
iTAML : An Incremental Task-Agnostic Meta-learning Approach

Jathushan Rajasegaran∗, Salman Khan∗, Munawar Hayat∗, Fahad Shahbaz Khan∗‡, Mubarak Shah†

∗Inception Institute of Artificial Intelligence, UAE †University of Central Florida, USA ‡CVL, Linköping University, Sweden

{first.lastname}@inceptioniai.org, mshah@ucf.edu

Abstract

Humans can continuously learn new knowledge as their

experience grows. In contrast, previous learning in deep

neural networks can quickly fade out when they are trained

on a new task. In this paper, we hypothesize this problem

can be avoided by learning a set of generalized parameters,

that are neither specific to old nor new tasks. In this pursuit,

we introduce a novel meta-learning approach that seeks to

maintain an equilibrium between all the encountered tasks.

This is ensured by a new meta-update rule which avoids

catastrophic forgetting. In comparison to previous meta-

learning techniques, our approach is task-agnostic. When

presented with a continuum of data, our model automati-

cally identifies the task and quickly adapts to it with just

a single update. We perform extensive experiments on five

datasets in a class-incremental setting, leading to signifi-

cant improvements over the state of the art methods (e.g.,

a 21.3% boost on CIFAR100 with 10 incremental tasks).

Specifically, on large-scale datasets that generally prove

difficult cases for incremental learning, our approach de-

livers absolute gains as high as 19.1% and 7.4% on Ima-

geNet and MS-Celeb datasets, respectively. Our codes are

available at: https://github.com/brjathu/iTAML .

1. Introduction

Visual content is ever-evolving and its volume is rapidly

increasing each day. High-dimensionality and mass vol-

ume of visual media makes it impractical to store ephemeral

or streaming data and process it all at once. Incremental

Learning (IL) addresses this issue, and requires an agent to

continually learn new tasks, while preserving old knowl-

edge with limited or no access to previous data. The goal

is to end-up with a single model, that performs well for all

the tasks. In this manner, incremental learning models offer

adaptation, gradual development and scalability capabilities

that are very central to human-inspired learning.

This paper studies class-incremental learning where

groups of classes are sequentially observed. This case

is fundamentally different from conventional classification

task due to two key factors, plasticity and stability. A plastic

network can quickly forget old tasks while performing well

on new ones (forgetting), and a stable network can impede

Figure 1: We propose a task-agnostic meta-learning ap-

proach for class-incremental learning. In this setting, tasks

are observed sequentially where each task is a set of classes.

During training, iTAML incrementally learns new tasks with

meta-updates and tries to retain previous knowledge to learn

a generic model. At inference, given a data continuum,

iTAML first predicts the task and then quickly adapts to it. A

fixed-size memory buffer is kept to support the adaptation.

learning new tasks in an effort to keep old information (in-

terference). Despite several attempts, catastrophic forget-

ting and interference are still challenging problems for deep

learning [20]. This paper takes a different approach to IL

based on the following principle: instead of a ‘one size fits

all’ approach that learns a single model well-suited for all

tasks, we propose to learn a generic meta-model which can

be quickly adapted to the desired task. The meta-learning

framework focuses on learning ‘how to rapidly learn?’ The

generality of the model arises from the ‘learning to learn’

training strategy, that focuses on figuring out the shared

parametric space common to all hitherto observed tasks.

Adapting meta-learning for IL involves numerous chal-

lenges. First, an incremental classifier keeps observing new

tasks, therefore it must maintain a balance between plastic-

ity and stability. Current meta-learning algorithms such as

MAML (Model Agnostic Meta-Learning) [6], FOMAML

13588

(First Order MAML) [18] and Reptile [19] do not offer the

ability to adapt to new tasks or remember old tasks. Sec-

ondly, without any task-specific feedback, meta-learning al-

gorithms are not suitable for classification problems. Al-

though meta-learned models can quickly adapt to new tasks,

they require task-information to update their parameters

which restricts their applicability. Finally, most IL meth-

ods use a fixed-size memory buffer for old task replay. This

makes the training distribution imbalanced due to majority

samples from newer task, thereby learning a biased model.

To overcome these challenges, we propose iTAML, a

task-agnostic meta-learning algorithm specifically designed

for IL settings. To minimize catastrophic forgetting, iTAML

applies a meta-update rule that maintains an equilibrium

between current and old knowledge. Further, it separates

the generic feature extraction module from the task-specific

classifier, similar to [11], thereby minimizing interference

and promoting a shared feature space amongst tasks. To

avoid the limitation of knowing task information before-

hand, iTAML learns a task-agnostic model that predicts the

task automatically and subsequently adapts to the predicted

task. This makes iTAML unique compared to other meta-

learning strategies. Finally, iTAML mitigates the data im-

balance problem by tuning the task specific parameters sep-

arately for each task. Thus, the task-specific parameters are

not influenced by the majority samples of the current task.

The major contributions of this work are: (i) A new

task-agnostic meta-learning algorithm, iTAML, which au-

tomatically predicts the task as well as the final class, (ii)

A momentum based strategy for meta-update which effec-

tively avoids forgetting, (iii) A new sampling rate selec-

tion approach that provides the lower-bound for the num-

ber of samples in the data continuum required for meta-

update during inference, and (iv) Significant performance

gains demonstrated by extensive experiments on ImageNet,

CIFAR100, MNIST, SVHN and MS-Celeb datasets.

