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Abstract

Sketchformer is a novel transformer-based representa-

tion for encoding free-hand sketches input in a vector form,

i.e. as a sequence of strokes. Sketchformer effectively ad-

dresses multiple tasks: sketch classification, sketch based

image retrieval (SBIR), and the reconstruction and interpo-

lation of sketches. We report several variants exploring con-

tinuous and tokenized input representations, and contrast

their performance. Our learned embedding, driven by a

dictionary learning tokenization scheme, yields state of the

art performance in classification and image retrieval tasks,

when compared against baseline representations driven by

LSTM sequence to sequence architectures: SketchRNN and

derivatives. We show that sketch reconstruction and inter-

polation are improved significantly by the Sketchformer em-

bedding for complex sketches with longer stroke sequences.

1. Introduction

Sketch representation and interpretation remains an open
challenge, particularly for complex and casually con-
structed drawings. Yet, the ability to classify, search, and
manipulate sketched content remains attractive as gesture
and touch interfaces reach ubiquity. Advances in recur-
rent network architectures within language processing have
recently inspired sequence modeling approaches to sketch
(e.g. SketchRNN [1]) that encode sketch as a variable length
sequence of strokes, rather than in a rasterized or ‘pixel’
form. In particular, long-short term memory (LSTM) net-
works have shown significant promise in learning search
embeddings [2, 3] due to their ability to model higher-level
structure and temporal order versus convolutional neural
networks (CNNs) on rasterized sketches [4, 5, 6, 7]. Yet,
the limited temporal extent of LSTM restricts the structural
complexity of sketches that may be accommodated in se-
quence embeddings. In language modeling domain, this

*These authors contributed equally to this work

shortcoming has been addressed through the emergence of
Transformer networks [8, 9, 10] in which slot masking en-
hances the ability to learn complex structures that are rep-
resented by longer sequences.

This paper proposes Sketchformer, the first Transformer
based network for learning a deep representation for free-
hand sketches. We build on the language modeling Trans-
former architecture of Vaaswani et al. [10] to develop sev-
eral variants of Sketchformer that process sketch sequences
in continuous and tokenized forms. We evaluate the efficacy
of each learned sketch embedding for common sketch inter-
pretation tasks. We make three core technical contributions:
1) Sketch Classification. We show that Sketchformer
driven by a dictionary learning tokenization scheme outper-
forms state of the art sequence embeddings for sketched ob-
ject recognition over QuickDraw! [11]; the largest and most
diverse public corpus of sketched objects.
2) Generative Sketch Model. We show that for more
complex, detailed sketches comprising lengthy stroke se-
quences, Sketchformer improves generative modeling of
sketch – demonstrated by higher fidelity reconstruction of
sketches from the learned embedding. We also show that
for sketches of all complexities, interpolation in the Sketch-
former embedding is stable, generating more plausible in-
termediate sketches for both inter- and intra-class blends.
3) Sketch based Image Retrieval (SBIR) We show that
Sketchformer can be unified with raster embedding to pro-
duce a search embedding for SBIR (after [3] for LSTM)
to deliver improved prevision over a large photo corpus
(Stock10M).

These enhancements to sketched object understanding,
generative modeling and matching demonstrated for a di-
verse and complex sketch dataset suggest Transformer as a
promising direction for stroke sequence modeling.

2. Related Work

Representation learning for sketch has received exten-
sive attention within the domain of visual search. Classical
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sketch based image retrieval (SBIR) techniques explored
region [12], graph [13], edge-let [14], and sparse gradient
features [15, 16] building upon the success of dictionary
learning based models (e.g. bag of words) [17, 18, 19].
With the advent of deep learning, convolutional neural net-
works (CNNs) were rapidly adopted to learn search embed-
ding [20]. Triplet loss models are commonly used for vi-
sual search in the photographic domain [21, 22, 23], and
have been extended to SBIR. Sangkloy et al. [7] used a
three-branch CNN with triplet loss to learn a general cross-
domain embedding for SBIR. Fine-grained (within-class)
SBIR was similarly explored by Yu et al. [24]. Qi et al.
[5] instead use contrastive loss to learn correspondence
between sketches and pre-extracted edge maps. Bui et

