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Abstract

Blind deconvolution is a classical yet challenging low-

level vision problem with many real-world applications.

Traditional maximum a posterior (MAP) based methods re-

ly heavily on fixed and handcrafted priors that certainly are

insufficient in characterizing clean images and blur kernels,

and usually adopt specially designed alternating minimiza-

tion to avoid trivial solution. In contrast, existing deep mo-

tion deblurring networks learn from massive training im-

ages the mapping to clean image or blur kernel, but are

limited in handling various complex and large size blur k-

ernels. To connect MAP and deep models, we in this pa-

per present two generative networks for respectively mod-

eling the deep priors of clean image and blur kernel, and

propose an unconstrained neural optimization solution to

blind deconvolution. In particular, we adopt an asymmet-

ric Autoencoder with skip connections for generating la-

tent clean image, and a fully-connected network (FCN) for

generating blur kernel. Moreover, the SoftMax nonlinear-

ity is applied to the output layer of FCN to meet the non-

negative and equality constraints. The process of neural

optimization can be explained as a kind of “zero-shot” self-

supervised learning of the generative networks, and thus

our proposed method is dubbed SelfDeblur. Experimen-

tal results show that our SelfDeblur can achieve notable

quantitative gains as well as more visually plausible de-

blurring results in comparison to state-of-the-art blind de-

convolution methods on benchmark datasets and real-world

blurry images. The source code is publicly available at

https://github.com/csdwren/SelfDeblur.

1. Introduction

Camera shake during exposure inevitably yields blurry

images and is a long-standing annoying issue in digital pho-

Blurry image Xu & Jia [48]

Pan-L0 [27] Sun et al. [41]

Pan-DCP [29] SelfDeblur

Figure 1: Visual quality comparison on a severe blurry image.

tography. The removal of distortion from a blurry image,

i.e., image deblurring, is a classical ill-posed problem in

low-level vision and has received considerable research at-

tention [2–4, 10, 19, 28, 29, 32, 56]. When the blur kernel is

spatially invariant, it is also known as blind deconvolution,

where the blurry image y can be formulated as,

y = k⊗ x+ n, (1)

where ⊗ denotes the 2D convolution operator, x is the la-

tent clean image, k is the blur kernel, and n is the additive

white Gaussian noise (AWGN) with noise level σ. It can be

seen that blind deconvolution should estimate both k and x

from a blurry image y, making it remain a very challenging

problem after decades of studies.

Most traditional blind deconvolution methods are based
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on the Maximum a Posterior (MAP) framework,

(k,x) = argmax
x,k

Pr (k,x|y) ,

= argmax
x,k

Pr (y|k,x) Pr (x) Pr (k) ,
(2)

where Pr (y|k,x) is the likelihood corresponding to the

fidelity term, and Pr (x) and Pr (k) model the priors of

clean image and blur kernel, respectively. Although many

priors have been suggested for x [2, 15, 27, 56] and k

[19, 22, 24, 29, 29, 34, 41, 50, 56], they generally are hand-

crafted and certainly are insufficient in characterizing clean

images and blur kernels. Furthermore, the non-convexity

of MAP based models also increases the difficulty of opti-

mization. Levin et al. [19] reveal that MAP-based methods

may converge to trivial solution of delta kernel. Perrone and

Favaro [32] show that the success of existing methods can

be attributed to some optimization details, e.g., projected

alternating minimization and delayed normalization of k.

Motivated by the unprecedented success of deep learning

in low-level vision [11, 12, 23, 42, 52], some attempts have

also been made to solve blind deconvolution using deep

convolutional neural networks (CNNs). Given the train-

ing set, deep CNNs can either be used to extract features

to facilitate blur kernel estimation [1, 38], or be deployed

to learn the direct mapping to clean image for motion de-

blurring [7,25,43,51]. However, these methods do not suc-

ceed in handling various complex and large size blur kernels

in blind deconvolution. Recently, Ulyanov et al. [45] sug-

gest the deep image prior (DIP) framework, which adopts

the structure of a DIP generator network to capture low-

level image statistics and shows powerful ability in image

denoising, super-resolution, inpainting, etc. Subsequently,

Gandelsman et al. [6] combine multiple DIPs (i.e., Double-

DIP) for multi-task layer decomposition such as image de-

hazing and transparency separation. However, Double-DIP

cannot be directly applied to solve blind deconvolution due

to that the DIP network is designed to generate natural im-

ages and is limited to capture the prior of blur kernels.

