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Figure 1. Neural voxel renderer converts a set of colored voxels into a realistic and detailed image. It also allows elaborate modifications

in the geometry or the appearance of the input that are faithfully represented in the synthesized image.

Abstract

We present a neural rendering framework that maps a

voxelized scene into a high quality image. Highly-textured

objects and scene element interactions are realistically ren-

dered by our method, despite having a rough representa-

tion as an input. Moreover, our approach allows control-

lable rendering: geometric and appearance modifications

in the input are accurately propagated to the output. The

user can move, rotate and scale an object, change its ap-

pearance and texture or modify the position of the light and

all these edits are represented in the final rendering. We

demonstrate the effectiveness of our approach by render-

ing scenes with varying appearance, from single color per

object to complex, high-frequency textures. We show that

our rerendering network can generate very detailed images

that represent precisely the appearance of the input scene.

Our experiments illustrate that our approach achieves more

accurate image synthesis results compared to alternatives

and can also handle low voxel grid resolutions. Finally,

we show how our neural rendering framework can capture

and faithfully render objects from real images and from a

diverse set of classes.

1. Introduction
What is the typical process for rendering a synthetic

scene? In a 3D graphics software, like Blender [3] and

3D Studio Max [2], the user creates a set of geometric ob-

jects in a virtual 3D world, edits their material properties

and adds the light sources. Once the desired configuration

is achieved, the program renders the 3D scene into an im-

age using a rendering algorithm such as Path Tracing [24].

While this setup unfolds the creativity of the user, it in-

creases the learning complexity of the system, requires a

lot of manual input and it is not differentiable.

The emergence of deep generative models introduced

a new image synthesis medium. Generative adversarial

networks [18] are able to produce highly realistic images

of faces [25] or Imagenet [57] categories [9] using only

class labels as input. Moreover, image-to-image trans-

lation [23] presented a framework where an input image

featuring only partial information (e.g. only edges), can

be transformed into a naturally looking one. Neural net-

works are also applied for graphics applications. Feed for-

ward networks can learn a mapping between geometric at-

tributes [44] or voxels [45] to shaded outputs, and rerender-

ing networks can correct the artifacts of traditional render-

ing approaches [43, 41]. However, these approaches often

produce blurry results and have limited control over the in-

put: appearance changes are mostly restricted to viewpoint

or high-level attributes.

In this paper we present a neural network model that

learns how to render a scene given voxels as input. The

scene can be modified in terms of appearance, location,

orientation and lighting, and all changes are faithfully ex-

pressed in the rendered output. With only requiring a rough

specification of the geometry as a voxel grid, our frame-

work produces an accurate image, with plausible light in-

teractions between the scene elements (e.g. casting shad-
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ows, reflections, etc.). Our method includes a rerendering

module which enables us to render highly textured objects

precisely and in detail. Moreover, our framework naturally

inputs limited appearance information. Instead of manually

painting materials on the geometry [1] or requiring multiple

views of the object [59, 6], our method can use a single im-

age aligned with a 3D object to capture detailed appearance

properties and propagate them to other views.

We demonstrate the ability of our approach to render re-

alistic images in a comprehensive set of experiments. We

show geometric and appearance modifications in synthetic

datasets with increasing texture complexity and we repro-

duce the look of objects from real images as well. We illus-

trate how the network reproduces the interactions between

the scene elements, e.g. specular reflections, shadows, sec-

ondary bounces of light. Finally, we compare our proposed

framework with alternative approaches [45, 23, 64] and we

attain better performance in several metrics. Our contribu-

tions can be summarized as:

• A neural rendering framework with controllable object

appearance and scene illumination effects.

• Capturing texture details with a neural rerendering

module.

• Learnable interactions between scene entities such as

reflections, shadows and secondary bounces of light.

2. Related Work

Geometry-based neural rendering. One approach for im-

age synthesis with geometric information is to replace the

traditional rendering pipeline with a neural network. Ren-

derNet [45] learns how to map a voxel grid to a shaded out-

put, such as Phong shading. The method can also be used

for normal estimation, allowing the use of the Phong illu-

mination model [52], and generating textures of faces using

PCA coefficients as input. Texture fields [47] is estimating

the appearance of a 3D object using a function that maps

a point in space to a color, conditioned on an input image.

