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Abstract

Training a neural network is synonymous with learn-

ing the values of the weights. In contrast, we demon-

strate that randomly weighted neural networks contain sub-

networks which achieve impressive performance without

ever modifying the weight values. Hidden in a randomly

weighted Wide ResNet-50 [32] we find a subnetwork (with

random weights) that is smaller than, but matches the per-

formance of a ResNet-34 [9] trained on ImageNet [4]. Not

only do these “untrained subnetworks” exist, but we pro-

vide an algorithm to effectively find them. We empiri-

cally show that as randomly weighted neural networks with

fixed weights grow wider and deeper, an “untrained subnet-

work” approaches a network with learned weights in ac-

curacy. Our code and pretrained models are available at:

https://github.com/allenai/hidden-networks.

1. Introduction

What lies hidden in an overparameterized neural network

with random weights? If the distribution is properly scaled,

then it contains a subnetwork which performs well without

ever modifying the values of the weights (as illustrated by

Figure 1).

The number of subnetworks is combinatorial in the size

of the network, and modern neural networks contain mil-

lions or even billions of parameters [24]. We should expect

that even a randomly weighted neural network contains a

subnetwork that performs well on a given task. In this work,

we provide an algorithm to find these subnetworks.

Finding subnetworks contrasts with the prevailing

paradigm for neural network training – learning the values

of the weights by stochastic gradient descent. Tradition-

ally, the network structure is either fixed during training

(e.g. ResNet [9] or MobileNet [10]), or optimized in con-

junction with the weight values (e.g. Neural Architecture

Search (NAS)). We instead optimize to find a good subnet-
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Figure 1. If a neural network with random weights (center) is suffi-

ciently overparameterized, it will contain a subnetwork (right) that

perform as well as a trained neural network (left) with the same

number of parameters.

work within a fixed, randomly weighted network. We do

not ever tune the value of any weights in the network, not

even the batch norm [11] parameters or first or last layer.

In [5], Frankle and Carbin articulate The Lottery Ticket

Hypothesis: neural networks contain sparse subnetworks

that can be effectively trained from scratch when reset to

their initialization. We offer a complimentary conjecture:

within a sufficiently overparameterized neural network with

random weights (e.g. at initialization), there exists a subnet-

work that achieves competitive accuracy. Specifically, the

test accuracy of the subnetwork is able to match the accu-

racy of a trained network with the same number of parame-

ters.

This work is catalyzed by the recent advances of Zhou et

al. [33]. By sampling subnetworks in the forward pass, they

first demonstrate that subnetworks of randomly weighted

neural networks can achieve impressive accuracy. However,

we hypothesize that stochasticity may limit their perfor-

mance. As the number of parameters in the network grows,

they are likely to have a high variability in their sampled
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networks.

To this end we propose the edge-popup algorithm

for finding effective subnetworks within randomly weighted

neural networks. We show a significant boost in perfor-

mance and scale to ImageNet. For each fixed random

weight in the network, we consider a positive real-valued

score. To choose a subnetwork we take the weights with

the top-k% highest scores. With a gradient estimator we

optimize the scores via SGD. We are therefore able to find

a good neural network without ever changing the values of

the weights. We empirically demonstrate the efficacy of our

algorithm and show that (under certain technical assump-

tions) the loss decreases on the mini-batch with each modi-

fication of the subnetwork.

We experiment on small and large scale datasets for im-

age recognition, namely CIFAR-10 [13] and Imagenet [4].

On CIFAR-10 we empirically demonstrate that as networks

grow wider and deeper, untrained subnetworks perform just

as well as the dense network with learned weights. On

ImageNet, we find a subnetwork of a randomly weighted

Wide ResNet50 which is smaller than, but matches the per-

formance of a trained ResNet-34. Moreover, a randomly

weighted ResNet-101 [9] with fixed weights contains a sub-

network that is much smaller, but surpasses the performance

of VGG-16 [27]. In short, we validate the unreasonable ef-

fectiveness of randomly weighted neural networks for im-

age recognition.