In this paper, we propose a novel neural optimization so-

lution to blind deconvolution. Motivated by the DIP net-

work [45], an image generator network Gx, i.e., an asym-

metric Autoencoder with skip connections, is deployed to

capture the statistics of latent clean image. Nonetheless,

image generator network cannot well characterize the prior

on blur kernel. Instead, we adopt a fully-connected network

(FCN) Gk to model the prior of blur kernel. Furthermore,

the SoftMax nonlinearity is deployed to the output layer of

Gk, and the non-negative and equality constraints on blur k-

ernel can then be naturally satisfied. By fixing the network

structures (Gk and Gx) and inputs (zk and zx) sampled from

uniform distribution, blind deconvolution is thus formulated

as an unconstrained neural optimization on network param-

eters of Gk and Gx. As illustrated in Fig. 2, given a blurry

image y, the optimization process can also be explained as

a kind of “zero-shot” self-supervised learning [39] of Gk

and Gx, and our proposed method is dubbed SelfDeblur.

Even though SelfDeblur can be optimized with either al-

ternating optimization or joint optimization, our empirical

study shows that the latter performs better in most cases.

Experiments are conducted on two widely used bench-

marks [18,19] as well as real-world blurry images to evalu-

ate our SelfDeblur. Fig. 1 shows the deblurring results on a

severe real-world blurry image. While the competing meth-

ods either fail to estimate large size blur kernels or suffer

from ringing effects, our SelfDeblur succeed in estimating

the blur kernel and generating visually favorable deblurring

image. In comparison to the state-of-the-art methods, our

SelfDeblur can achieve notable quantitative performance

gains and performs favorably in generating visually plau-

sible deblurring results. It is worth noting that our SelfDe-

blur can both estimate blur kernel and generate latent clean

image with satisfying visual quality, making the subsequent

non-blind deconvolution not a compulsory choice.

Our contributions are summarized as follows:

• A neural blind deconvolution method, i.e., SelfDeblur,

is proposed, where DIP and FCN are respectively in-

troduced to capture the priors of clean image and blur

kernel. And the SoftMax nonlinearity is applied to the

output layer of FCN to meet the non-negative and e-

quality constraints.

• The joint optimization algorithm is suggested to solve

the unconstrained neural blind deconvolution model

for both estimating blur kernel and generating latent

clean image, making the non-blind deconvolution not

a compulsory choice for our SelfDeblur.

• Extensive experiments show that our SelfDeblur per-

forms favorably against the existing MAP-based meth-

ods in terms of quantitative and qualitative evaluation.

To our best knowledge, SelfDeblur makes the first at-

tempt of applying deep learning to yield state-of-the-

art blind deconvolution performance.

2. Related Work

In this section, we briefly survey the relevant works in-

cluding optimization-based blind deconvolution and deep

learning based blind deblurring methods.

2.1. Optimization-based Blind Deconvolution

Traditional optimization-based blind deconvolution

methods can be further categorized into two groups, i.e.,

Variational Bayes (VB)-based and MAP-based methods.

VB-based method [20] is theoretically promising, but is

with heavy computational cost. As for the MAP-based

methods, many priors have been suggested for modeling

clean images and blur kernels. In the seminal work of [2],

Chan et al. introduce the total variation (TV) regularization
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Figure 2: Illustration of our SelfDeblur method. The generative networks Gx and Gk are deployed to respectively capture the deep priors of blur kernel

and latent clean image, and are trained using only the input blurry image. In particular, Gx is an asymmetric Autoencoder with skip connections, and the

Sigmoid nonlinearity is adopted to the output layer for constraining the pixels in x in the range [0, 1]. Gk adopts a fully-connected network, where the

SoftMax nonlinearity is applied to the output layer for meeting the non-negative and equality constraints, and the 1D output of is reshaped to 2D blur kernel.

to model latent clean image in blind deconvolution, and

motivates several variants based on gradient-based priors,

e.g., ℓ0-norm [27] and ℓp-norm [56]. Other specifically

designed regularizations, e.g., ℓ1/ℓ2-norm [15], patch-

based prior [24, 41], low-rank prior [34] and dark channel

prior [29, 50] have also been proposed to identify and

preserve salient edges for benefiting blur kernel estima-

tion. Recently, a discriminative prior [21] is presented

to distinguish the clean image from a blurry one, but

still heavily relies on ℓ0-norm regularizer for attaining

state-of-the-art performance. As for Pr(k), gradient spar-

sity priors [19, 29, 56] and spectral prior [22] are usually

adopted. In order to solve the MAP-based model, several

tricks have been introduced to the projected alternating

minimization algorithm, including delayed normalization

of blur kernel [32], multi-scale implementation [15] and

time-varying parameters [56].