2. Related Work

Existing IL methods propose architectural modifications

for deep CNNs e.g., dynamic networks [22, 21], dual-

memory modules [7], and network expansion [25]. Re-

hearsal based methods have also been proposed that re-

play the old task by using an exemplar set [23, 4] or

synthesize samples using generative models [27, 28]. IL

approaches that work fundamentally on algorithmic level

can be grouped into regularization and meta-learning based

methods. We discuss these two sets of approaches next.

Regularization Strategies for Incremental Learning: The

regularization based methods impose constraints during

learning that seek to retain past knowledge. For exam-

ple, learning without forgetting [15] adds a distillation loss

to preserve the old knowledge while sequentially learning

new tasks. Different from the ‘task-incremental’ setting

explored in [15], [23, 2] apply distillation loss in ‘class-

incremental’ setting to reduce forgetting. A distillation loss

on the attention maps of the deep network is proposed in

[5] that minimizes overriding the old-task information. Re-

cently, [30] advocates for a simple bias correction strategy

that promotes re-balancing the final classifier layer to give

equal importance to current and older classes.

A broad set of regularization approaches introduce

synaptic intelligence [31, 13, 1] which estimate the im-

portance of each neuron and selectively overwrite the less-

important weights as the learning progresses. Lee et al. [14]

propose to incrementally learn new tasks by merging the

old and new parameters via first and second order moment

matching of posterior distributions. Elastic weight consol-

idation (EWC) [13] computes synaptic importance offline

with a Fisher information matrix. It is used to slow down

the learning for weights highly relevant to previous tasks.

However, EWC can also cause intransigence towards new

tasks, for which [3] proposes exemplar rehearsal alongwith

a Riemannian manifold distance measure for regularization.

Meta-learning for Incremental Learning: The overarch-

ing goal of meta-learning is to learn a model on a series of

tasks, such that a new task can be quickly learned with min-

imal supervision. Meta-learning is thus ideally suited for IL

since tasks are progressively introduced. A number of IL

methods inspired by meta-learning have recently been pro-

posed. Riemer et al. [24] learn the network updates that are

well-aligned and avoid moving in directions that can cause

interference. However, [24] uses a fixed loss function to

align the gradients, that cannot be used in customized appli-

cations. Javed et al. [11] propose a meta-learning approach

that disentangles generic representations from task-specific

learning. Specifically, as new tasks are introduced, the task

head is learned with both the inner and outer (meta) up-

dates, while the representation learning backbone is only

adapted with the outer (more-generic) updates. However,

[11] assumes the training data is a correlated data stream,

and all task samples are concurrently present during infer-

ence. Unlike [11], we do not impose such strict constraints.

Also, both of these methods [24, 11] update the inner loop

by using a single sample at one time, which is not suitable

for large-scale IL. Moreover, [17] assumes that the task is

known for the data continuum which limits its applicabil-

ity to practical scenarios. Jamal et al. [10] present a task-

agnostic meta-learning approach applicable only to few-

shot learning. In contrast, iTAML is task-agnostic and well

suited for large-scale settings. Our proposed meta-update

is unbiased towards majority class samples and simultane-

ously minimizes forgetting. At inference, our model au-

tomatically adapts to the predicted task and uses task spe-

cific weights for class estimates. Besides, for the first time,

we show the promise of meta-learning for large-scale incre-

mental object recognition on five popular datasets.

13589

3. Proposed Method

Our proposed iTAML is a class IL approach that is model

& task-agnostic (i.e. independent of the network architec-

ture and does not require task information). During train-

ing, we find a shared set of parameters that can work well

for new tasks with minor local changes. iTAML therefore

learns generic meaningful representations that are transfer-

able across tasks. In other words, meta-learning process

forces the model to understand the inherent relationship be-

tween sequential tasks. At inference, given a data contin-

uum with all samples belonging to the same task, our ap-

proach follows a two stage prediction mechanism. First, we

predict the task using our generic model, then, we quickly

adapt to the predicted task and find the class labels.

3.1. Incremental Task Agnostic Meta-learning

We progressively learn a total of T tasks, with U number

of classes per task. Consider a classification model divided

into two sub-nets, a feature mapping network f✓ and a clas-

sifier f�. The function of both networks is given by,

f✓ :x 2 R
C⇥H⇥W

7! v 2 R
1⇥D

f� :v 2 R
1⇥D

7! p 2 R
1⇥(UT),

where, f✓ maps an input image x to a feature vector v,

and f� maps v to output predictions p. We start with a

set of randomly initialized parameters Φ = {✓,�}, where

� =
⇥
�>
1 , . . . ,�

>

T

⇤>
and �i 2 R

U⇥D are the task-specific

classification weights. Training the first task is straightfor-

ward, however, when we get a new task t 2 [1, T], the old

parameters Φt�1 should generalize to all t tasks.

Our proposed meta-learning approach (Algorithm 1) in-

volves two updates, an ‘inner loop’ which generates task-

specific models for each task, and an ‘outer loop’ which

combines task-specific models into a final generic model.