2. Related Work

Lottery Tickets and Supermasks

In [5], Frankle and Carbin offer an intriguing hypothe-

sis: neural networks contain sparse subnetworks that can be

effectively trained from scratch when reset to their initial-

ization. These so-called winning tickets have won the “ini-

tialization lottery”. Frankle and Carbin find winning tickets

by iteratively shrinking the size of the network, masking out

weights which have the lowest magnitude at the end of each

training run.

Follow up work by Zhou et al. [33] demonstrates that

winning tickets achieve better than random performance

without training. Motivated by this result they propose an

algorithm to identify a “supermask” – a subnetwork of a

randomly initialized neural network that achieves high ac-

curacy without training. On CIFAR-10, they are able to find

subnetworks of randomly initialized neural networks that

achieve 65.4% accuracy.

The algorithm presented by Zhou et al. is as follows: for

each weight w in the network they learn an associated prob-

ability p. On the forward pass they include weight w with

probability p and otherwise zero it out. Equivalently, they

use weight w̃ = wX where X is a Bernoulli(p) random

variable (X is 1 with probability p and 0 otherwise). The

probabilities p are the output of a sigmoid, and are learned

using stochastic gradient descent. The terminology super-

mask” arises as finding a subnetwork is equivalent to learn-

ing a binary mask for the weights.

Our work builds upon Zhou et al., though we recognize

that the stochasticity of their algorithm may limit perfor-

mance. In section 3.1 we provide more intuition for this

claim. We show a significant boost in performance with an

algorithm that does not sample supermasks on the forward

pass. For the first time we are able to match the performance

of a dense network with a supermask.

Neural Architecture Search (NAS)

The advent of modern neural networks has shifted the

focus from feature engineering to feature learning. How-

ever, researchers may now find themselves manually engi-

neering the architecture of the network. Methods of Neural

Architecture Search (NAS) [34, 2, 19, 28] instead provide a

mechanism for learning the architecture of neural network

jointly with the weights. Models powered by NAS have re-

cently obtained state of the art classification performance on

ImageNet [29].

As highlighted by Xie et al. [31], the connectivity pat-

terns in methods of NAS remain largely constrained. Sur-

prisingly, Xie et al. establish that randomly wired neural

networks can achieve competitive performance. Accord-

ingly, Wortsman et al. [30] propose a method of Discover-

ing Neural Wirings (DNW) – where the weights and struc-

ture are jointly optimized free from the typical constraints

of NAS. We highlight DNW as we use a similar method of

analysis and gradient estimator to optimize our supermasks.

In DNW, however, the subnetwork is chosen by taking the

weights with the highest magnitude. There is therefore no

way to learn supermasks with DNW as the weights and con-

nectivity are inextricably linked – there is no way to sepa-

rate the weights and the structure.

Weight Agnostic Neural Networks

In Weight Agnostic Neural Networks (WANNs) [6],

Gaier and Ha question if an architecture alone may en-

code the solution to a problem. They present a mechanism

for building neural networks that achieve high performance

when each weight in the network has the same shared value.

Importantly, the performance of the network is agnostic to

the value itself. They are able to obtain ∼ 92% accuracy on

MNIST [16].

We are quite inspired by WANNs, though we would like

to highlight some important distinctions. Instead of each

weight having the same value, we explore the setting where

each weight has a random value. In Section A.2.2 of their

appendix, Gaier and Ha mention that they were not success-

ful in this setting. However, we find a good subnetwork for

a given random initialization – the supermasks we find are

not agnostic to the weights. Finally, Gaier and Ha construct

their network architectures, while we look for supermasks

within standard architectures.
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Figure 2. In the edge-popup Algorithm, we associate a score with each edge. On the forward pass we choose the top edges by score.

On the backward pass we update the scores of all the edges with the straight-through estimator, allowing helpful edges that are “dead” to

re-enter the subnetwork. We never update the value of any weight in the network, only the score associated with each weight.

