
Global-Local Bidirectional Reasoning for Unsupervised Representation

Learning of 3D Point Clouds

Yongming Rao1,2,3, Jiwen Lu1,2,3∗, Jie Zhou1,2,3,4

1Department of Automation, Tsinghua University, China
2State Key Lab of Intelligent Technologies and Systems, China

3Beijing National Research Center for Information Science and Technology, China
4Tsinghua Shenzhen International Graduate School, Tsinghua University, China

raoyongming95@gmail.com; {lujiwen, jzhou}@tsinghua.edu.cn

Abstract

Local and global patterns of an object are closely related.

Although each part of an object is incomplete, the underlying

attributes about the object are shared among all parts, which

makes reasoning the whole object from a single part possible.

We hypothesize that a powerful representation of a 3D object

should model the attributes that are shared between parts

and the whole object, and distinguishable from other objects.

Based on this hypothesis, we propose to learn point cloud

representation by bidirectional reasoning between the local

structures at different abstraction hierarchies and the global

shape without human supervision. Experimental results on

various benchmark datasets demonstrate the unsupervisedly

learned representation is even better than supervised rep-

resentation in discriminative power, generalization ability,

and robustness. We show that unsupervisedly trained point

cloud models can outperform their supervised counterparts

on downstream classification tasks. Most notably, by sim-

ply increasing the channel width of an SSG PointNet++1,

our unsupervised model surpasses the state-of-the-art super-

vised methods on both synthetic and real-world 3D object

classification datasets. We expect our observations to offer

a new perspective on learning better representation from

data structures instead of human annotations for point cloud

understanding.2

1. Introduction

Facilitating machines to understand the 3D world is cru-

cial to many important real-world applications, such as au-

tonomous driving, augmented reality and robotics. One core

problem on 3D geometric data such as point clouds is learn-

∗Corresponding author
1Single-Scale Grouping PoinetNet++ [38].
2Code: https://github.com/raoyongming/PointGLR
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Figure 1: Illustration of our main idea. We propose to learn

representation unsupervisedly from data structures by training the

networks to solve two problems: reasoning the whole object from

a single part and reasoning detailed structures from the global

representation.

ing powerful representations that are discriminative, generic

and robust. To tackle this problem, current state-of-the-arts

on point cloud analysis [2,26,28,33,38,43,49,51,54] are es-

tablished with the help of extensive human-annotated super-

vised information. However, manually labeled data require

the high cost of human labor and may limit the generaliza-

tion ability of the learned models. Therefore, unsupervised

learning is an attractive direction to obtain generic and robust

representations for 3D object understanding.

Learning useful representations from unlabeled data is a

fundamental and challenging problem for point cloud analy-

sis. While several efforts have been devoted to learn repre-

sentation of a point cloud without human supervision [1,8,14,

18,26,31,47,55,56] , these methods are mainly based on self-

supervision signals provided by generation or reconstruction

tasks, including self-reconstruction [1, 8, 14, 26, 47, 55, 56],

local-to-global reconstruction [18, 31] and distribution esti-

mation [1, 26]. These methods have proven to be effective
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in capturing structural and low-level information of point

clouds, but usually fail to learn high-level semantic infor-

mation from point clouds. Therefore, unsupervised models

still perform far behind the state-of-the-art supervised model.

The goal of this work is to explore an unsupervised learning

algorithm that can learn both structural information and se-

mantic knowledge to promote the quality of unsupervisedly

learned representation.

Different from images where local patches are noisy and

usually independent from the whole image (for example,

given a patch of a dog, we cannot identify whether this im-

age is about animals or the people nearby), the underlying

semantic and structural information is shared in all parts of

a 3D object. This distinct property of 3D objects makes rea-

soning the whole object from a single part possible. Based

on this observation, we hypothesize that a powerful represen-

tation of a 3D object should model the underlying attributes

that are shared between parts and the whole object and dis-

tinguishable from other objects. As shown in Figure 1, given

a point cloud of a tail of an airplane, a good representa-

tion of the tail should reflect the type of the corresponding

airplane. Simultaneously, the representation of the whole

airplane should contain all the necessary details to infer the

local structures of this airplane.

In this paper, we propose a new scheme for unsupervised

point cloud representation learning by bidirectional reason-

ing between local representations at different abstraction

hierarchies in a network and global representation of a 3D

object. Our method is simple yet effective, which can be

applied to a wide range of deep learning methods for point

cloud understanding. While most existing unsupervised

learning methods focus on exploiting structure information

by learning various autoencoders, our method aims to cap-

ture the underlying semantic knowledge shared between

local structures and global shape in 3D point clouds. Specifi-

cally, the proposed Global-Local Reasoning (GLR) consists

of two sub-tasks: 1) local-to-global reasoning: we formu-

late the problem of capturing shared attributes between local

parts and global shape as a self-supervised metric learning

problem, where local features are encouraged to be closer to

the global feature of the same object than features of other

objects, such that the distinct semantic information of each

object can be extracted by local representations; 2) global-

to-local reasoning: we further use the self-supervised tasks

including self-reconstruction and normal estimation to learn

global features that contain necessary structural information

of 3D objects.