In contrast, our approach allows detailed manipulation and

rendering of arbitrary textures and provides an adjustable

illumination source (area light with soft shadows).

Deferred Neural Rendering [65] learns to synthesize

novel views of a scene using neural textures, a learnable

element that acts as a UV atlas. Deep Appearance Mod-

els [37] encode the facial geometry and texture of a partic-

ular person and can generate novel views during inference.

Neural Volumes [38] focuses on the 3D reconstruction of

an object by taking a set of calibrated views as an input and

producing a 3D voxel grid that is rendered with differen-

tiable ray-marching. While these approaches produce high

quality results, their models are trained for a particular ob-

ject/scene, limiting their applicability to general cases, and

they assume static light. Also, these methods allow limited

edits in the original scene as they focus on view synthesis.

Another direction is neural rerendering. Looking-

good [41] uses a neural network to fix artifacts from a

multiview capture and [43] rerenders a point cloud from

a 3D reconstruction with modifiable appearance. Simi-

larly, [53] estimate the RGB image from a structure-from-

motion pointcloud. Deep Shading [44] converts a set of

rendering buffers (position, normals, etc.) to shaded effects.

Again, the ability to modify the output is bounded by either

what it was presented during training or to holistic appear-

ance transfers.

Image-based neural rendering. Given a set of images and

their corresponding camera matrices, Deep Voxels [61] en-

code the view-dependent appearance of an object in a 3D la-

tent voxel grid, which can be later used for rendering novel

views. However, the latent voxels incorporate the appear-

ance of a single object that undergoes viewpoint changes

and the method requires a large number of calibrated im-

ages. Another generative approach is to synthesize the im-

ages directly given few attributes as an input [15] (e.g. trans-

formation parameters, color etc.), but this approach needs

access to the whole database of objects and the rendered

images are often blurry.

The image-to-image translation [23] paradigm can also

be seen as a form of neural rendering. Methods can syn-

thesize new images of humans based on a 2D pose [35, 10,

40, 8] or convert semantic maps to natural images [67, 51].

Style transfer [17] can also alter the appearance of an in-

put image in a realistic way [31, 39]. However, these

approaches perform specific synthesis and editing tasks,

where the control over the final rendering is based on the

attributes from the supplied data.

Novel view synthesis is the task of generating a new view

of an object given an input image from another view. This

can be assisted by a 3D object [55], considering visible and

hidden parts [71, 16] or directly from one [64] or multi-

ple [48, 62] views. Again, these methods deal only with ro-

tation modifications and their outputs often lose appearance

details. An alternative to the previous explicit geometric

transformations are the disentangled representations in fea-

ture space. The work of [27] learns to render different view-

points and lighting conditions by a careful handling of the

training procedure, while [69] considers the transformations

directly on the latent features. Recently, [46] demonstrated

the ability to generate realistic images in an unsupervised

way using a disentangled latent volumetric representation.

However, the modifications are again limited to rotations

and simple lighting, while our network handles more com-

plex appearance alterations explicitly on the input voxels.

Differentiable rendering. To overcome the non-

differentiable nature of traditional rendering, previous

works introduce a differentiable rasterizer [12, 36, 19] or

splatting [70], propose a differentiable ray-tracer [66, 29]

or have a differentiable, BRDF-based rendering model [14,
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World coordinates Camera coordinatesObject coordinates

Figure 2. Scene setup: the object is placed in the world coordi-

nates where it can be rotated and translated. The light can also be

translated and the camera can change elevation. As network in-

puts, the scene is in camera coordinates and the light position is a

3-dimensional xyz vector.

32, 34, 30]. The focus of these methods is inverse rendering

(estimate geometry, materials, etc.), while we are interested

in the forward synthesis process.

3. Method

3.1. Overview

Our goal is to learn a network that renders a realistic

image given a voxelized 3D input. While there are sev-

eral types of 3D representations for neural rendering (e.g.

meshes [19, 36], implicit functions [47, 49, 42], rendering

buffers [44]), we choose to work with voxels because they

are easy to input into a neural network and they provide

the flexibility for arranging the scene elements in a natural

way (e.g. a chair on top of the ground). The output of our

network is a realistic image representing the scene from a

particular viewpoint given by the user.

