d
2(0) in which

γ = (wT
Σw)

1
2 [27].

As it can be seen in (5), the mean is a function of both

the covariance matrix Σ and w. Our ultimate goal is to es-

timate the normal vector to the decision boundary. In order

to recover w from µ, a sufficient condition is to choose Σ

to be a full rank matrix.

General case We first consider the case where no prior

information on the search space is available. The matrix

Σ = σI can be a simple choice to avoid unnecessary com-

putations. The direction of the mean of the truncated dis-

tribution is an estimation for the direction of hyperplane

normal vector as µ = c1σw. The covariance matrix of

the truncated distribution is R = σI + c2wwT where

c2 = −σ2(Φd(0))
−2φ2

d(0). As the samples in both of the

sets Sadv and Sclean are hyperplane truncated Gaussian distri-

butions, the same estimation can be applied for the samples

in the set Sclean as well. Thus, by multiplying the samples

in Sclean by −1 and we can use them to approximate the de-

sired gradient to have a more efficient estimation. Hence,

the problem is reduced to the estimation of the mean of the

N samples drawn from the hyperplane truncated distribu-

tion with mean µ and covariance matrix R. As a result, the

estimator µ̄N of µ with N samples is µ̄N = 1

N

∑N

i=1
ρiηi,

where

ρi =

{

1 k̂(xB + ηi) 6= k̂(x)

−1 k̂(xB + ηi) = k̂(x).
(6)

The normalized direction of the normal vector of the bound-

ary can be obtained as:

ŵN =
µ̄N

‖µ̄N‖2
(7)

Perturbation priors We now consider the case where pri-

ors on the perturbations are available. In black-box settings,

having prior information can significantly improve the per-

formance of the attack. Although the attacker does not have

access to the weights of the classifier, it may have some

prior information about the data, classifier, etc. [19]. Using

Σ, we can capture the prior knowledge for the estimation of

the normal vector to the decision boundary. In the follow-

ing, we unify two common priors in our proposed estimator.

In the first case, we have some prior information about

the subspace in which we search for normal vectors, we can

incorporate such information into Σ to have a more efficient

estimation. For instance, deploying low frequency sub-

space Rm in which m ≪ d, we can generate a rank m co-

variance matrix Σ. Let us assume that S = {s1, s2, ..., sm}
is an orthonormal Discrete Cosine Transform (DCT) basis

in the m-dimensional subspace of the input space [15]. In

order to generate the samples from this low dimensional

subspace, we use the following covariance matrix:

Σ =
1

m

m
∑

i=1

sis
T
i . (8)
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The normal vector of the boundary can be obtained by plug-

ging the modified Σ in (5).

Second, we consider transferability priors. It has been

observed that adversarial perturbations well transfer across

different trained models [28, 23, 8]. Now, if the adversary

further has full access to another model T ′, yet different

than the target black-box model T , it can take advantage

of the transferability properties of adversarial perturbations.

For a given datapoint, one can obtain the normal vector to

the decision boundary in the vicinity of the datapoint for

T ′, and bias the normal vector search space for the black-

box classifier. Let us denote the transferred direction with

unit-norm vector g. By incorporating this vector into Σ, we

can bias the search space as:

Σ = βI + (1− β)ggT (9)

where β ∈ [0, 1] adjusts the trade-off between exploitation

and exploration. Depending on how confident we are about

the utility of the transferred direction, we can adjust its con-

tribution by tuning the value of β. Substituting (9) into (5),

after normalization to c1, one can get

µ = βw + (1− β)ggTw, (10)

where the first term is the estimated normal vector to the

boundary and the second term is the projection of the esti-

mated normal vector on the transferred direction g. Having

incorporated the prior information into Σ, one can gener-

ate perturbations ηi ∼ N (0,Σ) with the modified Σ in an

effective search space, which leads to a more accurate esti-

mation of normal to the decision boundary.

Estimator bound Finally, we are interested in quantify-

ing the number of samples that are necessary for estimat-

ing the normal vectors in our geometry inspired framework.

Given a real i.i.d. sequence, using the central limit theorem,

if the samples have a finite variance, an asymptotic bound

can be provided for the estimate. However, this bound is not

of our interest as it is only asymptotically correct. We are

interested in bounds of similar form with non-asymptotic

inequalities as the number of queries is limited [21, 16].