al. [25, 4] perform cross-category retrieval using a triplet
model and combined their technique with a learned model
of visual aesthetics [26] to constrain SBIR using aesthetic
cues in [6]. A quadruplet loss was proposed by [27] for fine-
grained SBIR. The generalization of sketch embeddings be-
yond training classes have also been studied [28, 29], and
parameterized for zero-shot learning [30]. Such concepts
were later applied in sketch-based shape retrieval tasks [31].
Variants of CycleGAN [32] have also shown to be useful
as generative models for sketch [33]. Sketch-A-Net was a
seminal work for sketch classification that employed a CNN
with large convolutional kernels to accommodate the spar-
sity of stroke pixels [24]. Recognition of partial sketches
has also been explored by [34]. Wang et al. [35] pro-
posed sketch classification by sampling unordered points of
a sketch image to learning a canonical order.

All the above works operate over rasterized sketches e.g.
converting the captured vector representation of sketch (as
a sequence of strokes) to pixel form, discarding tempo-
ral order of strokes, and requiring the network to recover
higher level spatial structure. Recent SBIR work has begun
to directly input a vector (stroke sequence) representations
for sketches [36], notably SketchRNN; an LSTM based se-
quence to sequence (seq2seq) variational auto-proposed by
Eck et al. [1], trained on the largest public sketch corpus
‘QuickDraw!’ [11]. SketchRNN embedding was incor-
porated in a triplet network by Xu et al. [2] to search for
sketches using sketches. A variation using cascaded at-
tention networks was proposed by [37] to improve vector
sketch classification over Sketch-A-Net. Later, LiveSketch
[3] extended SketchRNN to a triplet network to perform
SBIR over tens of millions of images, harnessing the sketch
embedding to suggest query improvements and guide the
user via relevance feedback. The limited temporal scope of
LSTM based seq2seq models can prevent such representa-
tions modeling long, complex sketches, a problem mitigated
by our Transformer based model which builds upon the suc-
cess shown by such architectures for language modeling
[10, 9, 8]. Transformers encode long term temporal depen-
dencies by modeling direct connections between data units.
The temporal range of such dependencies was increased via
the Transformer-XL [9] and BERT [8], which recently set
new state-of-the-art performance on sentence classification

and sentence-pair regression tasks using a cross-encoder.
Recent work explores transformer beyond sequence mod-
eling to 2D images [38]. Our work is first to apply these
insights to the problem of sketch modeling, incorporating
the Transformer architecture of Vaswani et al. [10] to de-
liver a multi-purpose embedding that exceeds the state of
the art for several common sketch representation tasks.

3. Sketch Representation

We propose Sketchformer; a multi-purpose sketch rep-
resentation from stroke sequence input. In this section we
discuss the pre-processing steps, the adaptions made to the
core architecture proposed by Vaswani et al. [10] and the
three application tasks.

3.1. Preprocessing and Tokenization

Following Eck et al. [1] we simplify all sketches us-
ing the RDP algorithm [39] and normalize stroke length.
Sketches for all our experiments are drawn from Quick-
Draw50M [11] (see Sec. 4; for dataset partitions).

1) Continuous. Quickdraw50M sketches are released in
the ‘stroke-3’ format where each point (δx, δy, p) stores its
relative position to the previous point together with its bi-
nary pen state. To also include the ‘end of sketch’ state,
the stroke-5 format is often employed: (δx, δy, p1, p2, p3),
where the the pen states p1 - draw, p2 - lift and p3 - end are
mutually exclusive [1]. Our experiments with continuous
sketch modeling use the ‘stroke-5’ format.