Inner loop: To train the inner loop, we randomly sam-

ple a mini-batch with K triplets Bm = {(xk, yk, `k)}
K
k=1

from the union set of current task training data D(t) and

the exemplar memory M(t � 1) containing a small num-

ber of samples for old tasks. Here, xk, yk and `k are the

training images, class labels and task labels, respectively.

This randomly sampled mini-batch contains training sam-

ples from multiple tasks. To train the task-specific model,

we first group the training samples according to the tasks to

form a micro-batch Bi
µ = {(xj , yj , `j)

0}Jj=1 per each task

i 2 [1, t], where all `j in a micro-batch are identical. In-

ner loop parameters Φi = {✓,�i} are updated such that Bi-

nary Cross-entropy (BCE) loss is minimized on each micro-

batch. Here, ✓ is updated in the inner loop for all tasks, but

�i is only updated for ith task. Also for each task, �i are

updated for r iterations using the same micro-batch. This

helps in obtaining task-specific models closer to their orig-

inal task-manifold, thereby providing a better estimate for

gradient update in the outer-loop to obtain a generic model.

Figure 2: iTAML Meta-update: Mini-batches are randomly

sampled from a union set of new task training data and ex-

emplar memory. Then, we group the samples according to

the task, and create micro-batches which are used to gen-

erate task-specific models. Finally, in the outer loop all the

task-specific models are combined.

Outer loop: In the outer loop of iTAML, we combine the

task specific models generated during the inner loop to form

a more generic model. Let, Φbase is the model parameter set

before inner loop updates. Then, we treat the combined ef-

fect of all (Φbase � Φi) as the gradient update for the outer

loop [19]. Simply put, we move the meta-model from Φbase

towards the average direction of all task-specific updates

from Φbase in the inner loop using a dynamic controller ⌘,

Φ = Φbase�⌘
1

t

tX

i=1

(Φbase�Φi) = ⌘
1

t

tX

i=1

Φi+(1�⌘)Φbase.

As the training progresses, the model must learn new

tasks while simultaneously preserving previous informa-

tion. In an ideal case, the model should adapt quickly at the

early stage of the learning, while during the later tasks, it

must avoid any drastic changes since a generic set of fea-

tures is already learned. To impose this, we use a sim-

ple momentum-based dynamic controller ⌘, which speeds

Algorithm 1 Meta-training in iTAML

1: Require: Φt�1, D(t),M(t� 1), t, T and U

2: Φ Φ
t�1

3: for e iterations do

4: Φbase Φ

5: Bm ⇠ {D(t) [M(t� 1)}
6: for i 2 [1, t] do

7: Φi {✓,�i}
8: Bi

µ filter(Bm, i)
9: for r steps do

10: {ŷj}
J
j=1 Φi({xj}

J
j=1)

11: loss
P

j BCE(yj , ŷj)
12: Φi Optimizer(Φi, loss)

13: ⌘ exp(�� · i
t
)

14: Φ ⌘ · 1
t
ΣiΦi + (1� ⌘) · Φbase

15: return Φ
t Φ

13590

up the learning at the beginning and slows it down to-

wards the end. This momentum-based controller is given by

⌘ = exp(�� t
T
), where � is the decay rate set using a vali-

dation set. As an example, in the last task, model parameters

move e�� times slower than the first task in the outer loop.

Controller is similar to having an adaptive learning rate or

an adaptive optimizer [19], however, our controller depends

on the number of tasks seen previously. This allows us to

keep the right balance between plasticity and stability.

3.2. iTAML vs. Other Meta Algorithms

iTAML is close to Reptile [19] meta-learning algorithm.

However, iTAML fundamentally differs from Reptile [19]

in two aspects. First, our meta-update rule is different from

Reptile, and incorporates a balancing factor that stabilizes

the contribution from old and new tasks. Further, Reptile re-

quires multiple inner loop updates (r > 1), whereas iTAML

works well for r � 1. We elaborate these properties below.

Lemma 1. Given a set of feature space parameters ✓ and

task classification parameters � = {�1,�2, . . . ,�T }, after

r inner loop updates, iTAML’s meta-update gradient for

task i is given by, gitaml(i) = gi,0+ · · ·+gi,r�1, where, gi,j
is the jth gradient update with respect to {✓,�i} on a single

micro-batch. (see proof in the supplementary material)

Compared to Reptile algorithm, which favors multiple

batches to update inner loop, iTAML requires only one batch

through all updates in the inner loop. As mentioned in [19],

greptile = g
(0)
i,0 + g

(1)
i,1 + · · ·+ g

(r�1)
i,r�1 . Here, g

(m)
i,m is the gra-

dient calculated on mth disjoint micro-batch. This differs

from our meta-update rule which relies on one micro-batch

per task in the inner loop as compared to r disjoint micro-

batches per task in Reptile. We empirically found that a

Reptile style meta-update is not useful for IL while our pro-

posed update rule helps in finding task-specific weights use-

ful for an optimal outer-loop update. This because, in an

exemplar based IL setting, the memory limit per task de-

creases with new tasks. Hence, in a random sample of a

mini-batch, old classes are under-represented compared to

the new task. To do multiple micro-batch updates per task

as in Reptile, we need to break a micro-batch further, which

results in more noisy gradient updates. Therefore, iTAML

efficiently uses a single micro-batch per task.