Our experimental results on several benchmark datasets

demonstrate that the unsupervisedly learned point cloud rep-

resentation is even more discriminative, generalizable and

robust than supervised representation in downstream object

classification tasks. Our unsupervisedly trained models can

consistently outperform their supervised counterparts. With

our unsupervised learning method, we show a simple and

light-weight SSG PointNet++ [38] model can achieve very

competitive results with supervised methods (92.2% classifi-

cation accuracy on ModelNet40 [52]). By simply increasing

the channel width, we further obtain 93.0% and 87.2% sin-

gle view accuracy on ModelNet40 and ScanObjectNN [46]

benchmarks respectively, surpassing the state-of-the-art un-

supervised and supervised methods, while the supervised

version of this model suffers from overfitting.

2. Related Work

Deep Learning on 3D Point Clouds: Recent years have

witnessed rapid development on 3D point cloud analysis

thanks to the deep learning techniques that are designed to

consume 3D point clouds directly [28, 33, 37, 38, 49]. Point-

Net [26] pioneers this line of works and designed a deep net-

work that can handle unordered and unstructured 3D points

by independently learning on each point and fusing point

features with max pooling. Though efficient, PointNet fails

to capture local structures, which have proven to be crucial

to the success of CNNs. PointNet++ [38] is proposed to miti-

gate this issue by developing a hierarchical grouping architec-

ture to extract local features progressively at different abstrac-

tion levels. The subsequent works such as PointCNN [28],

PointConv [51] and Relation-Shape CNN [33] also focus

on local structures of point cloud and further improve the

quality of captured features. Since only the relation between

local and global features is needed, our method is suited

for all these PointNet++ variants. While recent works push

state-of-the-art of point cloud deep learning by promoting

the capacity of networks, this work offers a new route to

learn powerful representation in an unsupervised fashion,

without any human annotations.

Unsupervised Representation Learning: Unsupervised

learning has been an important group of methods in computer

vision since the earliest day [13], which aims to learn trans-

formations of the data that make the subsequent downstream

problem solving easier [5]. Classical deep methods for un-

supervised learning such as autoencoders [21], generative

adversarial networks [16] and autoregressive models [35]

learn representation by faithfully reconstructing the input

data, which focus on low-level variations in data and is not

very useful for downstream tasks like classification. Recent

works on self-supervised learning present a powerful family

of models that can learn discriminative representations with

rich semantic knowledge. This group of methods design

various problem generators such that models need to learn

useful information from data in order to solve these gener-

ated problems [3,10,11,19,44]. In this work, we also follow

this line and propose to learn point cloud representation by

solving the global-local bidirectional reasoning problem.

There are several prior attempts on learning representa-
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Figure 2: The overall framework of our unsupervised feature learning approach. The representation is learned by

connecting local structures and global shape. We map the local representations at different levels and global representations to

shared feature space and use a self-supervised metric learning objective to mine semantic knowledge from data. By further

incorporating self-reconstruction and normal estimation tasks, a powerful representation that contains rich semantic and

structural information can be learned.

tion of a point cloud without human supervision [1, 8, 14, 18,

26, 31, 47, 55, 56]. These methods discover useful informa-

tion in the 3D point cloud by performing data reconstruction,

which has proven to be effective in learning structural in-

formation. However, because of lacking effective semantic

supervision, previous methods limit the networks’ ability in

downstream tasks. Our method resolves this issue by incor-

porating semantic supervision with structural supervision.

With the exploration of high-level semantic knowledge, our

method is able to learn discriminative representation like

supervised method while maintaining the robustness and

generalization of unsupervised representation.

3. Approach

The core of 3D point cloud understanding is to learning

discriminative, generic and robust representations that can

capture the underlying shape. To achieve this goal in an un-

supervised manner, we propose to point cloud representation

by solving a bidirectional reasoning problem between the

local structures and the global shape. The overall framework

of our method is presented in Figure 2.

3.1. Hierarchical Point Cloud Feature Learning

We begin by reviewing the hierarchical point cloud fea-

ture learning framework firstly proposed in PointNet++ [38],

on which our method is built.

Consider a set of 3D points P ⊂ R
3 with N elements, in

which each point pi is represented by a 3D coordinate. To

learn features based on these 3D coordinates, PointNet [37]

proposes to use a symmetric function f that is invariant to

point permutations to transfer point set into feature space:

f(P ) = A(h(p1), h(p2), ..., h(pN )), (1)

where h is a multi-layer perceptron network that processes

each point independently and shares parameters for all points

and A is a symmetric aggregation function like max pooling

to summarize features from each point. Since each point

is processed independently by h, the structural information

among points is captured only by the aggregation function A.

Therefore, PointNet lacks the ability to capture local context.

To address this issue, PointNet++ and its variants [28, 33,

51] use a hierarchical structure to learn point cloud feature

progressively at different abstraction levels. Specifically,

at the ℓ-th level, point set is abstracted by using iterative

furthest point sampling [38] to produce a new set P ℓ ⊂ P ℓ−1

with fewer points and we can extract the local geometrical

feature f ℓi by applying a small PointNet on the local point

subset around the centroid for each point pℓi ∈ P ℓ. The

global representation of the point cloud g is then obtained

by applying another small PointNet model on the points and

features at the highest abstraction level.

Almost all previous works [2, 26, 28,33, 38, 43, 49, 51, 54]

on supervised point cloud learning employ an end-to-end

training paradigm, where the representation is learned di-

rectly from the annotated labels. Although achieved promis-

ing performance, these methods neglect the intrinsic seman-

tic and structure information contained in the point clouds

themselves. In this work, we focus on exploring this property

of point cloud and provide a very competitive alternative for

point cloud representation learning.