2) Dictionary learning. We build a dictionary of K code
words (K = 1000) to model the relative pen motion i.e.
(δx, δy). We randomly sample 100k sketched pen move-
ments in the training set for clustering via K-means. We
allocate 20% of sketch points for sampling inter-stroke tran-
sition, i.e. relative transition when the pen is lifted, to bal-
ance with the more common within-stroke transitions. Each
transition point (δx, δy) is then assigned to the nearest code
word, resulting in a sequence of discrete tokens. We also in-
clude 4 special tokens; a Start of Sketch (SOS) token at the
beginning of every sketch, an End of Sketch (EOS) token
at the end, a Stroke End Point (SEP) token to be inserted
between strokes (indicate pen lifting) and a padding (PAD)
token to pad the sketch to a fixed length.

3) Spatial Grid. The sketch canvas is first quantized into
n × n (n = 100) square cells, each cell is represented by
a token in our dictionary. Given the absolute (x, y) sketch
points, we determine which cell contains this point and as-
sign the cell’s token to the point. The same four special
tokens above are used to complete the sketch sequence.

Fig. 2 visualizes sketch reconstruction under the tok-
enized methods to explore sensitivity to the quantization pa-
rameters. Compared with the stroke-5 format (continuous)
the tokenization methods are more compact. Dictionary
learned tokenization (Tok-Dict) can have a small dictionary
size and is invariant to translation since it is derived from
stroke-3. On the other hand quantization error could ac-
cumulate over longer sketches if dictionary size is too low,
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Figure 1. Schematic of the Transformer architecture used for Sketchformer, which utilizes the original architecture of Vaswani et al. [10]

but modifies it with an alternate mechanism for formulating the bottleneck (sketch embedding) layer using a self-attention block, as well

as configuration changes e.g. MHA head count (see Sec. 3.2).

shifting the position of strokes closer to the sequence’s end.
The spatial grid based tokenization method (Tok-Grid), on
the other hand, does not accumulate error but is sensitive to
translation and yields a larger vocabulary (n2).

3.2. Transformer Architecture for Sketch

Sketchformer uses the Transformer network of Vaswani
et al. [10]. We add stages (e.g. self-attention and modified
bottleneck) and adapt parameters in their design to learn
a multi-purpose representation for stroke sequences, rather
than language. A transformer network consists of an en-
coder and decoder blocks, each comprising several layers
of multihead attention followed by a feed forward network.
Fig. 1 illustrates the architecture with dotted lines indicating
re-use of architecture stages from [10]. In Fig. 4 we show
how our learned embedding is used across multiple appli-
cations. Compared to [10] we use 4 MHA blocks versus 6
and a feed-forward dimension of 512 instead of 2048. Un-
like traditional sequence modeling methods (RNN/LSTM)
which learns the temporal order of current time steps from
previous steps (or future steps in bidirectional encoding),
the attention mechanism in transformers allows the network
to decide which time steps to focus on to improve the task at
hand. Each multihead attention (MHA) layer is formulated
as such:

SHA(k, q, v) = softmax(αqkT )v (1)

MHA(k, q, v) = [SHA0(kW
k
0 , qW

q
0 , vW

v
0 ), ... (2)

SHAm(kW k
m, qW q

m, vW v
m)]W 0 (3)

where k, q and v are respective Key, Query and Value in-
puts to the single head attention (SHA) module. This mod-
ule computes the similarity between pairs of Query and Key

features, normalizes those scores and finally uses them as a
projection matrix for the Value features. The multihead at-
tention (MHA) module concatenates the output of multiple
single heads and projects the result to a lower dimension. α

is a scaling constant and W
(.)
(.) are learnable weight matrices.

The MHA output is fed to a positional feed forward net-
work (FFN), which consists of two fully connected layers
with ReLU activation. The MHA-FFN (F (.)) blocks are
the basis of the encoder side of our network (E(.)):

FFN(x) = max(0, xW f
1 + b

f
1 )W

f
2 + b

f
2 (4)

F (x) = FFN(MHA(x, x, x)) (5)

E(x) = FN (..(F1(x))) (6)

where X indicates layer normalization over X and N is
number of the MHA-FFN units F (.).