Lemma 2. Given a set of feature space parameters ✓

and task classification parameters � = {�1,�2, . . .�T },

iTAML allows to keep the number of inner loop updates

r � 1. (see proof in the supplementary material)

The above property shows that a single inner-loop update

does not result in normal joint training for iTAML. Thus,

unlike Reptile, we can quickly meta-update with r=1.

Since iTAML is task agnostic, even after outer loop up-

date, it can predict tasks without requiring any external in-

Figure 3: An illustration of how iTAML gradient updates

move the model parameters. Let W⇤

i ,W
⇤

j be the optimal

set of parameters for tasks i and j. iTAML moves the fea-

ture space parameters ✓ towards the closet point between

two optimal solution manifolds (solid line), while the clas-

sification parameters �i,�j move only if ✓ moves towards

its corresponding manifold (dashed lines). Therefore, the

task specific classification parameters stay close to their op-

timal solution manifolds, which allows the model to predict

tasks even without any gradient updates after meta-training.

puts. This is in contrast to existing meta-learning algo-

rithms which can not be employed in supervised classifica-

tion tasks, without requiring at least some fine-tuning. For

example, in few-shot learning, meta-model parameters can

classify a new task only after they are updated for the given

support set. Therefore, for a generalized meta-model, such

as Reptile [19] and FOMAML [18], without any task infor-

mation or support set, the meta-model parameters are less

useful. This is because all the model parameters are updated

in the inner loop for these methods. In comparison, for the

case of joint training, model parameters are optimized us-

ing the current data available (i.e., exemplars and new task

data) in a normal fashion. In terms of meta-learning, this is

equivalent to a single gradient update using all task samples

in a mini-batch. In contrast, for our proposed iTAML, the

classification parameters � = {�0,�1, . . .�T } are updated

individually in the inner loop per task, and they remain task-

specific even after the meta-update. This can be further

explained from an optimal solution manifolds perspective

(Fig. 3). Reptile and FOMAML move all the parameters to-

wards a point on W⇤ which is close to all the task-specific

optimal solution manifolds. In contrast, iTAML only moves

the feature space parameters ✓ towards W⇤ and keeps the

classification parameters �t close to their corresponding op-

timal solution manifolds. Further, the fixed-sized exemplar

memory results in an imbalanced data distribution. Due to

this, Reptile, FOMAML and Joint training methods become

more biased towards the later tasks. Since, iTAML updates

the classification parameters separately, it inherently over-

comes the bias due to imbalance in tasks.

The above properties empower iTAML to accurately pre-

dict class labels (close to joint training) without requiring

any gradient updates at inference. Further, with a given

13591

Figure 4: Task and Class prediction: Given the data con-

tinuum C(p), for all samples the maximum responses per

task are accumulated into a task score to get task predic-

tion tpred. For the class prediction, exemplars of task tpred
from memory M are used to update the generic model Φt

to task-specific model Φnew. The data continuum is then

fed through the Φnew to get the sub-class predictions.

data continuum, iTAML can predict tasks with up to 100%
accuracy. This allows us to design a two-stage classifier,

where we first predict the task of the data continuum with-

out any additional external knowledge, and once the task is

found, we apply a gradient update to convert the generalized

weights to task-specific weights, using a small exemplar set.

3.3. iTAML Inference

At inference time, we receive data as a continuum

C(p) = {xj : `j = m}pj=1 for an unknown task m with

p samples. A data continuum is simply a group of samples

of an identical task bundled together. Given C(p), infer-

ence happens in two stages. First, the task is predicted us-

ing generalized model parameters, and then these general-

ized parameters are updated to the task-specific parameters

to predict classes belonging to the respective task. Fig. 4

outlines the flow of task and class prediction.

Task Prediction: Consider the model Φt trained for t tasks,

with U classes in each task. Task prediction is straightfor-

ward. First, for each sample in the continuum, we get the

final classification layer response. Then, for each response

vector, a maximum response per task is recorded. An aver-

age of the maximum responses per task is used as the task

score. A task with a maximum score is finally predicted

(tpred). Algorithm 2 outlines the task prediction steps.

Algorithm 2 Task Prediction

1: Require: Φt, C(p) = {xj}
p
j=1 and U, T

2: S [0, 0, 0, ..., 0] . initialize scores

3: for j = [1, 2, . . . , p] do

4: ŷj Φ
t(xj)

5: for i = [1, 2, . . . , t] do

6: S[i] S[i] + max(ŷj [i · U : (i+ 1) · U])

7: return tpred argmax(S)

Class Prediction: Class prediction involves updating the

generalized parameters Φ
t using exemplars. To correctly

predict the classes in a task, we move the generalized pa-

rameters towards task-specific parameters Φnew. To do so,

we select samples from exemplar memory corresponding to

classes of the predicted task tpred. We use these labelled

samples to do a single gradient update on the generalized

parameters, which results in a task-specific parameters set.