Linear Classifiers and Pruning at Initialization

Linear classifiers on top of randomly weighted neural

networks are often used as baselines in unsupervised learn-

ing [21, 3]. This work is different in motivation, we search

for untrained subnetworks which achieve high performance

without changing any weight values. This also differs

from methods which prune at initialization and modify the

weights of the discovered subnetwork [18, 17] or methods

which modify a subset of the weights [25].

3. Method

In this section we present our optimization method for

finding effective subnetworks within randomly weighted

neural networks. We begin by building intuition in an un-

usual setting – the infinite width limit. Next we motivate

and present our algorithm for finding effective subnetworks.

3.1. Intuition

The Existence of Good Subnetworks

Modern neural networks have a staggering number of

possible subnetworks. Consequently, even at initialization,

a neural network should contain a subnetwork which per-

forms well.

To build intuition we will consider an extreme case – a

neural network N in the infinite width limit (for a convolu-

tional neural networks, the width of the network is the num-

ber of channels). As in Figure 1, let ⌧ be a network with

the same structure of N that achieves good accuracy. If the

weights of N are initialized using any standard scaling of a

normal distribution, e.g. xavier [7] or kaiming [8], then we

may show there exists a subnetwork of N that achieves the

same performance as ⌧ without training. Let q be the prob-

ability that a given subnetwork of N has weights that are

close enough to ⌧ to obtain the same accuracy. This proba-

bility q is extremely small, but it is still nonzero. Therefore,

the probability that no subnetwork of N is close enough to

⌧ is effectively (1 − q)S where S is the number of subnet-

works. S grows very quickly with the width of the network,

and this probability becomes arbitrarily small.

How Should We Find A Good Subnetwork

Even if there are good subnetworks in randomly

weighted neural networks, how should we find them?

Zhou et al. learn an associated probability p with each

weight w in the network. On the forward pass they include

weight w with probability p (where p is the output of a sig-

moid) and otherwise zero it out. The infinite width limit

provides intuition for a possible shortcoming of the algo-

rithm presented by Zhou et al. [33]. Even if the parameters

p are fixed, the algorithm will likely never observe the same

subnetwork twice. As such, the gradient estimate becomes

more unstable, and this in turn may make training difficult.

Our algorithm for finding a good subnetwork is illus-

trated by Figure 2. With each weight w in the neural net-

work we learn a positive, real valued popup score s. The

subnetwork is then chosen by selecting the weights in each

layer corresponding to the top-k% highest scores. For sim-

plicity we use the same value of k for all layers.

How should we update the score suv? Consider a single

edge in a fully connected layer which connects neuron u to

neuron v. Let wuv be the weight of this edge, and suv the

associated score. If this score is initially low then wuv is not

selected in the forward pass. But we would still like a way

to update its score to allow it to pop back up. Informally,

with backprop [26] we compute how the loss “wants” node

v’s input to change (i.e. the negative gradient). We then

examine the weighted output of node u. If this weighted

output is aligned with the negative gradient, then node u
can take node v’s output where the loss “wants” it to go.

Accordingly, we should increase the score. If this align-

ment happens consistently, then the score will continue to

increase and the edge will re-enter the chosen subnetwork

(i.e. popup).

More formally, if wuvZu denotes the weighted output of

neuron u, and Iv denotes the input of neuron v, then we

update suv as

suv ← suv − ↵
@L

@Iv
Zuwuv. (1)

This argument and the analysis that follows is motivated

and guided by the work of [30]. In their work, however, they

do not consider a score and are instead directly updating the
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weights. In the forward pass they use the top k% of edges

by magnitude, and therefore there is no way of learning a

subnetwork without learning the weights. Their goal is to

train sparse neural networks, while we aim to showcase the

efficacy of randomly weighted neural networks.

3.2. The edge-popup Algorithm and Analysis

We now formally detail the edge-popup algorithm.

For clarity, we first describe our algorithm for a fully

connected neural network. In Section B.2 we provide the

straightforward extension to convolutions along with code

in PyTorch [23].