The decoder takes as inputs the encoder output and target
sequence in an auto-regressive fashion. In our case we are
learning an transformer autoencoder so the target sequence
is also the input sequence shifted forward by 1:

G(h, x) = FFN(MHA2(h, h,MHA1(x, x, x))) (7)

D(h, x∗) = GN (h,GN−1(h, ...G1(h, x∗))) (8)

Figure 2. Visualizing the impact of quantization on the recon-

struction of short, median and long sequence length sketches.

Grid sizes of n = [10, 100] (Tok-Grid) and dictionary sizes of

K = [500, 1000] (Tok-Dict). Sketches are generated from the

tokenized sketch representations, independent of transformer.
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Figure 3. t-SNE visualization of the learned embedding space from Sketchformer’s three variants, compared to LiveSketch (left) and

computed over the QD-862k test set; 10 categories and 1000 samples were randomly selected.

where h is the encoder output, x∗ is the shifted auto-
regressive version of input sequence x.

The conventional transformer is designed for language
translation and thus does not provide a feature embedding
as required in Sketchformer (output of E is also a sequence
of vectors of the same length as x). To learn a compact
representation for sketch we propose to apply self-attention
on the encoder output, inspired by [40]:

s = softmax(tanh(hKT + b)v) (9)

z =
∑

i

sihi (10)

which is similar to SHA however the Key matrix K, Value
vector v and bias b are now trainable parameters. This self-
attention layer learns a weight vector s describing the im-
portance of each time step in sequence h, which is then
accumulated to derive the compact embedding z. On the
decoder side, z is passed through a FFN to resume the orig-
inal shape of h. These are the key novel modifications to the
original Transformer architecture of Vaswani et al. (beyond
above-mentioned parameter changes).

We also had to change how masking worked on the de-
coder. The Transformer uses a padding mask to stop atten-
tion blocks from giving weight to out-of-sequence points.
Since we want a meaningful embedding for reconstruction
and interpolation, we removed this mask from the decoder,
forcing our transformer to learn reconstruction without pre-
viously knowing the sequence length and using only the em-
bedding representation.

3.2.1 Training Losses

We employ two losses in training Sketchformer. A classifi-
cation (softmax) loss is connected to the sketch embedding
z to preserve semantic information while a reconstruction
loss ensures the decoder can reconstruct the input sequence
from its embedding. If the input sequence is continuous (i.e.
stroke-5) the reconstruction loss consists of a L2 loss term
modeling relative transitions (δx, δy) and a 3-way classi-
fication term modeling the pen states. Otherwise the re-
construction loss uses softmax to regularize a dictionary of
sketch tokens as per a language model. We found these

losses simple yet effective in learning a robust sketch em-
bedding. Fig. 3 visualizes the learned embedding for each
of the three pre-processing variants, alongside that of a state
of the art sketch encoding model using stroke sequences [3].

3.3. Crossmodal Search Embedding

To use our learned embedding for SBIR, we follow the
joint embedding approach first presented in [3] and train an
auxiliary network that unifies the vector (sketch) and raster
(image corpus) representations into a common subspace.

This auxiliary network is composed of four fully con-
nected layers (see Fig. 4) with ReLU activations. These are
trained within a triplet framework and have input from three
pre-trained branches: an anchor branch that models vector
representations (our Sketchformer), plus positive and nega-
tive branches extracting representations from raster space.

The first two fully connected layers are domain-specific
and we call each set FV (.), FR(.), referring to vector-
specific and raster-specific. The final two layers are shared
between domains; we refer to this set as FS(.). Thus
the end-to-end mapping from vector sketch and raster
sketch/image to the joint embedding is:

uv = FS(FV (E(xv))) (11)

ur = FS(FR(P(xr))) (12)

where xv and xr are the input vector sketches and raster
images respectively, and uv and ur their corresponding rep-
resentations in the common embedding. E(.) is the net-
work that models vector representations and P(.) is the one
for raster images. In the original LiveSketch [3], E(.) is a
SketchRNN [1]-based model, while we employ our multi-
task Sketchformer encoder instead. For P(.) we use the
same off-the-shelf GoogLeNet-based network, pre-trained
on a joint embedding task (from [28]).