After blur kernel estimation, non-blind deconvolution is

required to recover the latent clean image with fine texture

details [15, 22, 27, 29, 41, 49]. Thus, the priors should fa-

vor natural images, e.g., hyper-Laplacian [14], GMM [55],

non-local similarity [5], e.g., RTF [37], CSF [36] and CN-

N [16,53], which are quite different from those used in blur

kernel estimation. Our SelfDeblur can be regarded as a spe-

cial MAP-based method, but two generative networks, i.e.,

DIP and FCN, are adopted to respectively capture the deep

priors of clean image and blur kernel. Moreover, the joint

optimization algorithm is effective to estimate blur kernel

and generate clean image, making non-blind deconvolution

not a compulsory choice for SelfDeblur.

2.2. Deep Learning in Image Deblurring

Many studies have been given to apply deep learning

(DL) to blind deblurring. For example, DL can be used

to help the learning of mapping to blur kernel. By imitat-

ing the alternating minimization steps in optimization-based

methods, Schuler et al. [38] design the deep network archi-

tectures for blur kernel estimation. By studying the spectral

property of blurry images, deep CNN is suggested to predict

the Fourier coefficients [1], which can then be projected to

estimate blur kernel. In [40], CNN is used to predict the

parametric blur kernels for motion blurry images.

For dynamic scene deblurring, deep CNNs have been

developed to learn the direct mapping to latent clean im-

age [17, 25, 40, 43, 51]. Motivated by the multi-scale strate-

gy in blind deconvolution, multi-scale CNN [25] and scale-

recurrent network [43] are proposed to directly estimate the

latent clean image from the blurry image. The adversari-

al loss is also introduced for better recovery of texture de-

tails in motion deblurring [17]. Besides, by exploiting the

temporal information between adjacent frames, deep net-

works have also been applied to video motion deblurring

[9, 26, 30]. However, due to the severe ill-posedness caused

by large size and complex blur kernels, existing DL-based

methods still cannot outperform traditional optimization-

based ones for blind deconvolution.

Recently, DIP [45] and Double-DIP [6] have been intro-

duced to capture image statistics, and have been deployed

to many low-level vision tasks such as super-resolution, in-

painting, dehazing, transparency separation, etc. Nonethe-

less, the DIP network is limited in capturing the prior of blur

kernels, and Double-DIP still performs poorly for blind de-

convolution. To the best of our knowledge, our SelfDeblur

makes the first attempt of applying deep networks to yield

state-of-the-art blind deconvolution performance.

3. Proposed Method

In this section, we first introduce the general formulation

of MAP-based blind deconvolution, and then present our

proposed neural blind deconvolution model as well as the

joint optimization algorithm.

3.1. MAP-based Blind Deconvolution Formulation

According to Eqn. (1), we define the fidelity term as

− log (Pr (y|k,x)) = ‖k ⊗ x − y‖2. And we further

introduce two regularization terms − log(Pr(x)) = φ(x)
and − log(Pr(k)) = ϕ(k) for modeling the priors on latent

clean image and blur kernel, respectively. The MAP-based

blind deconvolution model in Eqn. (2) can then be reformu-
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lated as,

(x,k) = arg min
(x,k)

‖k⊗ x− y‖2 + λφ(x) + τϕ(k)

s.t. 0 ≤ xi ≤ 1, ∀i, kj ≥ 0,
∑

j
kj = 1, ∀j,

(3)

where λ and τ are trade-off regularization parameters. Be-

sides the two regularization terms, we further introduce

the non-negative and equality constraints for blur kernel

k [29, 32, 41, 56], and the pixels in x are also constrained

to the range [0, 1].
Under the MAP-based framework, many fixed and hand-

crafted regularization terms have been presented for latent

clean image and blur kernel [22, 24, 29, 29, 34, 41, 50, 56].