Scene definition. Our scene consists of three elements: the

object, the ground and the light. The elements are placed

in a bounded 3D world that is observed by a camera at a

fixed distance. The object and the ground are represented

as voxels and we use an area light as this generates more

realistic soft shadows than a point light source.

Our approach supports several editable attributes: (1)

The object can be translated across the x and z axis and ro-

tated around the y axis. Also, we can apply local rigid and

non-rigid transformations to the voxels. (2) The light can be

translated in a bounded volume above the ground. (3) The

camera elevation can be adjusted. (4) The appearance of

the object can change. For (4), we consider a spectrum of

modifications, from painting the object/floor with a single

uniform color to applying arbitrary textures to the object.

Apart from the editable parameters, the scene has some

fixed attributes. There is ambient light, the color of the light

is white, the camera focal length is fixed to 40, the object is

diffuse, and the floor is slightly specular. Detailed values of

the scene setup can be found in the supplementary material.

The network expects the scene to be in the camera coor-

dinate frame. We first apply the modifications and then we

convert the scene from world to camera coordinates.

3.2. Coloring Voxels

Manual coloring. A straightforward ap-

proach would be to color voxels manually.

As a use case we con-

sider the setting where

the object and the floor

have a single color

each. The user can

select the colors from

a palette and assign

them to the objects in the scene, similar to the bucket fill

tool in most image editing software (see inset figure). The

network still has to properly shade the scene based on the

light position, and generate global illumination effects.

Colors from an image. Tools for coloring voxels can be

found in programs like MagicaVoxel [5], but detailed voxel

painting can be cumbersome. A more practical alternative

is to perform image-based coloring. Given the alignment

between the 3D object and an image depicting the object

(we refer to that image as appearance source A), we can

un-project the color of the pixels directly onto the voxels.

Alternatively, if the the input 3D object is in the camera

Appearance Source Image Voxels Colored Voxels

Figure 3. Coloring voxels from an image: given the 2D-to-3D

alignment, the voxels take the color from the corresponding pixels

of the appearance source image.

space, we can assume orthographic projection. The centers

of the voxels are projected to the image using the camera

parameters. Finally, the color for every voxel is taken from

the pixel it falls into. While this approach requires aligned

images with the 3D objects, recent advantages in 2D to 3D

alignment can provide such information automatically, see

for example [54, 50, 7, 68, 22, 21, 20].

Appearance capture from a single image introduces arti-

facts typical with projective texturing. The assigned colors

come from the input view and they contain view-dependent

information such as shading, shadows, etc. Unlike typical

image-based rendering, in our scenario the object will be

rendered from a different viewpoint or lighting condition,

so the rendered object colors need to change accordingly.

We tackle this problem with a carefully prepared training set

that includes this type of appearance changes (see Sec. 4.1).

Another aspect that requires attention is how to color the

voxels that are not visible. We determine voxel visibility

automatically using ray-marching [28]. A hidden voxel gets

the color of the first visible voxel along its camera ray. We

observed that this approach is beneficial in cases with thin
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Figure 4. NVR network architecture. Two branches encode the

voxel and light position inputs and a decoder combines their output

and produces the final rendering.

structures (e.g. chair handles and legs), and the generated

artifacts were well handled by the network.

Additionally, we take advantage of the symmetry in

many man-made objects such as chairs and cars: if a voxel

is not visible, we copy its color from its symmetric voxel

across the y axis (if that is visible).

3.3. Neural Voxel Renderer (NVR)

Model architecture. Our Neural Voxel Renderer (NVR)

network θ is illustrated in Fig. 4 (more details in the supple-

mentary material). The inputs are (1) the scene represented

as voxels V ∈ R
128

3
×4 and (2) the light position L ∈ R

3.