A fully connected neural network consists of layers

1, ..., L where layer ` has n` nodes V(`) = {v
(`)
1 , ..., v

(`)
n` }.

We let Iv denote the input to node v and let Zv denote the

output, where Zv = �(Iv) for some non-linear activation

function � (e.g. ReLU [14]). The input to neuron v in layer

` is a weighted sum of all neurons in the preceding layer.

Accordingly, we write Iv as

Iv =
X

u∈V(`−1)

wuvZu (2)

where wuv are the network parameters for layer `. The out-

put of the network is taken from the final layer while the

input data is given to the very first layer. Before training,

the weights wuv for layer ` are initialized by independently

sampling from distribution D`. For example, if we are us-

ing kaiming normal initialization [8] with ReLU activations,

then D` = N
⇣

0,
p

2/n`−1

⌘

where N denotes the normal

distribution.

Normally, the weights wuv are optimized via stochastic

gradient descent. In our edge-popup algorithm, we in-

stead keep the weights at their random initialization, and

optimize to find a subnetwork G = (V, E). We then com-

pute the input of node v in layer ` as

Iv =
X

(u,v)∈E

wuvZu (3)

where G is a subgraph of the original fully connected net-

work1. As mentioned above, for each weight wuv in the

original network we learn a popup score suv . We choose the

subnetwork G by selecting the weights in each layer which

have the top-k% highest scores. Equation 3 may therefore

be written equivalently as

Iv =
X

u∈V(`−1)

wuvZuh(suv) (4)

where h(suv) = 1 if suv is among the top k% highest scores

in layer ` and h(suv) = 0 otherwise. Since the gradient of

1The original network has edges Efc =
S

L−1

`=1
(V` × V`+1) where ×

denotes the cross-product.

h is 0 everywhere it is not possible to directly compute the

gradient of the loss with respect to suv . We instead use

the straight-through gradient estimator [1], in which h is

treated as the identity in the backwards pass – the gradient

goes “straight-through” h. Consequently, we approximate

the gradient to suv as

ĝsuv
=

@L

@Iv

@Iv
@suv

=
@L

@Iv
wuvZu (5)

where L is the loss we are trying to minimize. The scores

suv are then updated via stochastic gradient descent with

learning rate ↵. If we ignore momentum and weight decay

[15] then we update suv as

s̃uv = suv − ↵
@L

@Iv
wuvZu (6)

where s̃uv denotes the score after the gradient step2.

As the scores change certain edges in the subnetwork

will be replaced with others. Motivated by the analysis of

[30] we show that when swapping does occur, the loss de-

creases for the mini-batch.

Theorem 1: When edge (i, ⇢) replaces (j, ⇢) and the rest

of the subnetwork remains fixed then the loss decreases for

the mini-batch (provided the loss is sufficiently smooth).

Proof. Let s̃uv denote the score of weight wuv after the

gradient update. If edge (i, ⇢) replaces (j, ⇢) then our algo-

rithm dictates that si⇢ < sj⇢ but s̃i⇢ > s̃j⇢. Accordingly,

s̃i⇢ − si⇢ > s̃j⇢ − sj⇢ (7)

which implies that

−↵
@L

@I⇢
wi⇢Zi > −↵

@L

@I⇢
wj⇢Zj (8)

by the update rule given in Equation 6. Let Ĩ⇢ denote the

input to node k after the swap is made and I⇢ denote the

original input. Note that Ĩ⇢ − I⇢ = wi⇢Zi − wj⇢Zj by

Equation 3. We now wish to show that L(Ĩ⇢) < L (I⇢).