To discover the structure and semantic information from

data without human annotations, we propose two problems

for the networks to solve: local-to-global reasoning and

global-to-local reasoning, which aim to unsupervisedly learn

semantic and structural knowledge respectively.

3.2. Local­to­Global Reasoning

Humans are able to recognize many objects even when

only a small part of the object is presented. This fact inspires

us to exploit the relation between local parts and global shape
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as a free and plentiful supervisory signal for training a rich

representation for point cloud understanding. Therefore, the

goal of local-to-global reasoning is to mine the shared se-

mantic knowledge among different abstraction hierarchies of

point clouds. Since global representation usually can better

capture the semantic information of 3D objects than local rep-

resentations, local-to-goal reasoning operates by predicting

global representation from local ones. To evaluate the predic-

tions, we formulate the prediction as a self-supervised metric

learning problem and use a multi-class N-pair loss [40] to

supervise the prediction task. Inspired the idea of instance

discrimination [53], to learn the distinct semantic informa-

tion for each object, we treat the global representation of

the current object as the positive sample and use the global

representation of other objects as the negative samples. In

the following, we describe the details of the local-to-global

reasoning.

Prediction Networks: Since the local features {f ℓi , ∀i, ℓ}
and global feature g have different numbers of channels,

we cannot directly measure the similarity of them. Thus,

we first use prediction networks {φℓ, ∀ℓ} and ϕ to embed

them into a shared feature space, respectively. The predic-

tion networks can be implemented as multi-layer perceptron

(MLP) networks and the prediction networks are shared at

each abstraction level.

Self-Supervised Metric Learning: A straightforward

method to optimize the predictions is to minimize the abso-

lute overall differences between φℓ(f ℓi ) and ϕ(g), i.e. min-

imize
∑

i,ℓ ||φ
ℓ(f ℓi )− ϕ(g)||. However, this objective may

lead to degenerate representations that map all inputs to a

constant value. Therefore, we choose to supervise the rela-

tive quality of the predictions with an unsupervised metric

learning task. Specifically, for each embedded local repre-

sentation f ℓi , we enforce its embedding to be closer to the

embedded global representation of the same object than any

other object. The local-to-global reasoning objective can be

written as:

Li,ℓ
G2L = log(1+

∑

gk 6=g

exp(sφℓ(f ℓi )
⊤ϕ(gk)−sφℓ(f ℓi )

⊤ϕ(g))

(2)

and

LG2L =
1

M

∑

i,ℓ

Li,ℓ
G2L

= −
1

M

∑

i,ℓ

log
exp(sφℓ(f ℓi )

⊤ϕ(g))∑
k exp(sφ

ℓ(f ℓi )
⊤ϕ(gk))

,

(3)

where {gk, k = 1, 2, ...,m} are the global representations of

different point sets in the mini-batch with batch size m and

M is the number of local features. Inspired by the studies on

metric learning for face recognition [9, 30, 48] that perform

metric learning on features on a hypersphere, we normalize

the outputs of prediction networks before computing simi-

larities and use a constant value s = 64 [9] to re-scale the

features. Empirically, our experiments show that forcing

features to be distributed on a hypersphere with a radius of s

will significantly stabilize the training process and improve

the discriminative ability of the learned features.

Discussions: The proposed local-to-global reasoning is

connected to mutual information maximization methods [3,

19, 22, 44] for unsupervised image representation learning.

The multi-class N-pair loss can be viewed as a variant of In-

foNCE [36]. Therefore, minimizing the LG2L maximizes the

lower bound of the mutual information between local repre-

sentations and global representation. From this perspective,

our method captures the underlying semantic knowledge

of a 3D object by maximizing the mutual information of

features at different hierarchies. Unlike previous works that

performs adversarial learning between the mutual informa-

tion estimator and the feature encoder [22] or maximizes the

mutual information of seen patches and unseen patches [19],

different views of images [3] or different modalities of im-

ages [44] , our work explores the distinct property of point

clouds by connecting local and global structures of a 3D

object. Furthermore, our local-to-global loss offers a metric

learning view of InfoNCE, which is different from previous

works that are based on Noise-Contrastive Estimation [34].

Benefiting our modifications inspired by metric learning and

face recognition methods, we observe that our loss is more

effective and stable than previous methods on point cloud

understanding tasks in our experiments.

3.3. Global­to­Local Reasoning

Since discovering knowledge that is helpful for down-

stream tasks from unlabeled data is usually quite intractable,

local-to-global reasoning may not necessarily lead to useful

representations. This fact is also pointed out by studies on

mutual information maximization methods [44, 45], where

evidence shows that larger mutual information may not guar-

antee a better performance for downstream tasks [45]. Intu-

itively, since the local-to-global reasoning only supervises

the local representation to be close to the global one, the

quality of global representation is critical. This is, if the

global representation is well initiated, decent supervision

to local representation will be offered, thus creating a virtu-

ous circle for the learning of local and global features. On

the contrary, the learning process may obtain unpredictable

results for the bad initial state of global representation. To

avoid this issue, we propose an auxiliary global-to-local

reasoning task to supervise the networks for learning use-

ful representation corporately. Specifically, we employ two

low-level generation tasks, including self-reconstruction and

normal estimation as two self-supervision signals, such that

global representation needs to capture the basic structural

information of point clouds.
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Self-Reconstruction: Self-reconstruction, or point au-

toencoding, is a widely used technique for unsupervised

point cloud representation learning [1,8,14,26,47,55,56]. To

perform self-reconstruction, we adopt the folding-based [55]

decoder D to deform the canonical 2D grid onto 3D coor-

dinates of a point cloud conditioned on the global represen-

tation g. The reconstruction error is defined as Chamfer

Distance [12]:

Lrecon =
∑

p∈P

min
x∈D(g)

||x−p||2+
∑

x∈D(g)

min
p∈P

||x−p||2. (4)

Normal Estimation: Normal estimation is a more chal-

lenging task that requires a higher level understanding of

the underlying surface information of a 3D shape. Different

from previous works [33] that pursue the estimation preci-

sion, we use this task as a supervisory signal to improve

global representation. Thus, we simply concatenate the 3D

coordinates with the global representation and employ a

shared light-weight MLP σ to produce the estimated nor-

mals. The cosine loss is used to measure the estimation

error:

Lnormal = 1−
1

N

∑

i

cos(σ([pi, ϕ(g)]), p
normal
i ). (5)

Combining the local-to-global reasoning and the global-

to-local reasoning, we arrive at the global-local bidirectional

reasoning objective:

LGLR = LL2G + LG2L = LL2G + Lrecon + Lnormal. (6)

3.4. Point Cloud Analysis with GLR

Unsupervised Learning with GLR: Point cloud repre-

sentation can be unsupervisedly learned by enforcing net-

works to solve the proposed global-local reasoning (GLR)

problems, where the representation can be used in various

downstream point cloud analysis applications like object

classification. The quality of unsupervisedly learned repre-

sentation is usually evaluated by linear separability of classi-

fication task, where a supervised linear SVM [6] model or

single-layer neural network is trained on unsupervised repre-

sentations to measure the test accuracy. For PointNet++ [38]

model and its variants, we use the aggregated representation

for classification task, which is obtained by summarizing

embedded global and local representations:

f = [A({φ1(f1i )}), ...,A({φL(fLi })), ϕ(g)], (7)

where we use a max pooling operation A to aggregate local

features of each abstraction level from 1 to L and concatenate

these features with the global feature.

Hybrid Learning with GLR: Since supervisedly learned

global representation can be viewed as a good initializa-

tion for the proposed GLR framework, our method is also

compatible with supervised learning methods, where GLR

serves as an auxiliary loss to further improve the robustness

of representations.

Implementation: All of our models is trained on a single

GTX 1080ti GPU with deep learning library Pytorch [42].

To show our method can be used for various point cloud net-

works, we consider two baseline models: PointNet++ [38]

and Relation-Shape CNN (RSCNN) [33]. Note that for

both baseline models, we use the Single-Scale Grouping

(SSG) [38] as the point grouping module, which is more

than 3× smaller than Multi-Scale Grouping (MSG) [38]

module used in original PointNet++ model. Besides, we di-

vide the MLP used in each set abstraction layer into two fully

connected layers and use them before and after aggregation

operation, respectively. Our experiments show this modi-

fication can reduce computation and improve performance

while keeping the number of parameters unchanged. For

unsupervised learning setting, we train a linear SVM [6] on

unsupervised representations of the training data and report

the classification accuracy on the test set. For supervised

learning and hybrid learning settings, we use the aforemen-

tioned aggregated representation for fair comparison and

employ a two-layer classifier where dropout technique [41]

with a ratio of 50% is used for each layer. Our models are

trained using Adam [24] optimizer with a base learning rate

of 0.001, and we decay the learning rate by 0.7 every 20

epochs. The models are trained for 200 epochs, where the

momentum for Batch Normalization [23] layers starts with

0.9 and decays with a rate of 0.5 every 20 epochs, following

the practice of [33, 38]. Detailed model configurations can

be found in Supplementary Material.

4. Experiments

We extensively evaluate our method on several widely

used point cloud classification benchmark datasets including

ModelNet10/40 [52], ScanObjectNN [46] and ScanNet [7].

We start by evaluating our method on the discriminative

power, generalization ability and robustness across datasets

and comparing with the state-of-the-art unsupervised and

supervised methods. We then provide detailed experiments

to analyze our method on model design and complexity.

Finally, we visualize the learned representations to have

an intuitive understanding of our method. The following

describes the details of the experiments, results and analysis.

4.1. Unsupervised Point Cloud Recognition

Setups: We tested our method on ModelNet40/10 [52]

and ScanObjectNN [46] benchmarks to compare with the

state-of-the-arts. ModelNet40 and ModelNet10 comprise

9832/3991 training objects and 2468/908 test objects in 40

and 10 classes respectively, where the points are sampled

from CAD models. ScanObjectNN [46] is a real-world data,

where 2902 3D objects are extracted from scans. To conduct

cross dataset evaluation, we used the “object-only” split

in all our experiments. ScanNet [7] was also used in our

cross data evaluation experiments, where we followed the
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Figure 3: ModelNet40 classification accuracy (%) of our unsuper-

vised models and their supervised counterparts.

Table 1: Classification accuracy (%) of three different training

strategies on ModelNet40.

Backbone Unsupervised Supervised Hybrid

PN++ (Small) 92.22 91.69 92.42

PN++ (Large) 93.02 92.01 92.76

RSCNN (Small) 92.17 91.65 92.26

RSCNN (Large) 92.94 92.14 92.78

practice in [28] to obtain point cloud from indoor scenes

according to the instance segmentation labels. In all our

experiments, we sample 1024 points for each point cloud

for training and evaluation and all our results are measured

using a single view without using the multi-view voting trick

to show the neat performance of different models. Surface

normal information was used to provide unsupervised signals

for our models trained on ModelNet and we did not use

it as input. For the models trained on ScanObjectNN and

ScanNet, we only used the self-reconstruction loss for global-

to-local reasoning.