The network output the image I ∈ R
256

2
×3:

I = θ(V, L) (1)

The voxels V contain the RGB colors and visibility, which

are automatically estimated based on the 2D-3D alignment

(Sec. 3.2). We use RenderNet as our backbone [45]. The 3D

input voxels V are processed by a series of 3D convolutions

and a reshaping unit that transforms the 3D features into 2D

by reshaping its last two dimensions (e.g. h × w × d × c

becomes h× w × (d ∗ c)), followed by 1× 1 convolutions

(projection unit in [45] and reshape in [48]). The reshap-

ing step can be seen as an orthographic projection in the

latent space, with all the depth information being kept. The

features are then processed by a series of 2D convolutional

blocks, leading to the final encoding of the input voxels.

The light input L is processed by a separate branch with

2 fully connected layers, delivering latent illumination fea-

tures to the network. These features are then tiled to form an

image with the same dimensions as the final features from

the voxel encoding branch. In this way, every spatial loca-

tion in the features has information about the illumination.

After concatenation, the joint features are fed to a decoder

that outputs the image in the final resolution.

Model training. We train the model by minimizing the fol-

lowing loss:

L(I, T ) = ||I − T ||1 + β
∑

i

wi||vi(I)− vi(T )||2 (2)

where T is the ground-truth target image. The second term

is a perceptual loss, with vi is the response of the i layer of

Colored voxels Output image

+

NVR

2D Conv

U-Net

Splatting

Neural Voxel Renderer (Fig. 4) 

Splatting Processing Network

Neural Rerendering Network

Figure 5. NVR+ network architecture.

a pretrained VGG [60] network, and wi its weighting factor.

For i, we use the conv1, conv2 layers and set their weights

wi to 1.0 and 0.1 respectively.

The target image T is produced by a traditional,

physically-based renderer (Blender Cycles [3]) and the ob-

ject is represented by a 3D mesh. This results in rendering

smooth surfaces in image T . In this way, the network im-

plicitly learns to map discrete geometric representation such

as voxels to a continuous and smooth rendering.

We train the network using the Adam optimizer [26] with

learning rate 10−4 and a batch size of 10. The 2D convolu-

tional layers are followed by batch normalization and ReLU

activations (more details in supplementary material).

3.4. Adding a rerendering network (NVR+)
The network in Sec. 3.3 is able to render well the overall

structure of the scene in terms of colors, reflections, shad-

ows, etc. However, we observe that when the color pattern

of the object in the input voxels forms a high frequency and

irregular texture, the output is blurry and with artifacts. For

this reason we propose a rerendering network (NVR+) that

maintains the high quality textures while producing the cor-

rect overall scene appearance (Fig. 5).

The texture information is already encoded in the voxels’

colors and we know the camera parameters of the target ren-

dering (the user sets the scene to be rendered, see Sec. 3.1).

Therefore we can synthesize an image S by splatting [72]

the center of the colored voxels to an empty canvas in the

target view. Note that this image will contain the artifacts

mentioned in Sec. 3.2 (wrong colors, different shading, etc.)

since the target view can be different from the view the ap-

pearance was captured from.

The NVR+ consists of three parts: the NVR network de-

scribed in the previous subsection, the Splatting Processing

Network that encodes the synthesized image S into a la-

tent representation, and a Neural Rerendering Network that

combines and processes the outputs of the other two net-

works into the final image. The Splatting Processing Net-

work consists of a series of convolutional layers without de-

creasing the resolution. The output of this network is then

added to the features from the NVR and the result is fed to

the Neural Rerendering Network. The Neural Rerendering
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Network processes the combined features with a U-Net [56]

architecture and outputs the image in the final resolution.

The whole NVR+ network is trained end-to-end, using the

same loss as in Eq. (2).

The NVR+ is able to render high-frequency textures ac-

curately and in detail because it combines the best of two

modalities. First, the output of the NVR produces a re-

alistic image in terms of reflections, shadows and overall

color assignments but it lacks the high-frequency texture

details. Second, the output of the Splatting Processing Net-

work contain artifacts from the splatting process, but it also

includes features rich in resolution and details. Finally,

the Neural Rerendering Network integrates the two network

outputs and produces a coherent, detailed and artifact-free

final image. The NVR+ renders an image (256 × 256) in

≈ 0.1 sec on a single desktop GPU (Nvidia RTX).