If the loss is smooth and Ĩ⇢ is close to I⇢ and ignore

second-order terms in a Taylor expansion:

L
⇣

Ĩ⇢
⌘

= L
⇣

I⇢ +
⇣

Ĩ⇢ − I⇢
⌘⌘

(9)

≈ L (I⇢) +
@L

@I⇢

⇣

Ĩ⇢ − I⇢
⌘

(10)

= L (I⇢) +
@L

@I⇢
(wi⇢Zi − wj⇢Zj) (11)

and from equation 8 we have that @L
@I⇢

(wi⇢Zi−wj⇢Zj) < 0

and so L(Ĩ⇢) < L (I⇢) as needed. We examine a more

general case of Theorem 1 in Section B.1 of the appendix.

2To ensure that the scores are positive we take the absolute value.
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Figure 3. Going Deeper: Experimenting with shallow to deep neural networks on CIFAR-10 [13]. As the network becomes deeper, we

are able to find subnetworks at initialization that perform as well as the dense original network when trained. The baselines are drawn as a

horizontal line as we are not varying the % of weights. When we write Weights ∼ D we mean that the weights are randomly drawn from

distribution D and are never tuned. Instead we find subnetworks with size (% of Weights)/100 * (Total # of Weights).

4. Experiments

We demonstrate the efficacy of randomly weighted neu-

ral networks for image recognition on standard benchmark

datasets CIFAR-10 [13] and ImageNet [4]. This section is

organized as follows: in Section 4.1 we discuss the experi-

mental setup and hyperparameters. We perform a series of

ablations at small scale: we examine the effect of k, the %
of Weights which remain in the subnetwork, and the effect

of width. In Section 4.4 we compare against the algorithm

of Zhou et al., followed by Section 4.5 in which we study

the effect of the distribution used to sample the weights.

We conclude with Section 4.6, where we optimize to find

subnetworks of randomly weighted neural networks which

achieve good performance on ImageNet.

4.1. Experimental Setup

We use two different distributions for the weights in our

network:

• Kaiming Normal [8], which we denote Nk. Follow-

ing the notation in section 3.2 the Kaiming Normal dis-

tribution is defined as Nk = N
⇣

0,
p

2/n`−1

⌘

where

N denotes the normal distribution.

• Signed Kaiming Constant which we denote Uk. Here

we set each weight to be a constant and randomly

choose its sign to be + or −. The constant we choose

is the standard deviation of Kaiming Normal, and as a

result the variance is the same. We use the notation Uk

as we are sampling uniformly from the set {−�k,�k}
where �k is the standard deviation for Kaiming Nor-

mal (i.e.
p

2/n`−1).

In Section 4.5 we reflect on the importance of the random

distribution and experiment with alternatives.

Model Conv2 Conv4 Conv6 Conv8

Conv
Layers 64, 64, pool

64, 64, pool

128, 128, pool

64, 64, pool

128, 128, pool

256, 256, pool

64, 64, pool

128, 128, pool

256, 256, pool

512, 512, pool

FC 256, 256, 10 256, 256, 10 256, 256, 10 256, 256, 10

Table 1. For completeness we provide the architecture of the sim-

ple VGG-like [27] architectures used for CIFAR-10 [13], which

are identical to those used by Frankle and Carbin [5] and Zhou et

al. [33]. However, the slightly deeper Conv8 does not appear in the

previous work. Each model first performs convolutions followed

by the fully connected (FC) layers, and pool denotes max-pooling.

On CIFAR-10 [13] we experiment with simple VGG-like

architectures of varying depth. These architectures are also

used by Frankle and Carbin [5] and Zhou et al. [33] and

are provided in Table 1. On ImageNet we experiment with

ResNet-50 and ResNet-101 [9], as well as their wide vari-

ants [32]. In every experiment (for all baselines, datasets,

and our algorithm) we optimize for 100 epochs and report

the last epoch accuracy on the validation set. When we op-

timize with Adam [12] we do not decay the learning rate.