Lemma 2. The mean estimation µ̄N deployed in (9) ob-

tained from N multivariate hyperplane truncated Gaussian

queries satisfies the probability

P

(

‖µ̄N − µ‖ ≤
√

Tr(R)

N
+

√

2λmax log(1/δ)

N

)

≥ 1−δ

(11)

where Tr(R) and λmax denote the trace and largest eigen-

value of the covariance matrix R, respectively.

Proof. The proof can be found in Appendix A.

This bound will be deployed in sub-section 5.1 to com-

pute the optimal distribution of queries over iterations.

Algorithm 1: ℓp GeoDA (with optimal query dis-

tribution) for p > 1

1 Inputs: Original image x, query budget N , λ,

number of iterations T .

2 Output: Adversarial example xT .

3 Obtain the optimal query distribution N∗
t , ∀t

by (19).

4 Find a starting point on the boundary x0.

5 for t = 1 : T do

6 Estimate normal ŵN∗

t
at xt−1 by N∗

t queries.

7 Obtain vt according to (13).

8 r̂t ← min{r′ > 0 : k̂(x+ r′vt) 6= k̂(x)}
9 xt ← x+ r̂tŵN∗

t

5. Geometric decision-based attacks (GeoDA)

Based on the estimator provided in Section 4, one can

design efficient black-box evaluation methods. In this pa-

per, we focus on the minimal ℓp-norm perturbations, i.e.,

D(x,x + v) = ‖v‖p. We first describe the general algo-

rithm for ℓp perturbations, and then provide algorithms to

find black-box perturbations for p = 1, 2,∞. Furthermore,

for p = 2, we prove the convergence of our method. The

linearized optimization problem in (2) can be re-written as

min
v

‖v‖p
s.t. wT (x+ v)−wTxB = 0. (12)

In the black-box setting, one needs to estimate xB and w

in order to solve this optimization problem. The boundary

point xB can be found using a similar approach as [20].

Having xB , one then use the process described in Section 4

to compute the estimator of w – i.e.,ŵN1
– by making N1

queries to the classifier. In the case of p = 2, the estimated

direction ŵN is indeed the direction of the minimal pertur-

bation. This process is depicted in Fig. 1.

If the curvature of the decision boundary is exactly zero,

the solution of this problem gives the direction of the min-

imal ℓp perturbation. However, for deep neural networks,

even if N → ∞, the obtained direction is not completely

aligned with the minimal perturbation as these networks

still have a small yet non-zero curvature (see Fig. 4c). Nev-

ertheless, to overcome this issue, the solution v∗ of (12)

can be used to obtain a boundary point x1 = x + r̂1v
∗ to

the original image x than x0, for an appropriate value of

r̂1 > 0. For notation consistency, we define x0 = xB .

Now, we can again solve (12) for the new boundary point

x1. Repeating this process results in an iterative algorithm

to find the minimal ℓp perturbation, where each iteration

corresponds to solving (12) once. Formally, for a given im-

age x, let xt be the boundary point estimated in the iteration

t−1. Also, let Nt be the number of queries used to estimate
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the normal to the decision boundary ŵNt
at the iteration t.

Hence, the (normalized) solution to (12) in the t-th iteration,

vt, can be written in closed-form as:

vt =
1

‖ŵNt
‖ p

p−1

⊙ sign(ŵNt
), (13)

for p ∈ [1,∞), where ⊙ is the point-wise product. For the

particular case of p = ∞, the solution of (13) is simply

reduced to:

vt = sign(ŵNt
). (14)

The cases of the p = 1, 2 are presented later. In all cases,

xt is then updated according to the following update rule:

xt = x+ r̂tvt (15)

where r̂t can be found using an efficient line search along

vt. The general algorithm is summarized in Alg. 1.

5.1. ℓ2 perturbation

In the ℓ2 case, the update rule of (15) is reduced to

xt = x + r̂tŵNt
where r̂t is the ℓ2 distance of x to the

decision boundary at iteration t. We propose convergence

guarantees and optimal distribution of queries over the suc-

cessive iterations for this case.

Convergence guarantees We prove that GeoDA con-

verges to the minimal ℓ2 perturbation given that the cur-

vature of the decision boundary is bounded. We define the

curvature of the decision boundary as κ = 1

R
, where R is

the radius of the largest open ball included in the region that

intersects with the boundary B [11]. In case N → ∞, then

r̂t → rt where rt is assumed as exact distance required to

push the image x towards the boundary at iteration t with

direction vt. The following Theorem holds:

Theorem 1. Given a classifier with decision boundary of

bounded curvature with κr < 1, the sequence {r̂t} gener-

ated by Algorithm 1 converges linearly to the minimum ℓ2
distance r since we have:

lim
t→∞

r̂t+1 − r

r̂t − r
= λ (16)

where λ < 1 is the convergence rate.