To solve the model in Eqn. (3), projected alternating mini-

mization is generally adopted, but several optimization de-

tails, e.g., delayed normalization [32] and multi-scale im-

plementation [15], are also crucial to the success of blind

deconvolution. Moreover, once the estimated blur kernel k̂

is obtained by solving Eqn. (3), another non-blind deconvo-

lution usually is required to generate final deblurring result,

x=argmin
x

‖k̂⊗ x−y‖2+λR(x), (4)

where R(x) is a regularizer to capture natural image statis-

tics and is quite different from φ(x).

3.2. Neural Blind Deconvolution

Motivated by the success of DIP [45] and Double-DIP

[6], we suggest the neural blind deconvolution model by

adopting generative networks Gx and Gk to capture the pri-

ors of x and k. By substituting x and k with Gx and Gk

and removing the regularization terms φ(x) and ϕ(k), the

neural blind deconvolution can be formulated as,

min
(Gx,Gk)

‖Gk(zk)⊗ Gx(zx)− y‖2

s.t. 0 ≤ (Gx(zx))i ≤ 1, ∀i,

(Gk(zk))j ≥ 0,
∑

j
(Gk(zk))j = 1, ∀j,

(5)

where zx and zk are sampled from the uniform distribution,

(·)i and (·)j denote the i-th and j-th elements. We note that

zk is 1D vector, and Gk(zk) is reshaped to obtain 2D matrix

of blur kernel.

However, there remain several issues to be addressed

with neural blind deconvolution. (i) The DIP network [45]

is designed to capture low-level image statistics and is lim-

ited in capturing the prior of blur kernels. As a result, we

empirically find that Double-DIP [6] performs poorly for

blind deconvolution (see the results in Sec. 4.1.2). (ii) Due

to the non-negative and equality constraints, the resulting

model in Eqn. (5) is a constrained neural optimization prob-

lem and is difficult to optimize. (iii) Although the genera-

tive networks Gx and Gk present high impedance to image

noise, the denoising performance of DIP heavily relies on

the additional averaging over last iterations and differen-

t optimization runs [45]. Such heuristic solutions, however,

both bring more computational cost and cannot be directly

borrowed to handle blurry and noisy images.

In the following, we present our solution to address the

issues (i)&(ii) by designing proper generative networks Gx

and Gk. As for the issue (iii), we introduce an extra TV

regularizer and a regularization parameter to explicitly con-

sider noise level in the neural blind deconvolution model.

Generative Network Gx. The latent clean images usually

contain salient structures and rich textures, which requires

the generative network Gx to have sufficient modeling ca-

pacity. Fortunately, since the introduction of generative ad-

versarial network [8], dramatic progress has been made in

generating high quality natural images [45]. For modeling

x, we adopt a DIP network, i.e., the asymmetric Autoen-

coder [35] with skip connections in [45], to serve as Gx.

As shown in Fig. 2, the first 5 layers of encoder are skip

connected to the last 5 layers of decoder. Finally, a convo-

lutional output layer is used to generate latent clean image.

To meet the range constraint for x, the Sigmoid nonlinearity

is applied to the output layer. Please refer to the supplemen-

tary file for more architecture details of Gx.

Generative Network Gk. On the one hand, the DIP net-

work [45] is designed to capture the statistics of natural

image but performs limited in modeling the prior of blur

kernel. On the other hand, blur kernel k generally contain-

s much fewer information than latent clean image x, and

can be well generated by simpler generative network. Thus,

we simply adopt a fully-connected network (FCN) to serve

as Gk. As shown in Fig. 2, the FCN Gk takes a 1D noise

zk with 200 dimensions as input, and has a hidden layer of

1,000 nodes and an output layer of K2 nodes. To guaran-

tee the non-negative and equalitly constraints can be always

satisfied, the SoftMax nonlinearity is applied to the output

layer of Gk. Finally, the 1D output of K2 entries is reshaped

to a 2D K ×K blur kernel. Please refer to Suppl. for more

architecture details of Gk.