The data continuum is then fed through these parameters to

find the sub-classes of the predicted task. The final class is

then derived as (U · tpred) + subclass. Without losing gen-

erality, this can be extended to the case of uneven classes in

different tasks. Algorithm 3 summarizes the main steps of

the class prediction on data continuum.

Algorithm 3 Class Prediction

1: Require: Φt, C(p), tpred and memory M(t)

2: cMtpred filter(M(t), tpred)
3: Φnew {✓,�tpred}
4: for b iterations do

5: B0
m ⇠

cMtpred . mini-batch with Q samples

6: {ŷq}
Q
j=1 Φnew(B

0
m)

7: loss
P

j BCE(yj , ŷj)
8: Φnew Optimizer(Φnew, loss)

9: for j 2 [1, p] do

10: ŷj Φnew(xj)
11: subclass ← argmax(ŷj [U · tpred : U(tpred + 1)])
12: C

j

pred ← tpred · U + subclass

13: return Cpred = {Cj

pred}
p
j=1

3.4. Limits on the Data Continuum Size

At inference, the model is fed with a data continuum,

which is used to identify the task. The model then adapts

itself for the predicted task. The number of samples in the

continuum plays a key role in task prediction. A higher

number of samples attenuates the noisy predictions and re-

sults in a higher task accuracy. However, in practical set-

tings, continuum sizes are limited. Therefore, it is neces-

sary to know a lower bound on the continuum size to keep

the task prediction accuracy at a certain (desired) level.

Let the model’s minimum prediction accuracy be P0 af-

ter learning t tasks, each with U classes. P0 can be inter-

preted as, P0 = P(Z = i|ytrue = i), where event Z = i

denotes the case when the maximum response occurs at

class i, and ytrue is the true label. If Z̄ = i denotes the

event when the maximum response occurs anywhere but at

class i, then P(Z̄ = i|ytrue = i) = 1 � P0. Since iTAML

promotes a model to be unbiased, we assume that incorrect

predictions are uniformly distributed. Thus, the probability

that the maximum response happens at the correct task is,

13592

P(Z = S`|ytrue = i) = P0 +
1� P0

U · t� 1
· (U � 1).

Here, S` is the set containing the classes corresponding to

the `th task (including class i), where ` = floor(i
U
).

Hence, P(Z = S`|ytrue = i) is the probability that the

maximum response falls at any class of the corresponding

task. Let P̂0 = P(Z = S`|ytrue = i) be the probability of

correctly predicting the task. Now, if we have n samples in

a continuum then the probability of overall task prediction

follows a binomial distribution. In n samples correspond

to any one of the t tasks, the random prediction would be

round(n
t
) samples belonging to any single task. There-

fore, we require at least round(n
t
) + 1 correctly predicted

samples to find the task of a given continuum,

P(correct task) =

nX

k=round(n
t
)+1

✓
n

k

◆
(P̂0)

k(1� P̂0)
n�k

Our goal is to find a minimum value of n such that,

P(correct task) > �, where, � is the required task accu-

racy level. Algorithm 4 explains the main steps of finding

minimum value of n. Note that Algorithm 4 can easily be

solved using any simple brute-force method.

Algorithm 4 Find Lower bound on Data Continuum Size

1: Require: Minimum class prediction accuracy P0, re-

quired task accuracy �, U and t

2: N t · U . number of classes seen

3: P̂0
U�1
N�1 · (1� P0)

4: min(n) subject to,

5:
Pn

k=round(n
t
)+1

�
n
k

�
(P̂0)

k(1� P̂0)
n�k > �

6: return n

4. Experiments and Results

4.1. Implementation Details

Datasets: We evaluate our method on a wide spectrum

of incremental learning benchmarks. These include small

scale datasets i.e., split MNIST [31] and split SVHN, where

each task is assigned with two classes. For medium scale

datasets, we use CIFAR100 and ImageNet-100, each di-

vided into 10 tasks (with 10 classes per task). For large

scale datasets, ImageNet-1K and MS-Celeb-10K with 1000
and 10000 classes respectively are used. MS-Celeb-10K is

a subset of MS-Celeb-1M dataset [8]. We consider 10 tasks,

each having 100 and 1000 classes per task respectively for

ImageNet-1K and Celeb-10K. To be consistent with [9],

we keep a randomly sampled exemplar memory of 2000
samples for MNIST, SVHN, CIFAR100 and ImageNet-100,

20K for ImageNet-1K [23] and 50K for Celeb-10K [30].

Network Architectures: For Split-MNIST, a simple two

layer MLP (400 neurons each) similar to [9] is used. For

SVHN and CIFAR100, a reduced version of ResNet-18

(ResNet-18(1/3)) is used, with the number of filters in all

layers reduced by three times [17], resulting in 1.25million

parameters. For ImageNet-100 and ImageNet-1K, we use

standard ResNet-18. For training, we use RAdam [16] with

initial learning rate of 0.01 for 70 epochs. Learning rate is

multiplied by 1
5 after 20, 40 and 60 epochs. All the models

are trained on a single Tesla-V100 GPU.