4. Experiments

4.1. Settings and protocol

Training. For training our models we use 3D shapes from

ShapeNet [11] and we render them with Blender Cycles [3],

a physically-based path tracer. We focus mainly on the

Chairs category, but we also provide qualitative results for

the Car category. In all cases the training sets are con-

structed by sampling randomly 2000 3D objects from the

train set as specified in the SHREC’16 challenge [58]. Each

object is rendered from 20 different viewpoints by uni-

formly sampling (1) the elevation of the camera, (2) the ro-

tation and translation of the object, and (3) the position of

the light. The camera elevation is between 5 and 50 degrees,

the object rotation is uniformly sampled from the 180 de-

grees hemisphere facing towards the camera, the translation

of the object is sampled from an rectangular area around

the scene center ([−0.5, 0.5] units) and the light is sampled

from a volume above the scene center ([−1.5, 1.5] for the x

and z axis and [2.5, 3] for the y axis). The object is rendered

as a mesh for accurate reproduction of its surfaces (giving

the target image T in Eq. (2)). In contrast, the object is in-

put to the network as a 1003 voxel grid, and then it is placed

inside the overall 1283 voxel scene V to allow rotations and

translations (object to world coordinates, see Fig. 2).

Testing. For testing, we want to measure the ability of our

model to cope with changes in object rotation and transla-

tion, and light translation. We randomly select 40 3D ob-

jects from the test set of the SHREC’16 challenge [58].

Each object is rendered with the following settings: the

camera elevation is randomly sampled between 15 and 45

degrees; a rotation angle range (starting and ending angle)

is randomly sampled from the hemisphere facing the cam-

era and the object is rotated with a step of 10 degrees; a start

and end location is randomly sampled and the object is be-

ing translated between the two end points; similar sampling
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Figure 6. Global illumination effects produced by our framework.

is applied for the light. This procedure results in 40000 im-

ages for training and 1100 images for testing.

Appearance settings. We generate three settings with vary-

ing appearance complexity. Single color: where both the

object and the floor have a single randomly selected color

(RGB values); Default: where the object is rendered with

its default ShapeNet textures/materials but the floor color

is randomly sampled; and Textured: where the object has

a randomly selected texture from the Describable Textures

Dataset[13] (we separate the textures in train and test splits)

and the floor has a single randomly selected color. We train

a model for every setting and every category.

4.2. Global illumination effects

Our scenes consists of objects that interact with each

other (shadows, reflections, etc.) and our training data was

generated with a physically-based renderer. These elements

of realism exist in the training dataset, and here we analyze

if our network is able to reproduce these effects.

In Fig. 6 we illustrate how our framework renders global

illumination effects. In the first row we show the reflections

on the specular ground for different objects. The overall

structure is represented properly and it is following the ori-

entation of the object, even with thin structures. In the sec-

ond row we show how our network is rendering shadows;

again, thin structures produce thin shadows and concave ob-

jects allow the light to pass. Finally, in the last row we show

the effect of multiple light bounces: the color of the object

(first two columns) and the ground (last two columns) is af-

fected by the color of the other object. The original color of

the object is shown in the small rectangle inset.

4.3. Neural rendering analysis

In this subsection we analyze the design choices from

Section 3 and evaluate their effects on the final render-

ings. We additionally compare with alternative techniques

for neural rendering and show that our framework performs

better both quantitatively and qualitatively.

5421



G
ro

u
n

d
 t

ru
th

P
re

d
ic

ti
o

n

Figure 7. Results of NVR for the single color setting. The voxel

colors are properly mapped to pixels in the output images.

Manual coloring. In this scenario, we use the Single color

appearence setting as training data. With this experiment,

we want to illustrate the capability of our method (NVR)

to map the voxel colors to rendered pixels. Fig. 7 shows

that the networks learns to render accurately the object, with

correct colors and shading.