Comparisons with the supervised counterparts: We

first compared our method with the supervised baselines

as presented in Figure 3, where we report the classifica-

tion accuracy on ModelNet40 using the basic models (1×)

and wider models (1.5 to 6× channel width). Note that we

used the same network architecture and training settings

for our models and their counterparts for a fair comparison.

Clearly, our unsupervised models with different channel

widths consistently outperform the supervised counterparts.

As increasing the model capacity, our models can achieve

better performance and reach the highest accuracy using 5×
PointNet++ and 4× RSCNN backbones. In the following

experiments, we denote the basic 1× models and the best

models as “Small” and “Large” models respectively. Be-

sides, we further compared three different training strategies:

unsupervised learning, supervised learning and hybrid learn-

ing, which are presented in Table 1. We see hybrid learning

can outperform both supervised and unsupervised models

when the networks are small, but the unsupervised method

achieves the best performance when large networks are used.

Table 2: Comparisons of the classification accuracy (%) of our

method against the state-of-the-art unsupervised 3D representation

learning methods on ModelNet40 and ModelNet10. † indicates

that the model is trained on ShapeNet.

Method Input
Accuracy

MN40 MN10

TL Network [15] voxel 74.40 -

VConv-DAE [39] voxel 75.50 80.50

3DGAN [50] voxel 83.30 91.00

VSL [29] voxel 84.50 91.00

VIPGAN [17] views 91.98 94.05

LGAN† [1] points 85.70 95.30

LGAN [1] points 87.27 92.18

FoldingNet† [55] points 88.40 94.40

FoldingNet [55] points 84.36 91.85

MRTNet† [14] points 86.40 -

3D-PointCapsNet [56] points 88.90 -

MAP-VAE [18] points 90.15 94.82

Ours w/ PN++ (Small) points 92.22 94.82

Ours w/ PN++ (Large) points 93.02 95.53

Ours w/ RSCNN (Small) points 92.17 94.60

Ours w/ RSCNN (Large) points 92.94 95.50

We conjecture that the supervised models are prone to overfit-

ting more severely to the training set. All these results reveal

that our unsupervised representation is more discriminative

and generalizable than its supervised counterpart.

Comparisons with the unsupervised state-of-the-arts:

To show the effectiveness of the proposed global-local rea-

soning method, we compared several variants of our models

with the state-of-the-art unsupervised representation learning

methods in Table 2. Except for point-based methods, we also

compare with some advanced voxel and view based meth-

ods. Note that we only use ModelNet40 as the training data,

while some methods are trained on larger ShapeNet [52]

dataset. Nevertheless, our models outperform all other meth-

ods by a large margin. As can be observed, our small

PointNet++ model surpasses state-of-the-art methods and

our large model significantly advances the best point cloud

model (MAP-VAE) by 2.87% on ModelNet40.

Comparisons with the supervised state-of-the-arts:

More notably, our method can even achieve very compet-

itive results compared to state-of-the-art supervised meth-

ods in an unsupervised manner. We compared our method

with the supervised methods on both the widely used syn-

thetic dataset ModelNet and the recently proposed real-world

dataset ScanObjectNN. Our unsupervised representation was

trained on ModelNet40 and a linear SVM is then trained on

the target dataset to produce predictions. The results are

summarized in Table 3 and Table 4. Surprisingly, our un-

supervised learned representation can outperform all other
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Table 3: Comparisons of the single-view classification accuracy

(%) of our method aganist the state-of-the-art supervised point

cloud models on ModelNet40. We also list results that use more

points, normal information (“nor”) or/and multi-view voting trick

(“vote”) in gray as references. Besides, we show the supervised

baselines of our models.

Method #Points Supervised Acc.

PointNet [37] 1k ✓ 89.2

PointNet++ [38] 1k ✓ 90.5

PointNet++ [38] (vote) 1k ✓ 90.7

SO-Net [27] 1k ✓ 92.5

PointCNN [28] 1k ✓ 92.5

DGCNN [49] 1k ✓ 92.9

DensePoint [32] 1k ✓ 92.8

DensePoint [32] (vote) 1k ✓ 93.2

RSCNN [33] 1k ✓ 92.9

RSCNN [33] (vote) 1k ✓ 93.6

DGCNN [49] 2k ✓ 93.5

PointNet++ [38] (vote, nor) 5k ✓ 91.9

SO-Net [27] (nor) 5k ✓ 93.4

KPConv [43] ∼ 6.8k ✓ 92.9

PN++ (Large) 1k ✓ 92.1

Ours w/ PN++ (Large) 1k ✗ 93.0

RSCNN (Large) 1k ✓ 92.0

Ours w/ RSCNN (Large) 1k ✗ 92.9

Table 4: Comparisons of the single-view classification accuracy

(%) of our method aganist the state-of-the-art supervised point

cloud models on ScanObjectNN.