Proof. The proof can be found in Appendix B.

Optimal query distribution In practice, however, the

number of queries N is limited. One natural question is how

should one choose the number of queries in each iteration

of GeoDA. It can be seen in the experiments that allocating

a smaller number of queries for the first iterations and then

increasing it in each iteration can improve the convergence

rate of the GeoDA. At early iterations, noisy normal vector

estimates are fine because the noise is smaller relative to the

potential improvement, whereas in later iterations noise has

a bigger impact. This makes the earlier iterations cheaper in

terms of queries, potentially speeding up convergence [10].

We assume a practical setting in which we have a limited

budget N for the number of queries as the target system may

block if the number of queries increases beyond a certain

threshold [6]. The goal is to obtain the optimal distribution

of the queries over the iterations.

Theorem 2. Given a limited query budget N , the bounds

for the GeoDA ℓ2 perturbation error for total number of

iterations T can be obtained as:

λT (r0 − r)− e(N) ≤ r̂t − r ≤ λT (r0 − r) + e(N) (17)

where e(N) = γ
∑T

i=1

λT−iri√
Ni

is the error due to limited

number of queries, γ =
√

Tr(R) +
√

2λmax log(1/δ) and

Nt is the number of queries to estimate the normal vector

to the boundary at point xt−1, and r0 = ‖x− x0‖.
Proof. The proof can be found in Appendix C.

As in (17), the error in the convergence is due to two

factors: (i) curvature of the decision boundary (ii) limited

number of queries. If the number of iterations increases,

the effect of the curvature can vanish. However, the term

γ ri√
Nt

is not small enough as the number of queries is finite.

Having unlimited number of the queries, the error term due

to queries can vanish as well. However, given a limited

number of queries, what should be the distribution of the

queries to alleviate such an error? We define the following

optimization problem:

min
N1,...,NT

T
∑

i=1

λ−iri√
Ni

s.t.

T
∑

i=1

Ni ≤ N (18)

where the objective is to minimize the error e(N) while the

query budget constraint is met over all iterations.

Theorem 3. The optimal numbers of queries for (18) in

each iteration form geometric sequence with the common

ratio
N∗

t+1

N∗

t

≈ λ− 2
3 , where 0 ≤ λ ≤ 1. Moreover, we have

N∗
t ≈

λ− 2
3
t

∑T

i=1
λ− 2

3
i
N. (19)

Proof. The proof can be found in Appendix D.

5.2. ℓ1 perturbation (sparse case)

The framework proposed by GeoDA is general enough

to find sparse adversarial perturbations in the black-box set-

ting as well. The sparse adversarial perturbations can be

computed using the following optimization problem with

box constraints as:

min
v

‖v‖1
s.t. wT (x+ v)−wTxB = 0

l � x+ v � u (20)
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Figure 2: Performance evaluation of GeoDA for ℓp when p = 1, 2 (a) Comparison for the performance of GeoDA, BA, and

HSJA for ℓ2 norm. (b) Comparison for the number of required iterations in GeoDA, BA, and HSJA. (c) Fooling rate vs.

sparsity for different numbers of queries in sparse GeoDA.

In the box constraint l � x + v � u, l and u denote

the lower and upper bounds of the values of x + v. We

can estimate the normal vector ŵN and the boundary point

xB similarly to the ℓ2 case with N queries. Now, the

decision boundary B is approximated with the hyperplane

{x : ŵT
N (x−xB) = 0}. The goal is to find the top-k coor-

dinates of the normal vector ŵN with minimum k and push-

ing them to extreme values of the valid range depending on

the sign of the coordinate until it hits the approximated hy-

perplane. In order to find the minimum k, we deploy binary

search for a d-dimensional image. Here, we just consider

one iteration for the sparse attack., while the initial point

of the sparse case is obtained using the GeoDA for ℓ2 case.

The detailed Algorithm for the sparse version of GeoDA is

given in supplementary material.

6. Experiments
We evaluate our algorithms on a pre-trained ResNet-

50 [17] with a set X of 350 correctly classified and ran-

domly selected images from the ILSVRC2012’s validation

set [9]. All the images are resized to 224× 224× 3.