Unconstrained Neural Blind Deconvolution with TV Reg-

ularization. With the above generative networks Gx and Gk,

we can formulate neural blind deconvolution into an uncon-

strained optimization form. However, the resulting model

is irrelevant with the noise level, making it perform poorly

on blurry images with non-negligible noise. To address this

issue, we combine both Gx and TV regularization to capture

image priors, and our neural blind deconvolution model can

then be written as,

min
Gk,Gx

‖Gk(zk)⊗ Gx(zx)−y‖2+λTV(Gx(zx)), (6)

where λ denotes the regularization parameter controlled by

noise level σ. Albeit the generative network Gx is more

powerful, the incorporation of Gx and another image pri-

or generally is beneficial to deconvolution performance.

Moreover, the introduction of the noise level related regu-

larization parameter λ can greatly improve the robustness in

handling blurry images with various noise levels. In partic-
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ular, we emperically set λ = 0.1×σ in our implementation,

and the noise level σ can be estimated using [54].

3.3. Optimization Algorithm

The optimization process of Eqn. (6) can be explained as

a kind of ”zero-shot” self-supervised learning [39], where

the generative networks Gk and Gx are trained using only a

test image (i.e., blurry image y) and no ground-truth clean

image is available. Thus, our method is dubbed SelfDeblur.

In the following, we present two algorithms for SelfDeblur,

i.e., alternating optimization and joint optimization.

Alternating Optimization. Analogous to the alternating

minimization steps in traditional blind deconvolution [2,27,

29, 41, 56], the network parameters of Gk and Gx can al-

so be optimized in an alternating manner. As summarized

in Algorithm 1, the parameters of Gk are updated via the

ADAM [13] by fixing Gx, and vice versa. In particular, the

gradient w.r.t. either Gx or Gk can be derived using auto-

matic differentiation [31].

Joint Optimization. In traditional MAP-based framework,

alternating minimization allows the use of projection oper-

ator to handle non-negative and equality constraints and the

modification of optimization details to avoid trivial solution,

and thus has been widely adopted. As for our neural blind

deconvolution, the model in Eqn. (6) is unconstrained op-

timization, and the powerful modeling capacity of Gk and

Gx is beneficial to avoid trivial delta kernel solution. We

also note that the unconstrained neural blind deconvolution

is highly non-convex, and alternating optimization may get

stuck at saddle points [44]. Thus, joint optimization is more

prefered than alternating optimization for SelfDeblur. Us-

ing the automatic differentiation techniques [31], the gradi-

ents w.r.t. Gk and Gx can be derived. Algorithm 2 summa-

rizes the joint optimization algorithm, where the parameters

of Gk and Gx can be jointly updated using the ADAM algo-

rithm. Our empirical study in Sec. 4.1.1 also shows that

joint optimization usually converges to better solutions than

alternating optimization.

Both alternating optimization and joint optimization al-

gorithms are stopped when reaching T iterations. Then, the

estimated blur kernel and latent clean image can be generat-

ed using k = GT
k (zk) and x = GT

x (zx), respectively. Ben-

efited from the modeling capacity of Gx(zx), the estimated

x is with visually favorable textures, and it is not a compul-

sory choice for our SelfDeblur to adopt another non-blind

deconvolution method to generate final deblurring result.

4. Experimental Results
In this section, ablation study is first conducted to ana-

lyze the effect of optimization algorithm and network archi-

tecture. Then, our SelfDeblur is evaluated on two bench-

mark datasets and is compared with the state-of-the-art

blind deconvolution methods. Finally, we report the results

of SelfDeblur on several real-world blurry images.

Algorithm 1 SelfDeblur (Alternating Optimization)

Input: Blurry image y

Output: Blur kernel k and clean image x

1: Sample zx and zk from uniform distribution with seed 0.

2: k = G
0
k(zk)

3: for t = 1 to T do

4: x = G
t−1
x (zx)

5: Compute the gradient w.r.t. Gk

6: Update G
t

k using the ADAM algorithm [13]

7: k = G
t

k(zk)
8: Compute the gradient w.r.t. Gx

9: Update G
t

x using the ADAM algorithm [13]

10: end for

11: x = G
T

x (zx), k = G
T

x (zk)

Algorithm 2 SelfDeblur (Joint Optimization)

Input: Blurry image y

Output: Blur kernel k and clean image x

1: Sample zx and zk from uniform distribution with seed 0.