Colors from image. In this scenario, the voxels take their

color from an input image (appearance source image A,

see Sec. 3.2). This is a more challenging setting, as some

parts of the object are hidden and the colors contain view-

dependent appearance information. Hence, it forms a good

test case for evaluating the ability to render more complex

appearance (different parts, textures, etc.) while capturing

light interactions among scene elements. Fig. 8 shows the

output of our NVR and NVR+ models in the default appear-

ance setting for the Chair category (5th and and 6th col-

umn). The NVR model properly assigns the colors to the

individual parts, but fine-grained details on textured areas

are washed out. The NVR+ model renders detailed textures

while also accurately producing object shading, ground re-

flections and shadows. Fig. 9 (left) shows the output of

NVR+ for the default appearance setting of the Car cate-

gory (using a car-specific model, but with different Car in-

stances for training and testing, Sec. 4.1). In the first row we

show the voxel input1 together with the appearance source

image A from where the colors were taken, in second row

our prediction and in third row the ground truth. Again,

our method can reproduce accurately the details of the cars;

also, by taking advantage of the symmetry, we are able to

faithfully reconstruct the hidden side. Finally, we visual-

ize the output of NVR+ on the textured appearance setting

(Fig. 9 right). As the images show, this model can handle

high frequency and irregular textures (as well as synthesiz-

ing specular reflections and shadows as in Fig. 8). More-

over, this confirms that our model does not memorize the

training data but rather learns to map the input color pattern

information into an accurate rendered image.

Comparison to alternative methods. We use the Chair

category (default appearance setting) and for every 3D ob-

1rendered with MagicaVoxel [5] in 4 seconds each using a ray-tracer.

Single-to-Multiview Image encoding Image translation NVR NVR+ Ground truthDeep shading

Figure 8. Visual comparison between our models and different

methods (see text for details).
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Figure 9. Neural rendering of cars and textured objects with

NVR+.

NVR+Projective Texturing IllustrationInput view

No symmetry Right->left symmetry Left->right symmetry

Figure 10. Artifacts of projective texturing.

ject, one of the rendered images acts as the appearance

source image A. We compare against a set of alternatives

based on recent works on neural rendering. Since there is

no other method that offers control over geometric, appear-

ance and light edits, we modify them to be comparable.

Projective texturing: here we use the alignment between the

mesh and the input image to texture the mesh (i.e. estimate

its UV map). In Fig. 10 we illustrate typical projective tex-

turing artifacts: a) the hidden areas copy the appearance of

the visible parts, even when taking symmetry into account

(red arrows), and b) light is ”baked” into the object appear-

ance, making difficult to render with new lighting.

Single-to-mutliview: this method is based on [64] and con-

sists of a U-net which inputs the appearance source image

A, the relative object rotation/translation and light position.

This method does not use any 3D information.

Image encoding: here we have a setup similar to [45] but

instead of painting the voxels directly, we pass A through

a network to get a latent code that is then appended to the

input voxels (similar to how [45] rendered textured faces).
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Method MSE DSSIM Perceptual

Single-to-multiview 34.8 0.040 40.17

Image encoding 24.3 0.030 24.41

Ours (NVR) 22.8 0.028 21.25

Image translation 21.6 0.026 18.12

Deep shading 21.8 0.024 16.54

Ours (NVR+) 14.3 0.012 8.21

Table 1. Evaluation of different methods for neural rendering.

The rest of the network has similar architecture to NVR so

the light can be given as an input.

Image translation: this method is based on [23]; the input

is the rerendered image S (generated by splatting the voxels

onto the image plane) together with the light position as ad-

ditional channel. The desired output is the target image T .

Deep shading: here the setup is similar to [44]. We use pro-

jective texturing to estimate the UV map of the mesh; then

we place the mesh in the desired position and we render the

diffuse color and depth buffer. We use these buffers together

with the light position as inputs to a Pix2Pix [23] network

and we optimize for the target image T .

Table 1 compares the performance of the different meth-

ods on mean squared error (MSE), structural dissimilarity

(DSSIM) and the perceptual loss in Eq. (2) (using the same

layers i and weights wi). NVR+ performs better than the

alternatives in all metrics by a large margin. This illustrates

the ability of the rerendering module to reproduce fine de-

tails, especially for textured 3D objects. Fig. 8 provides

a qualitative comparison of the different methods. As can

be seen, Single-to-mutliview results are blurry, while Im-

age encoding captures the overall color but fail to assign

it correctly to the individual parts. The Image translation

model produces typical GAN artifacts and cannot estimate

the shadows properly. The Deep shading model also faces

similar limitations, despite using a mesh representation in-

stead of voxels. Our NVR model captures the color and

structure of the scene, but smooths out the fine texture de-

tails. Finally, our NVR+ model accurately renders both the

geometry and the texture of the object, while also realisti-

cally synthesizing shadows, specular reflections and high-

lights in the output image.