Method Supervised Accuracy

3DmFV [4] ✓ 73.8

PointNet [37] ✓ 79.2

SpiderCNN [54] ✓ 79.5

PointNet++ [38] ✓ 84.3

DGCNN [49] ✓ 86.2

PointCNN [28] ✓ 85.5

Ours w/ PN++ (Large) ✗ 87.2

Ours w/ RSCNN (Large) ✗ 86.9

state-of-the-arts methods in the single-view setting3 on both

datasets. Since only a linear classifier is applied, these results

demonstrate that our representation is much more discrim-

inative than the supervised representation on the test set.

Moreover, we observe that our representation can achieve

very strong results on ScanObjectNN without finetuning. As

the categories in ModelNet and ScanObjectNN are differ-

ent, this evidence indicates that our method can discover

semantic knowledge shared in different kinds of objects.

3Here we borrow the concept of “view” from image recognition liter-

atures, where the number of views represents the number of augmented

inputs (e.g. rotated or scaled point clouds) used during testing.

Table 5: Cross dataset evaluation. We evaluate generalization

ability of unsupervised and supervised representations to unseen

datasets. We report the classification accuracy (%) measured using

a linear SVM trained on the target dataset. (Sup.: supervised)

Task Sup. Ours ∆

ModelNet10 → ModelNet30 85.45 92.34 +6.89

ModelNet30 → ModelNet10 91.32 95.47 +4.15

ModelNet40 → ScanObjectNN 65.92 87.22 +21.30

ScanObjectNN → ModelNet40 78.76 90.80 +12.04

ModelNet40 → ScanNet 77.31 89.23 +11.92

ScanNet → ModelNet40 80.38 91.32 +10.94

ScanObjectNN → ScanNet 84.31 87.96 +3.63

ScanNet → ScanObjectNN 82.44 85.43 +2.99
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Figure 4: The robustness of our method on sampling density

and the number of training samples compared to the supervised

baseline.

Cross Dataset Evaluation: To further explore the gener-

alization ability of the learned representation, we conducted

extensive cross data evaluation experiments on ModelNet,

ScanObjectNN and ScanNet, which are varying in categories

and sources. Our experiments were conducted based on the

unsupervised representations of the PointNet++ large model

and we compared the results with the supervised version

of this model. Specifically, we trained the features using

supervised or unsupervised learning methods on the source

dataset and used a linear SVM trained on the target dataset to

perform classification. The results are presented in Table 5,

where we used the rest 30 categories in ModelNet40 apart

from 10 categories in ModelNet10 to form the ModelNet30

dataset. We see the unsupervisedly learned representation

has much stronger transferability than the supervised coun-

terparts and our models generalize well to various unseen

data since we learn from data structures instead of labels.

Our method can maintain strong performance even in cross

data evaluation, which reflects the unsupervised represen-

tation can be a generic representation of 3D objects cross

datasets.

Robustness Analysis: The robustness of our method on

sampling density and the number of training samples is

shown in Figure 4. For the former, we tested the model
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Table 6: Ablation study of our method. We report the clas-

sification accuracy (%) on ModelNet40. (LL2G: local-to-global

reasoning, Lrecon: self-reconstruction, Agg: multi-level feature ag-

gregation in Eq. (7), Lnormal: normal estimation, SN: training on

ShapeNet.)

Model LL2G Lrecon Agg. Lnormal SN Acc.

A ✓ 86.77

B ✓ 90.02

C ✓ ✓ 90.96

D ✓ ✓ ✓ 91.69

E ✓ ✓ ✓ ✓ 92.22

F ✓ ✓ ✓ ✓ ✓ 92.30

Table 7: Complexity analysis. We report the FLOPs and GPU

inference throughput with batch size 16. Measured on NVIDIA

GTX 1080Ti GPU. (pc/s: point cloud(s) per second)

Model FLOPs Throughput Acc.

MSG PN++ [38] 1.68G 113pc/s 90.5

SSG RSCNN [33] 0.30G 634pc/s 92.2

Our PN++ (Small) 0.31G 731pc/s 92.2

MSG PN++ [38] (12 votes) 14.15G 9pc/s 90.7

SSG RSCNN [33] (10 votes) 2.95G 63pc/s 92.7

Our PN++ (Large) 5.65G 194pc/s 93.0

trained with 1024 points with sparser points of 1024,

512, 256, 128 and 64. Note that different from previous

works [33, 38], we did not perform random input dropout

during training. For the latter, we trained the representa-

tion with randomly sampled 100%, 50%, 25%, 10% and

1% ModelNet40 training set and trained the linear classifier

on the whole set. We used the PointNet++ large model in

this experiment. Generally, we see our models are much

more robust than their supervised versions. Notably, our

method can maintain decent performance even when using

only 10% (983 samples) and 1% (98 samples) training sam-

ples and achieve 91.4% and 89.3% accuracy on ModelNet40

respectively.

Visualization: To have an intuitive understanding of our

method, we visualized the unsupervised learn features. The

results are presented in the supplementary material.

4.2. Method Design Analysis

Ablation Study: To examine the effectiveness of our de-

signs, we conducted a detailed ablation study based on the

small PointNet++ network. The results are summarized in

Table 6. The baseline model A can be viewed as a variant of

FoldingNet [55], which was trained by self-reconstruction

loss only and gets a low classification accuracy of 86.77%.

We see the model trained by the proposed local-to-global rea-

soning task (model B) can significantly improve the baseline

model by 3.25%. This convincingly verifies its effectiveness.