2: for t = 1 to T do

3: k = G
t−1

k
(zk)

4: x = G
t−1
x (zx)

5: Compute the gradients w.r.t. Gk and Gx

6: Update G
t

k and G
t

x using the ADAM algorithm [13]

7: end for

8: x = G
T

x (zx), k = G
T

x (zk)

Our SelfDeblur is implemented using Pytorch [31]. The

experiments are conducted on a PC equipped with one N-

VIDIA Titan V GPU. Unless specially stated, the experi-

ments follow the same settings, i.e., T = 5, 000, and the

noises zx and zk are sampled from the uniform distribu-

tion with fixed random seed 0. Following [45], we further

perturb zx randomly at each iteration. The initial learning

rate is set as 0.01 and is decayed by multiplying 0.5 when

reaching 2,000, 3,000 and 4,000 iterations.

4.1. Ablation Study

Ablation study is conducted on the dataset by Levin et

al. [19], which is a popular blind deconvolution benchmark

consisting of 4 clean images and 8 blur kernels. Using [54],

the average estimated noise level of the blurry images in

the dataset is σ ≈ 1 × 10−5. Thus we simply adopt λ =
1× 10−6 on this dataset.

4.1.1 Alternating Optimization vs. Joint Optimization

We first evaluate the performance of SelfDeblur using alter-

nating optimization (SelfDeblur-A) and joint optimization

(SelfDeblur-J). Table 1 reports the average PSNR and S-

SIM values. In terms of quantitative metrics, SelfDeblur-J

significantly outperforms SelfDeblur-A, demonstrating the

superiority of joint optimization. In the supplementary file,

we provide several failure cases of SelfDeblur-A, where
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Figure 3: Intermediate results of estimated blur kernel and latent clean image at iteration t = 1, 20, 100, 600, 2, 000 and 5, 000.

SelfDeblur-A may converge to delta kernel and worse so-

lution while SelfDeblur-J performs favorably on these cas-

es. Therefore, joint optimization is adopted as the default

SelfDeblur method throughout the following experiments.

Table 1: Average PSNR/SSIM comparison of SelfDeblur-A and

SelfDeblur-J on the dataset of Levin et al. [19].

SelfDeblur-A SelfDeblur-J

30.53 / 0.8748 33.07 / 0.9313

4.1.2 Network Architecture of Gk

In this experiment, we compare the results by consider-

ing four kinds of network architectures: (i) SelfDeblur, (ii)

Double-DIP [6] (asymmetric Autoencoder with skip con-

nections for both Gx and Gk), (iii) SelfDeblurk− (removing

the hidden layer from Gk), and (iv) SelfDeblurk+ (adding

an extra hidden layer for Gk). From Table 2 and Fig. 4,

SelfDeblur significantly outperforms Double-DIP in esti-

mating blur kernel and latent image. The result indicates

that the DIP network is limited to capture the prior of

blur kernel, and the simple FCN can be a good choice of

Gk. We further compare SelfDeblur with SelfDeblurk− and

SelfDeblurk+. One can see that the FCN without hidden

layer (i.e., SelfDeblurk−) also succeeds in estimating blur

kernel and clean image (see Fig. 4), but performs much in-

ferior to SelfDeblur. Moreover, the three-layer FCN (i.e.,

SelfDeblurk+) is superior to SelfDeblurk−, but is inferior

to SelfDeblur. To sum up, SelfDeblur is a good choice for

modeling blur kernel prior.

Table 2: Quantitavie comparison of SelfDeblur variants with different net-

work structures of Gk .

SelfDeblur SelfDeblurk− SelfDeblurk+ Double-DIP

PSNR 33.07 28.37 30.92 21.51

SSIM 0.9313 0.8396 0.8889 0.5256

SelfDeblur SelfDeblurk− SelfDeblurk+ Double-DIP

Figure 4: Visual comparison of SelfDeblur variants with different network

structures of Gk .

4.1.3 Visualization of Intermediate Results

Using an image from the dataset of Levin et al. [19],

Fig. 3 shows the intermediate results of estimat-

ed blur kernel and clean image at iteration t =

1, 20, 100, 600, 2, 000 and 5, 000, along with the MSE

curve for k and the PSNR curve for x. When iteration

t = 20, the intermediate result of x mainly contains the

salient image structures, which is consistent with the ob-

servation that salient edges is crucial for initial blur kernel

estimation in traditional methods. Along with the increase

of iterations, Gx and Gk begin to generate finer details in x

and k. Unlike traditional methods, SelfDeblur is effective in

simultaneously estimating blur kernel and recovering latent

clean image when iteration t ≥ 20, making the non-blind

deconvolution not a compulsory choice for SelfDeblur.