The training is performed using triplet loss regularized
with the help of a classification task. Training requires an
aligned sketch and image dataset i.e. a sketch set and im-
age set that share the same category list. This is not the
case for Quickdraw, which is a sketch-only dataset without
a corresponding image set. Again following [3], we use
the raster sketch as a medium to bridge vector sketch with
raster image. The off-the-shelf P(.) (from [28]) was trained
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Figure 4. Schematic showing how the learned sketch embedding

is leveraged for sketch synthesis (reconstruction/interpolation),

classification and cross-modal retrieval experiments (see en-

coder/embedding inset, refer to Fig. 1 for detail). Classification

appends fully-connected (fc) and softmax layers to the embedding

space. Retrieval tasks require unification with a raster (CNN) em-

bedding for images [28] via several fc layers trained via triplet

loss.

to produce a joint embedding model unifying raster sketch
and raster image; This allowed the authors train the FR, FV

and FS sets using vector and raster versions of sketch only.
By following the same procedure, we eliminate the need of
having an aligned image set for Quickdraw as our network
never sees an image feature during training.

The training is implemented in two phases. At phase
one, the anchor and positive samples are vector and raster
forms of random sketches in the same category while raster
input of the negative branch is sampled from a different cat-
egory. At phase two, we sample hard negatives from the
same category with the anchor vector sketch and choose the
raster form of the exact instance of the anchor sketch for the
positive branch. The triplet loss maintains a margin between
the anchor-positive and anchor-negative distances:

LT (x, x+, x−
) = max(0, |FS(FV (E(x)))− FS(FR(P(x+)))|

− ||FS(FV (E(x)))− FS(FR(P(x
−
)))||+m)

(13)

and margin m = 0.2 in phase one, m = 0.05 in phase two.

4. Experiments and Discussion

We evaluate the performance of the proposed trans-
former embeddings for three common tasks; sketch classi-
fication, sketch reconstruction and interpolation, and sketch
based image retrieval (SBIR). We compare against two
baseline sketch embeddings for encoding stroke sequences;
SketchRNN [1] (also used for search in [2]) and LiveSketch
[3]. We evaluate using sketches from QuickDraw50M [11],
and a large corpus of photos (Stock10M).

QuickDraw50M [11] comprises over 50M sketches of
345 object categories, crowd-sourced within a gamified
context that encouraged casual sketches drawn at speed.
Sketches are often messy and complex in their structure,
consistent with tasks such as SBIR. Quickdraw50M cap-
tures sketches as stroke sequences, in contrast to earlier
raster-based and less category-diverse datasets such as TU-
Berlin/Sketchy. We sample 2.5M sketches randomly with
even class distribution from the public Quickdraw50M
training partition to create training set (QD-2.5M) and use
the public test partition of QuickDraw50M (QD-862k) com-
prising 2.5k ×345 = 862k sketches to evaluate our trained
models. For SBIR and interpolation experiments we sort
QD-862k by sequence length, and sample three datasets
(QD345-S, QD345-M, QD345-L) at centiles 10, 50 and 90
respectively to create a set of short, medium and long stroke
sequences. Each of these three datasets samples one sketch
per class at random from the centile yielding three evalua-
tion sets of 345 sketches. We sampled an additional query
set QD345-Q for use in sketch search experiments, using
the same 345 sketches as LiveSketch [3]. The median stroke
lengths of QD345-S, QD345-M, QD345-L are 30, 47 and
75 strokes respectively (after simplification via RDP [39]).

Stock67M is a diverse, unannotated corpus of photos
used in prior SBIR work [3] to evaluate large-scale SBIR
retrieval performance. We sample 10M of these images at
random for our search corpus (Stock10M).