Then, when incorporating these two losses, the accuracy can

be further improved to 90.96%. We also observe a 0.73%

improvement by aggregating local and global representa-

tions (model D). Our full model can be obtained by adding

normal estimation supervision (model E), which achieves a

notable 92.22% accuracy on ModelNet40 with a very light-

weight network. In addition, we also investigated the train-

ing set size by adding more training data (model F) from

ShapeNet [52], but obtaining a slight improvement on accu-

racy (0.08%). We conjecture that ModelNet is large enough

for learning a good representation. Thus we conducted most

of the experiments on ModelNet.

Complexity Analysis: Table 7 shows the model complex-

ity in theoretical computation cost (in FLOPs) and actual

inference throughput on GPU of our models and several state-

of-the-art methods. We see our large model requires consid-

erable computation cost but maintains an acceptable actual

cost on GPU due to the simplicity of the SSG model. These

results reveal that increasing channel width can achieve a

better trade-off on speed and accuracy compared to voting.

For computational cost-sensitive applications, we think our

learned model can provide strong supervision to train lighter

models for real-time applications by model distillation [20]

or generating pseudo labels [25], which is an interesting

direction for future research.

5. Conclusion

We have proposed a new scheme for unsupervised repre-

sentation learning of 3D point clouds by bidirectional global-

local reasoning. Comprehensive experimental studies have

demonstrated our unsupervisedly learned representation can

surpass its supervised counterpart and achieve state-of-the-

art performance on several widely used benchmarks. We

expect our method to open a new door for learning better

point cloud representation from data structures instead of hu-

man annotation. Transferring the learned knowledge to more

efficient models and extending our method to more point

cloud analysis scenarios like segmentation and detection are

interesting directions in future work.

Acknowledgement

This work was supported in part by the National Key Re-

search and Development Program of China under Grant

2017YFA0700802, in part by the National Natural Sci-

ence Foundation of China under Grant 61822603, Grant

U1813218, Grant U1713214, and Grant 61672306, in part

by Beijing Academy of Artificial Intelligence (BAAI), in

part by a grant from the Institute for Guo Qiang, Ts-

inghua University, in part by the Shenzhen Fundamen-

tal Research Fund (Subject Arrangement) under Grant

JCYJ20170412170602564, and in part by Tsinghua Uni-

versity Initiative Scientific Research Program.

5383



References

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative

models for 3d point clouds. In ICML, 2018. 1, 3, 5, 6

[2] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point

convolutional neural networks by extension operators. arXiv

preprint arXiv:1803.10091, 2018. 1, 3

[3] Philip Bachman, R Devon Hjelm, and William Buchwalter.

Learning representations by maximizing mutual information

across views. arXiv preprint arXiv:1906.00910, 2019. 2, 4

[4] Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fischer.

3dmfv: Three-dimensional point cloud classification in real-

time using convolutional neural networks. IEEE Robotics and

Automation Letters, 3(4):3145–3152, 2018. 7

[5] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Repre-

sentation learning: A review and new perspectives. T-PAMI,

35(8):1798–1828, 2013. 2

[6] Corinna Cortes and Vladimir Vapnik. Support-vector net-

works. Machine learning, 20(3):273–297, 1995. 5

[7] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber,

Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-

annotated 3d reconstructions of indoor scenes. In CVPR,

pages 5828–5839, 2017. 5

[8] Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppf-foldnet:

Unsupervised learning of rotation invariant 3d local descrip-

tors. In ECCV, pages 602–618, 2018. 1, 3, 5

[9] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou.

Arcface: Additive angular margin loss for deep face recogni-

tion. In CVPR, pages 4690–4699, 2019. 4

[10] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsuper-

vised visual representation learning by context prediction. In

ICCV, pages 1422–1430, 2015. 2

[11] Carl Doersch and Andrew Zisserman. Multi-task self-

supervised visual learning. In ICCV, pages 2051–2060, 2017.

2

[12] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set

generation network for 3d object reconstruction from a single

image. In CVPR, pages 605–613, 2017. 5

[13] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-

organizing neural network model for a mechanism of visual

pattern recognition. In Competition and cooperation in neural

nets, pages 267–285. Springer, 1982. 2

[14] Matheus Gadelha, Rui Wang, and Subhransu Maji. Multireso-

lution tree networks for 3d point cloud processing. In ECCV,

pages 103–118, 2018. 1, 3, 5, 6

[15] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Ab-

hinav Gupta. Learning a predictable and generative vector

representation for objects. In ECCV, pages 484–499. Springer,

2016. 6

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NeurIPS,

pages 2672–2680, 2014. 2

[17] Zhizhong Han, Mingyang Shang, Yu-Shen Liu, and Matthias

Zwicker. View inter-prediction gan: Unsupervised representa-

tion learning for 3d shapes by learning global shape memories

to support local view predictions. In AAAI, volume 33, pages

8376–8384, 2019. 6

[18] Zhizhong Han, Xiyang Wang, Yu-Shen Liu, and Matthias

Zwicker. Multi-angle point cloud-vae: unsupervised feature

learning for 3d point clouds from multiple angles by joint

self-reconstruction and half-to-half prediction. ICCV, 2019.

1, 3, 6

[19] Olivier J Hénaff, Ali Razavi, Carl Doersch, SM Eslami,

and Aaron van den Oord. Data-efficient image recogni-

tion with contrastive predictive coding. arXiv preprint

arXiv:1905.09272, 2019. 2, 4

[20] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015. 8

[21] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing

the dimensionality of data with neural networks. science,

313(5786):504–507, 2006. 2

[22] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon,

Karan Grewal, Phil Bachman, Adam Trischler, and Yoshua

Bengio. Learning deep representations by mutual information

estimation and maximization. ICLR, 2019. 4

[23] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015. 5

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[25] Dong-Hyun Lee. Pseudo-label: The simple and efficient

semi-supervised learning method for deep neural networks.