When we optimize with SGD we use cosine learning rate

decay [20]. On CIFAR-10 [13] we train our models with

weight decay 1e-4, momentum 0.9, batch size 128, and

learning rate 0.1. We also often run both an Adam and SGD

baseline where the weights are learned. The Adam baseline

uses the same learning rate and batch size as in [5, 33]3. For

the SGD baseline we find that training does not converge

with learning rate 0.1, and so we use 0.01. As standard we

also use weight decay 1e-4, momentum 0.9, and batch size

128. For the ImageNet experiments we use the hyperparam-

3Batch size 60, learning rate 2e-4, 3e-4 and 3e-4 for Conv2, Conv4,

and Conv6 respectively Conv8 is not tested in [5], though we use find that

learning rate 3e-4 still performs well.
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Figure 4. Going Wider: Varying the width (i.e. number of channels) of Conv4 and Conv6 for CIFAR-10 [13]. When Conv6 is wide

enough, a subnetwork of the randomly weighted model (with %Weights = 50) performs just as well as the full model when it is trained.

eters found on NVIDIA’s public github example repository

for training ResNet [22]. For simplicity, our edge-popup

algorithm does not modify batch norm parameters, they are

frozen at their default initialization in PyTorch (i.e. bias 0,

scale 1), and the scores are initialized Kaiming uniform [8].

This discussion has encompassed the extent of the hyper-

parameter tuning for our models. We do, however, perform

hyperparameter tuning for the Zhou et al. [33] baseline and

improve accuracy significantly. We include further discus-

sion of this in Section 4.4.

In all experiments on CIFAR-10 [13] we use 5 different

random seeds and plot the mean accuracy ± one standard

deviation. Moreover, on all figures, Learned Dense Weights

denotes the standard training the full model (all weights re-

maining).

4.2. Varying the % of Weights

Our algorithm has one associated parameter: the % of

weights which remain in the subnetwork, which we refer

to as k. Figure 3 illustrates how the accuracy of the sub-

network we find varies with k, a trend which we will now

dissect. We consider k ∈ [10, 30, 50, 70, 90] and plot the

dense model when it is trained as a horizontal line (as it has

100% of the weights).

We recieve the worst accuracy when k approaches 0 or

100. When k approaches 0, we are not able to perform well

as our subnetwork has very few weights. On the other hand,

when k approaches 100, our network outputs are random.

The best accuracy occurs when k ∈ [30, 70], and we

make a combinatorial argument for this trend. We are

choosing kn weights out of n, and there are
�

n
kn

�

ways of

doing so. The number of possible subnetworks is therefore

maximized when k ≈ 0.5, and at this value our search space

is at its largest.

4.3. Varying the Width

Our intuition from Section 3.1 suggests that as the net-

work gets wider, a subnetwork of a randomly weighted

model should approach the trained model in accuracy. How

wide is wide enough?

Figure 5. Varying the width of Conv4 on CIFAR-10 [13] while

modifying k so that the # of Parameters is fixed along each curve.

c1, c2, c3 are constants which coincide with # of Parameters for

k = [30, 50, 70] for width multiplier 1.

In Figure 4 we vary the width of Conv4 and Conv6. The

width of a linear layer is the number of “neurons”, and the

width of a convolution layer is the number of channels. The

width multiplier is the factor by which the width of all layers

is scaled. A width multiplier of 1 corresponds to the models

tested in Figure 3.
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Figure 6. Comparing the performance of edge-popup with the algorithm presented by Zhou et al. [33] on CIFAR-10 [13].

As the width multiplier increases, the gap shrinks be-

tween the accuracy a subnetwork found with edge-popup

and the dense model when it is trained. Notably, when

Conv6 is wide enough, a subnetwork of the randomly

weighted model (with %Weights = 50) performs just as

well as the dense model when it is trained.

Moreover, this boost in performance is not solely from

the subnetwork having more parameters. Even when the

# of parameters is fixed, increasing the width and therefore

the search space leads to better performance. In Figure 5 we

fix the number of parameters and while modifying k and the

width multiplier. Specifically, we test k ∈ [30, 50, 70] for

subnetworks of constant size c1, c2 and c3. On Figure 5 we

use |E| denote the size of the subnetwork.