Voxel resolution. The object has an initial voxel resolution

of 1003 and is then placed in a scene V ∈ 1283×4. Here,

we investigate the rendering quality when the initial voxel

resolution varies. In Table 2 and Fig. 11 we show the perfor-

mance of smaller resolutions for the NVR+ model (which

are then rescaled with nearest neighbor interpolation). The

performance decreases gracefully and even at a very low

resolution (253) our method produces plausible outputs.

4.4. Editing analysis

Illumination edits. When the light source changes posi-

tion, the scene appearance should change accordingly. In

Fig. 12, we illustrate this effect: as the light sources moves,

100
3

75
3

50
3

25
3

MSE 14.3 14.4 15.3 19.3

DSSIM 0.012 0.014 0.016 0.024

Perceptual 8.21 9.47 10.9 18.68

Table 2. Effect of voxel resolution on performance.

1003 753 503 253

Figure 11. Rendering an object with different voxel resolutions.

Light position 1 Light position 2

Figure 12. Illumination effects by changing the light position. Our

framework changes properly the overall shading (e.g. the back of

the chair is brighter in position 2) and the shadows.
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Figure 13. Applying geometric (left) and appearance (right) mod-

ifications.
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Figure 14. Neural rendering with natural illumination as an input.

the brightness of different parts of the object changes and

shadows/light reflections in the ground move accordingly.
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Figure 15. Rendering real objects. In the first row there are the appearance source images and in second and third row renderings of the

objects using the NVR+ network.

Figure 16. Rendering different categories. The categories of these

real objects were not part of the training dataset (trained only on

the chair category).

Object geometry edits. Apart from global object rotations

and translations, we can also deform the object. In Fig. 13

left we visualize the effect of scaling across an axis, result-

ing in elongated or squeezed versions of the object.

Object appearance edits. Detailed modifications on the

appearance source image can propagate through our neural

renderer. In this example, we manually paint patterns and

letters on the appearance source image, so during the color-

ing step (Sec. 3.2) the edits pass on to the voxels. Fig. 13

right shows how our method can synthesizes images with

the object in new viewpoints and the light in new positions

while preserving these fine-grained edits that were made to

the appearance source image.

Increasing realism. In this experiment, we investigate the

use of more realistic ways to illuminate the scene. We mod-

ify the NVR+ network so instead of the xyz light coordi-

nates, it takes as an input an 32× 32 environment map. The

environment map is processed by a series of convolutional

layers to extract a latent code, which is then supplied to the

NVR+ network. We additionally consider a textured circu-

lar ground and add specularity to the default dataset objects.

We use 80 environment maps for training and 20 for testing,

taken from [4]. Results are shown in Fig. 14, with the ap-

pearance source image shown in an inset.

Appearance capture from real images. So far we have ex-

perimented with synthetic images with varying appearance

complexity. However, our framework can capture object ap-

pearance from any input image. In this experiment, we use

the Pix3D dataset [63] which contains aligned pairs of im-

ages with 3D objects. We use the real image as the appear-

ance source and we map it to to the voxels of the provided

3D object as before. Note that unlike the previous experi-

ments with ShapeNet objects, Pix3D also includes scanned

objects with imperfect geometry. In Fig. 15 we present our

renderings when the voxels and the appearance come from

real images. Our framework is able to faithfully render

these objects despite not being trained on real objects and

despite significantly different geometric, illumination and

material conditions than the training set.

Testing on other categories. Our framework extends

to other categories that were not included in the training

dataset. In this experiment we take the NVR+ network

trained on the default Chair category and we apply it to real

images from other categories. In Fig. 16 we illustrate the

rendering for sofas, tables and other miscellaneous objects

from Ikea [33] and Pix3D [63] datasets.