4.2. Comparison with State-of-the-arts

4.2.1 Results on dataset of Levin et al. [19]

Table 3: Average PSNR, SSIM, Error Ratio and running time (sec.) com-

parison on the dataset of Levin et al. [19]. ∆ indicates the method gen-

erates final deblurring results using the non-blind deconvolution method

from [20]. The running time only includes blur kernel estimation.

PSNR SSIM Error Ratio Time

Known k∆ 34.53 0.9492 1.0000 —

Krishnan et al. ∆ [15] 29.88 0.8666 2.4523 8.9400

Cho&Lee∆ [4] 30.57 0.8966 1.7113 1.3951

Levin et al. ∆ [20] 30.80 0.9092 1.7724 78.263

Xu&Jia∆ [49] 31.67 0.9163 1.4898 1.1840

Sun et al. ∆ [41] 32.99 0.9330 1.2847 191.03

Zuo et al. ∆ [56] 32.66 0.9332 1.2500 10.998

Pan-DCP∆ [29] 32.69 0.9284 1.2555 295.23

SRN [43] 23.43 0.7117 6.0864 N/A

SelfDeblur∆ 33.32 0.9438 1.2509 —

SelfDeblur 33.07 0.9313 1.1968 224.01

Using the dataset of Levin et al. [19], we compare our

SelfDeblur with several state-of-the-art blind deconvolution

methods, including Krishnan et al. [15], Levin et al. [19],

Cho&Lee [4], Xu&Jia [48], Sun et al. [41], Zuo et al. [56]

and Pan-DCP [29]. Besides, SelfDeblur is compared with

one state-of-the-art deep motion deblurring method SRN

[43], which is re-trained on 1,600 blurry images [33] syn-

thesized using eight blur kernels in the dataset of Levin et

al. For SelfDeblur, λ = 1 × 10−6 is set for all the blurry

images. Following [41, 56], we adopt the non-blind decon-

volution method in [20] to generate final deblurring results.

PSNR, SSIM [46] and Error Ratio [20] are used as quanti-

tative metrics. And we also report the running time of blur

kernel estimation for each competing method. Our SelfDe-

blur and SRN are ran on an NVIDIA Titan V GPU, while

the other methods are ran on a PC with 3.30GHz Intel(R)
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Blurry image Zuo et al. ∆ [56] Xu&Jia∆ [48] SelfDeblur∆

Ground-truth Sun et al. ∆ [41] Pan-DCP∆ [29] SelfDeblur

Figure 5: Visual comparison on the dataset of Levin et al. [19].

Table 4: Average PSNR/SSIM comparison on the dataset of Lai et al. [18], which has 5 categories. The methods marked with ∆ adopt [47] and [14] as

non-blind deconvolution after blur kernel estimation in Saturated and the other categories, respectively.

Images Cho&Lee∆ [4] Xu&Jia∆ [48] Xu et al. ∆ [49] Michaeli et al. ∆ [24] Perroe et al. ∆ [32] Pan-L0∆ [27] Pan-DCP∆ [29] SelfDeblur∆ SelfDeblur

Manmade 16.35/0.3890 19.23/0.6540 17.99/0.5986 17.43/0.4189 17.41/0.5507 16.92/0.5316 18.59/0.5942 20.08/0.7338 20.35/0.7543

Natural 20.14/0.5198 23.03/0.7542 21.58/0.6788 20.70/0.5116 21.04/0.6764 20.92/0.6622 22.60/0.6984 22.50/0.7183 22.05/0.7092

People 19.90/0.5560 25.32/0.8517 24.40/0.8133 23.35/0.6999 22.77/0.7347 23.36/0.7822 24.03/0.7719 27.41/0.8784 25.94/0.8834

Saturated 14.05/0.4927 14.79/0.5632 14.53/0.5383 14.14/0.4914 14.24/0.5107 14.62/0.5451 16.52/0.6322 16.58/0.6165 16.35/0.6364

Text 14.87/0.4429 18.56/0.7171 17.64/0.6677 16.23/0.4686 16.94/0.5927 16.87/0.6030 17.42/0.6193 19.06/0.7126 20.16/0.7785

Avg. 17.06/0.4801 20.18/0.7080 19.23/0.6593 18.37/0.5181 18.48/0.6130 18.54/0.6248 19.89/0.6656 21.13/0.7319 20.97/0.7524

Xeon(R) CPU.