In ICMLW, volume 3, page 2, 2013. 8

[26] Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poc-

zos, and Ruslan Salakhutdinov. Point cloud gan. arXiv

preprint arXiv:1810.05795, 2018. 1, 2, 3, 5

[27] Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net: Self-

organizing network for point cloud analysis. In CVPR, pages

9397–9406, 2018. 7

[28] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,

and Baoquan Chen. Pointcnn: Convolution on x-transformed

points. In NeurIPS, pages 828–838, 2018. 1, 2, 3, 6, 7

[29] Shikun Liu, Lee Giles, and Alexander Ororbia. Learning

a hierarchical latent-variable model of 3d shapes. In 3DV,

pages 542–551. IEEE, 2018. 6

[30] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha

Raj, and Le Song. Sphereface: Deep hypersphere embedding

for face recognition. In CVPR, pages 212–220, 2017. 4

[31] Xinhai Liu, Zhizhong Han, Xin Wen, Yu-Shen Liu, and

Matthias Zwicker. L2g auto-encoder: Understanding point

clouds by local-to-global reconstruction with hierarchical self-

attention. In ACM MM, pages 989–997. ACM, 2019. 1, 3

[32] Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming

Xiang, and Chunhong Pan. Densepoint: Learning densely

contextual representation for efficient point cloud processing.

In ICCV, pages 5239–5248, 2019. 7

[33] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan.

Relation-shape convolutional neural network for point cloud

analysis. In CVPR, pages 8895–8904, 2019. 1, 2, 3, 5, 7, 8

5384



[34] Andriy Mnih and Koray Kavukcuoglu. Learning word em-

beddings efficiently with noise-contrastive estimation. In

NeurIPS, pages 2265–2273, 2013. 4

[35] Aaron van den Oord, Nal Kalchbrenner, and Koray

Kavukcuoglu. Pixel recurrent neural networks. arXiv preprint

arXiv:1601.06759, 2016. 2

[36] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding. arXiv

preprint arXiv:1807.03748, 2018. 4

[37] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification and

segmentation. CVPR, 1(2):4, 2017. 2, 3, 7

[38] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In NeurIPS, pages 5099–5108,

2017. 1, 2, 3, 5, 7, 8

[39] Abhishek Sharma, Oliver Grau, and Mario Fritz. Vconv-dae:

Deep volumetric shape learning without object labels. In

ECCV, pages 236–250. Springer, 2016. 6

[40] Kihyuk Sohn. Improved deep metric learning with multi-class

n-pair loss objective. In NeurIPS, pages 1857–1865, 2016. 4

[41] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. JMLR,

15(1):1929–1958, 2014. 5

[42] Benoit Steiner, Zachary DeVito, Soumith Chintala, Sam

Gross, Adam Paszke, Francisco Massa, Adam Lerer, Gre-

gory Chanan, Zeming Lin, Edward Yang, et al. Pytorch:

An imperative style, high-performance deep learning library.

NeurIPS, 32, 2019. 5

[43] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,

Beatriz Marcotegui, Francois Goulette, and Leonidas J

Guibas. Kpconv: Flexible and deformable convolution for

point clouds. ICCV, 2019. 1, 3, 7

[44] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive

multiview coding. arXiv preprint arXiv:1906.05849, 2019. 2,

4

[45] Michael Tschannen, Josip Djolonga, Paul K. Rubensteiny,

Sylvain Gelly, and Lucic Mario. On mutual information

maximization for representation learning. arXiv preprint

arXiv:1907.13625, 2019. 4

[46] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,

Thanh Nguyen, and Sai-Kit Yeung. Revisiting point cloud

classification: A new benchmark dataset and classification

model on real-world data. In ICCV, pages 1588–1597, 2019.

2, 5

[47] Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Learn-

ing localized generative models for 3d point clouds via graph

convolution. In ICLR, 2019. 1, 3, 5

[48] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong,

Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface: Large

margin cosine loss for deep face recognition. In CVPR, pages

5265–5274, 2018. 4

[49] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,

Michael M. Bronstein, and Justin M. Solomon. Dynamic

graph cnn for learning on point clouds. TOG, 2019. 1, 2, 3, 7

[50] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and

Josh Tenenbaum. Learning a probabilistic latent space of

object shapes via 3d generative-adversarial modeling. In

NeurIPS, pages 82–90, 2016. 6

[51] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep

convolutional networks on 3d point clouds. In CVPR, pages

9621–9630, 2019. 1, 2, 3

[52] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d shapenets:

A deep representation for volumetric shapes. In CVPR, pages

1912–1920, 2015. 2, 5, 6, 8

[53] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.

Unsupervised feature learning via non-parametric instance

discrimination. In CVPR, pages 3733–3742, 2018. 4

[54] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.

Spidercnn: Deep learning on point sets with parameterized

convolutional filters. ECCV, 2018. 1, 3, 7

[55] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-

ingnet: Point cloud auto-encoder via deep grid deformation.

In CVPR, pages 206–215, 2018. 1, 3, 5, 6, 8

[56] Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico

Tombari. 3d point capsule networks. In CVPR, pages 1009–

1018, 2019. 1, 3, 5, 6

5385