4.2. Results and Comparisons

Comparison with meta-learning Algorithms: Fig. 5

compares different first-order meta-learning algorithms i.e.,

FOMAML and Reptile with our iTAML and joint train-

ing on task-agnostic, task-aware, and no inference-update

settings on CIFAR100 for 10 tasks. In the task-agnostic

setting, only the data continuum is present at inference,

whereas for the task-aware setting, both data continuum

and the task label are available. For the task-agnostic set-

tings, the classification accuracy of Reptile and FOMAML

drops drastically with more tasks since they are unable to

precisely predict the tasks. Apart from that, joint train-

ing performance also drops after the first few tasks, mainly

caused by highly imbalanced data distribution. However,

iTAML is able to consistently predict the tasks with above

95% accuracy, while keeping an average classification accu-

racy of 77.79% even after 10 tasks. iTAML inherently trains

task-agnostic models, thus even after the meta-updates, it

can predict the tasks independently. However, other first-

order meta-learning algorithms require additional informa-

tion (e.g. feedback from the task or the task label). Com-

pared with task-agnostic settings, the performance of FO-

MAML and Reptile improves when the task label is known

(task-aware settings). Nevertheless, for the task-aware set-

tings, iTAML still shows 6.9% improvement over Reptile,

since it effectively tackles stability-plasticity dilemma and

imbalance problem. Fig. 5 also compares different algo-

rithms without performing any task-specific meta-updates.

iTAML performs similar to the joint training under these set-

tings.

Comparison with existing methods: We extensively

compare iTAML with several popular incremental learn-

ing methods, including Elastic Weight Consolidation [13],

Riemannian Walk (RWalk) [3], Learning without Forget-

ting (LwF) [15], Synaptic Intelligence (SI) [31], Mem-

ory Aware Synapses (MAS) [1], Deep Model Consolida-

tion (DMC) [32], Incremental Classifier and Representation

Learning (iCARL) [23], Random Path Selection network

(RPS-net) [22] and Bias Correction Method (BiC) [30].

We also compare against Fixed representations (FixedRep)

and Fine tuning (FineTune). iTAML, achieves state-of-the-

art incremental learning performance on the wide range of

datasets. For MNIST and SVHN, results in Table 1 show

that iTAML achieves classification accuracy of 97.95% and

13593

Figure 5: Comparison between different meta-learning algorithms: a) task-agnostic, b) task-aware, and c) with no inference

updates. iTAML performs the best not only in task-agnostic case, but also on task-aware and no meta-update cases.

Methods MNIST(A5) SVHN(A5)

EWC [13] 19.80% 18.21%

Online-EWC [26] 19.77% 18.50%

SI [31] 19.67% 17.33%

MAS [1] 19.52% 17.32%

LwF [15] 24.17% -

GEM∗ [17] 92.20% 75.61%

DGR∗ [27] 91.24% -

RtF∗ [29] 92.56% -

RPS-net∗[22] 96.16% 88.91%

Ours∗ 97.95% 93.97%

Table 1: Comparison on MNIST and SVHN datasets. ‘⇤’

denotes memory based methods. iTAML outperforms state-

of-the-art and performs quite close to oracle case.

93.97% respectively. This is an absolute improvement of

1.79%, 5.06% over the second best method.

Fig. 6 compares different methods on CIFAR100, for

incrementally adding tasks with 10, 5 and 20 classes at

once, by keeping p = 20. iTAML consistently achieves

state-of-the-art results across all settings and outperforms

the existing methods by a large margin. For incremen-

tally learning 10 tasks, iTAML surpasses the current state-

of-the-art RPS-net [22] by a margin of 21.3%. Simi-

larly, we achieve gains of 23.6 and 18.2% on incremen-

tally learning 5 and 20 classes respectively. Results on

large scale datasets are shown in Table 2. For ImageNet-

100, ImageNet-1K and MS-Celeb-10K datasets, we keep

data continuum size as 50, 100 and 20 respectively. We

achieve 89.8% on ImageNet-100 and surpass the current

best method by a margin of 15.7%. Similarly, on ImageNet-

1K, iTAML achieves 63.2% with an absolute gain of 19.1%.

On MS-Celeb-10K dataset with 10, 000 classes, the pro-

posed iTAML achieves 95.02% accuracy and retains its per-

formance with addition of new classes. These experiments

strongly demonstrate the suitability and effectiveness of

iTAML for large scale incremental learning tasks.

4.3. Ablation Analysis

We perform extensive ablation studies for different as-

pects of iTAML using CIFAR100 with 10 tasks.

Data Continuum Size (p): At inference, given a data con-

tinuum, iTAML predicts the task, and individual sample

class labels. Here, we study the impact of number of sam-

ples in the continuum on task prediction accuracy. Fig. 7(a)

shows that performance improves with p. This is because,

with a higher number of samples, the noise in the average

response is attenuated, thereby improving task accuracy.

However, the gain in the task prediction accuracy increases

logarithmically. Thus, sufficient value for p ranges from 20
for CIFAR100 to as low as 3 for MS-Celeb-10K.

Variations in r: For higher number of inner gradient up-

dates r, the model in the inner loop goes close to the task-

specific optimal solution manifold, and the meta-model be-

comes more “diverse”. We can see this pattern in Fig. 7(b).