5. Conclusion

We presented Neural Voxel Renderer, a framework that

synthesizes realistic images given object voxels as input,

and provides editing functionalities to the output. Our

framework can reproduce the detailed appearance of the

input due to a rerendering module that handles high-

frequency and complex textures. We show a wide range of

rendering scenarios, where we modify the input scene with

respect to illumination, object geometry and appearance.

Moreover, we demonstrate the appearance capture and ren-

dering of real objects from several categories. We hence be-

lieve that our neural renderer is a useful tool that advances

the state-of-the-art and can spawn further research.
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rand, and John V. Guttag. Synthesizing images of humans in

unseen poses. In CVPR, 2018. 2

[9] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale GAN training for high fidelity natural image synthesis.

In ICLR, 2019. 1

[10] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A

Efros. Everybody dance now. In ICCV, 2019. 2

[11] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-

lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,

and Fisher Yu. ShapeNet: An Information-Rich 3D Model

Repository. Technical Report arXiv:1512.03012 [cs.GR],

Stanford University — Princeton University — Toyota Tech-

nological Institute at Chicago, 2015. 5

[12] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaako

Lehtinen, Alec Jacobson, and Sanja Fidler. Learning to pre-

dict 3d objects with an interpolation-based differentiable ren-

derer. In NeurIPS, 2019. 2

[13] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A.

Vedaldi. Describing textures in the wild. In CVPR, 2014.

5

[14] Valentin Deschaintre, Miika Aittala, Fredo Durand, George

Drettakis, and Adrien Bousseau. Single-image svbrdf cap-

ture with a rendering-aware deep network. ACM Trans.

Graph., 37(4), 2018. 3

[15] A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning

to generate chairs with convolutional neural networks. In

CVPR, 2015. 2

[16] Ersin Yumer Duygu Ceylan Alexander C. Berg Eun-

byung Park, Jimei Yang. Transformation-grounded image

generation network for novel 3d view synthesis. In CVPR,

2017. 2

[17] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer

using convolutional neural networks. In CVPR, Jun 2016. 2

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NeurIPS.

2014. 1

[19] Yoshitaka Ushiku Hiroharu Kato and Tatsuya Harada. Neu-

ral 3d mesh renderer. In CVPR, 2018. 2, 3

[20] Hui Huang, Ke Xie, Lin Ma, Dani Lischinski, Minglun

Gong, Xin Tong, and Daniel Cohen-or. Appearance mod-

eling via proxy-to-image alignment. ACM Trans. Graph.,

37(1):10:1–10:15, 2018. 3

[21] Qixing Huang, Hai Wang, and Vladlen Koltun. Single-view

reconstruction via joint analysis of image and shape collec-

tions. ACM Trans. Graph., 34, 08 2015. 3

[22] Moos Hueting, Pradyumna Reddy, Ersin Yumer, Vladimir G.

Kim, Nathan Carr, and Niloy J. Mitra. Seethrough: Finding

objects in heavily occluded indoor scene images. In 3DV,

2018. 3

[23] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. In CVPR, 2017. 1, 2, 7

[24] James T. Kajiya. The rendering equation. In SIGGRAPH,

1986. 1

[25] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

CVPR, 2019. 1

[26] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 4

[27] Tejas D Kulkarni, William F. Whitney, Pushmeet Kohli, and

Josh Tenenbaum. Deep convolutional inverse graphics net-

work. In NeurIPS. 2015. 2

[28] Marc Levoy. Display of surfaces from volume data. IEEE

Comput. Graph. Appl., 8(3), 1988. 3

[29] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehti-
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voxels: Learning persistent 3d feature embeddings. In

CVPR, 2019. 2

[62] Shao-Hua Sun, Minyoung Huh, Yuan-Hong Liao, Ning

Zhang, and Joseph J Lim. Multi-view to novel view: Synthe-

sizing novel views with self-learned confidence. In ECCV,

2018. 2

[63] Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong

Zhang, Chengkai Zhang, Tianfan Xue, Joshua B Tenenbaum,

and William T Freeman. Pix3d: Dataset and methods for

single-image 3d shape modeling. In CVPR, 2018. 8

[64] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Multi-view 3d

models from single images with a convolutional network. In

ECCV, 2016. 2, 6

[65] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
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