To evaluate the performance of the attack we deploy the

median of the ℓp norm for p = 2,∞ distance over all tested

samples, defined by median
x∈X

(

‖x−xadv‖p
)

. For sparse per-

turbations, we measure the performance by fooling rate de-

fined as |x ∈ X : k̂(x) 6= k̂(xadv)|/|X |. In evaluation of

the sparse GeoDA, we define sparsity as the percentage of

the perturbed coordinates of the given image.

6.1. Performance analysis

Black-box attacks for ℓp norms. We compare the per-

formance of the GeoDA with state of the art attacks for ℓp
norms. There are several attacks in the literature includ-

ing Boundary attack [1], HopSkipJump attack [4], qFool

[20], and OPT attack [7]. In our experiments, we compare

GeoDA with Boundary attack, qFool and HopSkipJump at-

tack. We do not compare our algorithm with OPT attack

as HopSkipJump already outperforms it considerably [4].

In our algorithm, the optimal distribution of the queries is

obtained for any given number of queries for ℓ2 case. The

Queries Fooling rate Perturbation

500 88.44 % 4.29 %

GeoDA 2000 90.25 % 3.04 %

10000 91.17 % 2.36 %

SparseFool [1] - 100 % 0.23 %

Table 1: The performance comparison of black-box sparse

GeoDA for median sparsity compared to white box attack

SparseFool [1] on ImageNet dataset.

results for ℓ2 and ℓ∞ for different numbers of queries is

depicted in Table 2. GeoDA can outperform the-state-of-

the-art both in terms of smaller perturbations and number of

iterations, which has the benefit of parallelization. In partic-

ular, the images can be fed into multiple GPUs with larger

batch size. In Fig. 2a, the ℓ2 norm of GeoDA, Boundary

attack and HopSkipJump are compared. As shown, GeoDA

can outperform the HopSkipJump attack especially when

the number of queries is small. By increasing the number

of queries, the performance of GeoDA and HopSkipJump

are getting closer.

In Fig. 2b, the number of iterations versus the number

of queries for different algorithms are compared. As de-

picted, GeoDA needs fewer iterations compared to Hop-

SkipJump and BA when the number of queries increases.

Thus, on the one hand GeoDA generates smaller ℓ2 per-

turbations compared to the HopSkipJump attack when the

number of queries is small, on the other hand, it saves sig-

nificant computation time due to parallelization.

Now, we evaluate the performance of GeoDA for gen-

erating sparse perturbations. In Fig. 2c, the fooling rate

versus sparsity is depicted. In experiments, we observed

that instead of using the boundary point xB in the sparse

GeoDA, the performance of the algorithm can be improved

by further moving towards the other side of the hyperplane

boundary. Thus, we use xB + ζ(xB − x), where ζ ≥ 0.

The parameter ζ can adjust the trade-off between the fool-

ing rate and the sparsity. It is observed that the higher the
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Queries ℓ2 ℓ∞ Iterations Gradients

1000 47.92 0.297 40 -

Boundary attack [1] 5000 24.67 0.185 200 -

20000 5.13 0.052 800 -

1000 16.05 - 3 -

qFool [4] 5000 7.52 - 3 -

20000 1.12 - 3 -

1000 14.56 0.062 6 -

HopSkipJump attack [4] 5000 4.01 0.031 17 -

20000 1.85 0.012 42 -

1000 11.76 0.053 6 -

GeoDA-fullspace 5000 3.35 0.022 10 -

20000 1.06 0.009 14 -

1000 8.16 0.022 6 -

GeoDA-subspace 5000 2.51 0.008 10 -

20000 1.01 0.003 14 -

DeepFool (white-box) [24] - 0.026 - 2 20

C&W (white-box) [2] - 0.034 - 10000 10000

Table 2: The performance comparison of GeoDA with BA and HSJA for median ℓ2 and ℓ∞ on ImageNet dataset.

Figure 3: Original images and adversarial perturbations generated by GeoDA for ℓ2 fullspace, ℓ2 subspace, ℓ∞ fullspace, ℓ∞
subspace, and ℓ1 sparse with N = 10000 queries. (Perturbations are magnified ∼ 10× for better visibility.)

value for ζ, the higher the fooling rate and the sparsity and

vice versa. In other words, choosing small values for ζ pro-

duces sparser adversarial examples; however, it decreases

the chance that it is an adversarial example for the actual

boundary. In Fig. 2c, we depicted the trade-off between

fooling rate and sparsity by increasing the value for ζ for

different query budgets. The larger the number of queries,

the closer the initial point to the original image, and also the

better our algorithm performs in generating sparse adver-

sarial examples. In Table 1, the sparse GeoDA is compared

with the white-box attack SparseFool. We show that with

a limited number of queries, GeoDA can generate sparse

perturbations with acceptable fooling rate with sparsity of

about 3 percent with respect to the white-box attack Sparse-

Fool. The adversarial perturbations generated by GeoDA

for ℓp norms are shown in Fig. 3 and the effect of different

norms can be observed.