With r = 5, iTAML achieves 81.57% while with r = 1,

it achieves 77.79%. However, for a model which has seen

T tasks, the number of gradient updates in a batch will be

O(T · r). This slows down the training with new incom-

ing tasks. Therefore, we keep r = 1, as a good trade-off

between performance and computational complexity.

Variations in �: The parameter � controls the speed of

learning new information i.e., for higher � the model does

not learn any new information, and with smaller � it only

learns the new information and forgets the old one. Fig. 7(c)

shows that the performance improves as we vary � = 0 to

� = 2, since this enhances model’s ability to remember old

knowledge. However, for larger �, the performance drops

as model’s stability increase and it is unable to learn new

knowledge. We keep � = 1 in our experiments.

Lower bound on Data Continuum: We set � = 95% and

find the required value for n in Algorithm 4. This value is

used as the data continuum size during inference for task

prediction. As shown in Fig. 7(d), all the datasets achieve

task accuracy around 95%, varying from n = 17 for CI-

FAR100 to n = 3 for MS-Celeb.

13594

DMC LwF RWalk SI MAS EWC Finetuning FixedRep iCaRL RPS Ours

Figure 6: Classification accuracy on CIFAR100, with 10, 20 and 5 tasks from left to right. iTAML consistently outperforms

the existing state-of-the-art across all settings.

Datasets Methods 1 2 3 4 5 6 7 8 9 Final

ImageNet-100/10

Finetuning 99.3 49.4 32.6 24.7 20.0 16.7 13.9 12.3 11.1 9.9
FixedRep 99.3 88.1 73.7 62.6 55.7 50.2 42.9 41.3 39.2 35.3
LwF(TPAMI’18)[15] 99.3 95.2 85.9 73.9 63.7 54.8 50.1 44.5 40.7 36.7
iCaRL(CVPR’17)[23] 99.3 97.2 93.5 91.0 87.5 82.1 77.1 72.8 67.1 63.5
RPSnet(NeurIPS’19)[22] 100.0 97.4 94.3 92.7 89.4 86.6 83.9 82.4 79.4 74.1
Ours 99.4 96.4 94.4 93.0 92.4 90.6 89.9 90.3 90.3 89.8+15.7

ImageNet-1K/10

Finetuning 90.2 43.1 27.9 18.9 15.6 14.0 11.7 10.0 8.9 8.2
FixedRep 90.1 76.1 66.9 58.8 52.9 48.9 46.1 43.1 41.2 38.5
LwF(TPAMI’18)[15] 90.2 77.6 63.6 51.6 42.8 35.5 31.5 28.4 26.1 24.2
iCaRL(CVPR’17)[23] 90.1 82.8 76.1 69.8 63.3 57.2 53.5 49.8 46.7 44.1
Ours 91.5 89.0 85.7 84.0 80.1 76.7 70.2 71.0 67.9 63.2+19.1

MS-Celeb-10K/10

iCaRL(CVPR’17)[23] 94.2 93.7 90.8 86.5 80.8 77.2 74.9 71.1 68.5 65.5
RPSnet(NeurIPS’19)[22] 92.8 92.0 92.3 90.8 86.3 83.6 80.0 76.4 71.8 65.0
BiC(CVPR’19)[30] 95.7 96.5 96.5 95.7 95.1 94.2 93.2 91.7 90.0 87.6
Ours 94.0 95.6 96.0 95.8 95.5 95.4 95.2 95.1 95.0 95.0+7.4

Table 2: Large-scale experiments on ImageNet-1K and and MS-Celeb-10K show that iTAML outperforms all the state-of-

the-art methods by a significant margin. Note that reported task t accuracy is an average of all 1, 2, .., t tasks.

Figure 7: Ablation studies: We study impact of different settings on iTAML’s performance: a) Size of the data continuum at

inference time vs task and class accuracies, b) Number of inner loop updates r, c) Variation in hyper parameters �, and d)

Task and class accuracy of the model on various datasets with a data continuum size taken from Algorithm 4 with � = 95%.

5. Conclusion

Incremental learning aims to learn a single model that

can continuously adapt itself as the new information be-

comes available, without overriding existing knowledge. To

this end, this work proposes to update the model such that

a common set of parameters is optimized on all so-far-seen

tasks, without being specific to a single learning task. We

develop a meta-learning approach to train a generic model

that can be fast updated for a specific task. In our design, we

ensure a balanced update strategy that keeps an equilibrium

between old and new task information. Our approach is

task-agnostic, and can automatically detect the task at hand,

consequently updating itself to perform well on the given

inputs. Our experiments demonstrate consistent improve-

ments across a range of classification datasets including Im-

ageNet, CIFAR100, MNIST, SVHN and MS-Celeb.