4.4. Comparing with Zhou et al. [33]

In Figure 6 we compare the performance of

edge-popup with Zhou et al. Their work considers

distributions Nx and Ux, which are identical to those

presented in Section 4.1 but with xavier normal [7] instead

of kaiming normal [8] – the factor of
√
2 is omitted from

the standard deviation. By running their algorithm with Nk

and Uk we witness a significant improvement. However,

even the Nx and Ux results exceed those in the paper

as we perform some hyperparameter tuning. As in our

experiments on CIFAR-10, we use SGD with weight

decay 1e-4, momentum 0.9, batch size 128, and a cosine

scheduler [20]. We double the learning rate until we see the

performance become worse, and settle on 2004.

4A very high learning rate is required as mentioned in their work.

Figure 7. Testing different weight distributions on CIFAR-10 [13].

4.5. Effect of The Distribution

The distribution that the random weights are sampled

from is very important. As illustrated by Figure 7, the per-

formance of our algorithm vastly decreases when we switch

to using xavier normal [7] or kaiming uniform [8].

Following the derivation in [8], the variance of the for-

ward pass is not exactly 1 when we consider a subnetwork

with only k% of the weights. To reconcile for this we could

scale standard deviation by
p

1/k. This distribution is re-

ferred to as “Scaled Kaiming Normal” on Figure 7. We may

also consider this scaling for the Signed Kaiming Constant

distribution which is described in Section 4.1.
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ResNet-50

ResNet-50

ResNet-101

ResNet-101

Wide ResNet-50

ResNet-34

Wide ResNet-50

ResNet-18

Figure 8. Testing our Algorithm on ImageNet [4]. We use a fixed

k = 30%, and find subnetworks within a randomly weighted

ResNet-50 [9], Wide ResNet-50 [32], and ResNet-101. Notably, a

randomly weighted Wide ResNet-50 contains a subnetwork which

is smaller than, but matches the performance of ResNet-34. Note

that for the non-dense models, # of Parameters denotes the size of

the subnetwork.

4.6. ImageNet [4] Experiments

On ImageNet we observe similar trends to CIFAR-10.

As ImageNet is a much harder dataset, computationally

feasible models are not overparameterized to the same de-

gree. As a consequence, the performance of a randomly

weighted subnetwork does not match the full model with

learned weights. However, we still witness a very encour-

aging trend – the performance increases with the width and

depth of the network.

As illustrated by Figure 8, a randomly weighted Wide

ResNet-50 contains a subnetwork that is smaller than, but

matches the accuracy of ResNet-34 when trained on Ima-

geNet [4]. As strongly suggested by our trends, better and

larger “parent” networks would result in even stronger per-

formance on ImageNet [4]. A table which reports the num-

bers in Figure 8 may be found in Section A of the appendix.

Figure 9 illustrates the effect of k, which follows an al-

most identical trend: k ∈ [30, 70] performs best though 30

now provides the best performance. Figure 9 also demon-

strates that we significantly outperform Zhou et al. at scale

(in their original work they do not consider ImageNet). For

Zhou et al. on ImageNet we report the best top-1 accuracy

as we find their performance degrades towards the end of

training. This is the only case where we do not report last

epoch accuracy.

The choice of the random distribution matters more for

ImageNet. The “Scaled” distribution we discuss in Section

4.5 did not show any discernable difference on CIFAR-10.

However, Figure 10 illustrates that on ImageNet it is much

Figure 9. Examining the effect of % weights on ImageNet for

edge-popup and the method of Zhou et al.

Figure 10. Examining the effect of using the “Scaled” initialization

detailed in Section 4.5 on ImageNet.

better. Recall that the “Scaled” distribution adds a factor

of
p

1/k, which has less of an effect when k approaches

100% = 1. This result highlights the possibility of finding

better distributions which work better for this task.

5. Conclusion

Hidden within randomly weighted neural networks we
find subnetworks with compelling accuracy. This work pro-
vides an avenue for many areas of exploration. Finally, we
hope that our findings serve as a useful step in the pursuit of
understanding the optimization and initialization of neural
networks.
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