Table 3 lists the average metrics of the competing meth-

ods. We report the results of SelfDeblur with two set-

tings, i.e., the deblurring results purely by SelfDeblur and

those using the non-blind deconvolution from [20], denot-

ed as SelfDeblur∆. In terms of PSNR and Error Ratio,

SelfDeblur significantly outperforms the competing meth-

ods. As for average SSIM, SelfDeblur performs slight-

ly inferior to Sun et al. and Zuo et al. By incorporating

with non-blind deconvolution from [20], SelfDeblur∆ can

further boost quantitative performance and outperforms al-

l the other methods. In terms of running time, SelfDeblur

is time-consuming due to the optimization of two genera-

tive networks, but is comparable with Sun et al. [41] and

Pan-DCP [29]. From the visual comparison in Fig. 5, the

#4 blur kernel estimated by SelfDeblur is much closer to

the ground-truth. As shown in the close-ups, SelfDeblur

and SelfDeblur∆ can recover more visually favorable tex-

tures. We also note that both the performance gap and visual

quality between SelfDeblur and SelfDeblur∆ are not signif-

icant, and thus non-blind deconvolution is not a compulsory

choice for our SelfDeblur.

4.2.2 Results on dataset of Lai et al. [18]

We further evaluate SelfDeblur on the dataset of Lai et al.

[18] consisting of 25 clean images and 4 large size blur ker-

nels. The blurry images are divided into five categories, i.e.,

Manmade, Natural, People, Saturated and Text, where each

category contains 20 blurry images. For each blurry image,

the parameter λ is set according to the noise level estimated

using [54]. We compare our SelfDeblur with Cho&Lee [4],

Xu&Jia [48], Xu et al. [49], Machaeli et al. [24], Perroe

et al. [32], Pan-L0 [27] and Pan-DCP [29]. The results of

competing methods except Pan-DCP [29] and ours are du-

plicated from [18]. The results of Pan-DCP [29] are gen-

erated using their default settings. Once the blur kernel is

estimated, non-blind deconvolution [14] is applied to the

images of Manmade, Natural, People and Text, while [47]
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Blurry image Xu&Jia∆ [48] Perrone et al. ∆ [32] SelfDeblur∆

Ground-truth Michaeli et al. ∆ [48] Pan-DCP∆ [32] SelfDeblur

Figure 6: Visual comparison on the dataset of Lai et al. [18].

Blurry image Xu&Jia [48] Pan-DCP [29] SelfDeblur

Figure 7: Visual comparison on two real-world blurry images.

is used to handle Saturated images. From Table 4, both

SelfDeblur and SelfDeblur∆ can achieve better quantitative

metrics than the competing methods. In terms of image con-

tents, our SelfDeblur outperforms the other methods on any

of the five categories. From the results in Fig. 6, the blur

kernel estimated by our SelfDeblur is more accurate than

those by the competing methods, and the deconvolution re-

sult is with more visually plausible textures.

4.3. Evaluation on Real-world Blurry Images
Our SelfDeblur is further compared with Xu&Jia [48]

and Pan-DCP [29] on real-world blurry images. From

Fig. 7, one can see that the blur kernel estimated by our

SelfDeblur contains less noises, and the estimated clean im-

age is with more visually plausible structures and textures.

The kernel estimation errors by Xu&Jia and Pan-DCP are

obvious, thereby yielding ringing artifacts in the estimated

clean images. More results can be found in Suppl.

5. Conclusion
In this paper, we proposed a neural blind deconvolution

method, i.e., SelfDeblur. It adopts an asymmetric Autoen-

coder and a FCN to respectively capture the deep priors of

latent clean image and blur kernel. And the SoftMax non-

linearity is applied to the output of FCN to meet the non-

negative and equality constraints of blur kernel. A joint op-

timization algorithm is suggested to solve the unconstrained

neural blind deconvolution model. Experiments show that

our SelfDeblur achieves notable performance gains over the

state-of-the-art methods, and is effective in estimating blur

kernel and generating clean image with visually favorable

textures.
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