13595

References

[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,

Marcus Rohrbach, and Tinne Tuytelaars. Memory aware

synapses: Learning what (not) to forget. In Proceedings of

the European Conference on Computer Vision, 2018. 2, 6, 7

[2] Francisco M. Castro, Manuel J. Marin-Jimenez, Nicolas

Guil, Cordelia Schmid, and Karteek Alahari. End-to-end

incremental learning. In Proceedings of the the European

Conference on Computer Vision, 2018. 2

[3] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajan-

than, and Philip HS Torr. Riemannian walk for incremen-

tal learning: Understanding forgetting and intransigence. In

Proceedings of the European Conference on Computer Vi-

sion, 2018. 2, 6

[4] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,

and Mohamed Elhoseiny. Efficient lifelong learning with

a-gem. In Proceedings of the International Conference on

Learning Representations, 2019. 2

[5] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng,

Ziyan Wu, and Rama Chellappa. Learning without memo-

rizing. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2019. 2

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

In Proceedings of the International Conference on Machine

Learning, 2017. 1

[7] Alexander Gepperth and Cem Karaoguz. A bio-inspired in-

cremental learning architecture for applied perceptual prob-

lems. Cognitive Computation, 2016. 2

[8] Yandong Guo and Lei Zhang. One-shot face recogni-

tion by promoting underrepresented classes. arXiv preprint

arXiv:1707.05574, 2017. 6

[9] Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and

Zsolt Kira. Re-evaluating continual learning scenarios: A

categorization and case for strong baselines. NeurIPS Con-

tinual learning Workshop, 2018. 6

[10] Muhammad Abdullah Jamal and Guo-Jun Qi. Task agnostic

meta-learning for few-shot learning. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2019. 2

[11] Khurram Javed and Martha White. Meta-learning represen-

tations for continual learning. In Proceedings of the Ad-

vances in Neural Information Processing Systems, 2019. 2

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 12

[13] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A Rusu, Kieran

Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-

Barwinska, et al. Overcoming catastrophic forgetting in neu-

ral networks. In Proceedings of the national academy of sci-

ences. National Acad Sciences, 2017. 2, 6, 7

[14] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha,

and Byoung-Tak Zhang. Overcoming catastrophic forgetting

by incremental moment matching. In Proceedings of the Ad-

vances in neural information processing systems, 2017. 2

[15] Zhizhong Li and Derek Hoiem. Learning without forgettin.

IEEE transactions on pattern analysis and machine intelli-

gence, 2018. 2, 6, 7, 8

[16] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen,

Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On the vari-

ance of the adaptive learning rate and beyond. arXiv preprint

arXiv:1908.03265, 2019. 6, 12

[17] David Lopez-Paz et al. Gradient episodic memory for con-

tinual learning. In Proceedings of the Advances in Neural

Information Processing Systems, 2017. 2, 6, 7

[18] Alex Nichol, Joshua Achiam, and John Schulman. On

first-order meta-learning algorithms. arXiv preprint

arXiv:1803.02999, 2018. 2, 4

[19] Alex Nichol and John Schulman. Reptile: a scalable

metalearning algorithm. arXiv preprint arXiv:1803.02999,

2018. 2, 3, 4, 11

[20] B Pfülb and A Gepperth. A comprehensive, application-

oriented study of catastrophic forgetting in dnns. 2019. 1

[21] Jathushan Rajasegaran, Munawar Hayat, Salman Khan, Fa-

had Shahbaz Khan, Ling Shao, and Ming-Hsuan Yang. An

adaptive random path selection approach for incremental

learning, 2019. 2

[22] Jathushan Rajasegaran, Munawar Hayat, Salman H Khan,

Fahad Shahbaz Khan, and Ling Shao. Random path selec-

tion for continual learning. In Proceedings of the Advances

in Neural Information Processing Systems, 2019. 2, 6, 7, 8

[23] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg

Sperl, and Christoph H Lampert. icarl: Incremental classi-

fier and representation learning. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

2017. 2, 6, 8

[24] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu,

Irina Rish, Yuhai Tu, , and Gerald Tesauro. Learning to learn

without forgetting by maximizing transfer and minimizing

interference. In Proceedings of the International Conference

on Learning Representations, 2019. 2

[25] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,

Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-

van Pascanu, and Raia Hadsell. Progressive neural networks.

arXiv preprint arXiv:1606.04671, 2016. 2

[26] Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki,

Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pas-

canu, and Raia Hadsell. Progress & compress: A scal-

able framework for continual learning. arXiv preprint

arXiv:1805.06370, 2018. 7

[27] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.

Continual learning with deep generative replay. In Proceed-

ings of the Advances in Neural Information Processing Sys-

tems, 2017. 2, 7

[28] Richard S Sutton. Integrated architectures for learning, plan-

ning, and reacting based on approximating dynamic pro-

gramming. In Machine Learning Proceedings 1990. Else-

vier, 1990. 2

[29] Gido M van de Ven and Andreas S Tolias. Generative replay

with feedback connections as a general strategy for continual

learning. arXiv preprint arXiv:1809.10635, 2018. 7

13596

[30] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,

Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-

cremental learning. In The IEEE Conference on Computer

Vision and Pattern Recognition, 2019. 2, 6, 8

[31] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-

ual learning through synaptic intelligence. In Proceedings of

the International Conference on Machine Learning, 2017. 2,

6, 7

[32] Junting Zhang, Jie Zhang, Shalini Ghosh, Dawei Li, Serafet-

tin Tasci, Larry Heck, Heming Zhang, and C-C Jay Kuo.

Class-incremental learning via deep model consolidation. In

Proceedings of the IEEE Winter Conference on Applications

of Computer Vision, 2020. 6

13597