Incorporating prior information. Here, we evaluate the

methods proposed in Section 4 to incorporate prior infor-

mation in order to improve the estimation of the normal

vector to the decision boundary. As sub-space priors, we

deploy the DCT basis functions in which m low frequency

subspace directions are chosen [22]. As shown in Fig. 5, bi-

asing the search space to the DCT sub-space can reduce the

ℓ2 norm of the perturbations by approximately 27% com-

pared to the full-space case. For transferrability, we obtain

the normal vector of the given image using the white box

attack DeepFool [24] on a ResNet-34 classifier. We bias the
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Figure 4: (a) The effect of the variance σ on the ratio of correctly classified queries C to the total number of queries N at

boundary point xB . (b) Effect of λ on the performance of the algorithm. (c) Comparison of two extreme cases of query

distributions, i.e., single iteration (λ→ 0) and uniform distribution (λ = 1) with optimal distribution (λ = 0.6).

search space for normal vector estimation as described in

Section 4. As it can be seen in Fig. 5, prior information can

improve the normal vector estimation significantly.
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Figure 5: Effect of prior information, i.e., DCT sub-space

and transferability on the performance of ℓ2 perturbation.

6.2. Effect of hyper­parameters on the performance

In practice, we need to choose σ such that the locally flat

assumption of the boundary is preserved. Upon generating

the queries at boundary point xB to estimate the direction

of the normal vector as in (7), the value for σ is chosen

in such a way that the number of correctly classified im-

ages and adversarial images on the boundary are almost the

same. In Fig. 4a, the effect of variance σ of added Gaussian

perturbation on the number of correctly classified queries

on the boundary point is illustrated. We obtained a random

point xB on the decision boundary of the image classifier

and query the image classifier 1000 times. As it can be seen,

the variance σ is too small, none of the queries is correctly

classified as the point xB is not exactly on the boundary.

On the other hand if the variance is too high, all the images

are classified as adversarial since they are highly perturbed.

In order to obtain the optimal query distribution for a

given limited budget N , the values for λ and T should be

given. Having fixed λ, if T is large, the number of queries

allocated to the first iteration may be too small. To address

this, we consider a fixed number of queries for the first itera-

tion as N∗
1 = 70. Thus, having fixed λ, a reasonable choice

for T can be obtained by solving (19) for T . Based on (19),

if λ → 0, all the queries are allocated to the last iteration

and when λ = 1, the query distribution is uniform. A value

between these two extremes is desirable for our algorithm.

To obtain this value, we run our algorithm for different λ for

only 10 images different from X . Instead of throwing out

the gradient obtained from the previous iterations, we can

take advantage of them in next iterations as well. As it can

be seen in Fig. 4b, the algorithm has its worst performance

when λ is close to the two extreme cases: single iteration

(λ → 0) and uniform distribution (λ = 1). We thus choose

the value λ = 0.6 for our experiments. Finally, in Fig. 4c,

the comparison between three different query distributions

is shown. The optimal query distribution achieves the best

performance while the single iteration preforms worst. Ac-

tually, this fact is reflected in our proposed bound in (17) as

even with infinite number of queries it can not do better than

λ(r0 − r). Indeed the effect of curvature can be addressed

only by increasing the number of iterations.

7. Conclusion
In this work, we propose a new geometric framework for

designing query-efficient decision-based black-box attacks,

in which the attacker only has access to the top-1 label of

the classifier. Our method relies on the key observation that

the curvature of the decision boundary of deep networks is

small in the vicinity of data samples. This permits to es-

timate the normals to the decision boundary with a small

number of queries to the classifier, hence to eventually de-

sign query-efficient ℓp-norm attacks. In the particular case

of ℓ2-norm attacks, we show theoretically that our algorithm

converges to the minimal adversarial perturbations, and that

the number of queries at each step of the iterative search

can be optimized mathematically. We finally study GeoDA

through extensive experiments that confirm its superior per-

formance compared to state-of-the-art black-box attacks.
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