4.1. Evaluating Sketch Classification

We evaluate the class discrimination of the proposed
sketch embedding via attaching dense and softmax layers to
the transformer encoder stage, and training a 345-way clas-
sifier on QD2.5M. Table 1 reports the classification perfor-
mance over QD-862k for each of the three proposed trans-
former embeddings, alongside two LSTM baselines – the
SketchRNN [1] and LiveSketch [3] variational autoencoder
networks. Whilst all transformers outperform the baseline,
the tokenized variant of the transformer based on dictionary
learning (TForm-Tok-Dict) yields highest accuracy. We ex-
plore this further by shuffling the order of the sketch strokes
retraining the transformer models from scratch. We were

Method mAP%

Baseline
LiveSketch [3] 72.93
SketchRNN [1] 67.69

Shuffled
TForm-Cont 76.95
TForm-Tok-Grid 76.22
TForm-Tok-Dict 76.66

Proposed
TForm-Cont 77.68
TForm-Tok-Grid 77.36
TForm-Tok-Dict 78.34

Table 1. Sketch classification results over QuickDraw! [11] for

three variants of the proposed transformer embedding, contrast-

ing each to models learned from randomly permuted stroke order.

Comparing to two recent LSTM based approaches for sketch se-

quence encoding [3, 1].
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Figure 5. Visualization of sketches reconstructed from mean em-

bedding for 3 object categories. We add Gaussian noise with stan-

dard deviation σ = 0.5 and σ = 1.0 to the mean embedding of

three example categories on the Quickdraw test set. The recon-

structed sketches of Tform-Tok-Dict retain salient features even

with high noise perturbation.

Method Short Mid Long

Baseline
LiveSketch [3] 62.1 59.2 27.8
SketchRNN [1] 4.05 3.70 1.38

Proposed
TForm-Cont 0.00 0.00 0.00
TForm-Tok-Grid 6.75 6.10 5.56
TForm-Tok-Dict 24.3 28.4 51.4

Uncertain 2.70 2.47 13.9
Table 2. User study quantifying accuracy of sketch reconstruction.

Preference is expressed by 5 independent workers, and results with

> 50% agreement are included. Experiment repeated for short,

medium and longer stroke sequences. For longer sketches, the

proposed transformer method TForm-Tok-Dict is preferred.

surprised to see comparable performance, perhaps due to
the transformer’s larger information scope rather than solely
temporal information.

4.2. Reconstruction and Interpolation

We explore the generative power of the proposed em-
bedding by measuring the degree of fidelity with which: 1)
encoded sketches can be reconstructed via the decoder to re-
semble the input; 2) a pair of sketches may be interpolated
within, and synthesized from, the embedding. The experi-
ments are repeated for short (QD345-S), medium (QD345-
M) and long (QD345-L) sketch complexities. We assess
the fidelity of sketch reconstruction and the visual plausibil-
ity of interpolations via Amazon Mechanical Turk (MTurk).
MTurk workers are presented with a set of reconstructions
or interpolations and asked to make a 6-way preference
choice; 5 methods and a ’cannot determine’ option. Each
task is presented to five unique workers, and we only in-
clude results for which there is > 50% (i.e. > 2 worker)
consensus on the choice.

Reconstruction results are shown in Table 2 and fa-
vor the LiveSketch [3] embedding for short or medium

Figure 6. Representative sketch reconstructions from each of

the five embeddings evaluated in Table 2. (a) Original, (b)

SketchRNN, (c) LiveSketch, (d) TForm-Cont, (e) TForm-Tok-

Grid and (f) TForm-Tok-Dict. The last row represents a hard-to-

reconstruct sketch.

length strokes, with the proposed tokenized transformer
(TForm-Tok-Dict) producing better results for more com-
plex sketches aided by the improved representational power
of transformer for longer stroke sequences. Fig 6 provides
representative visual examples for each sketch complexity.

We explore interpolation in Table 3 blending between
pairs of sketches within (intra-) class and between (inter-
) class. In all cases we encode sketches separately to the
embedding, interpolate via slerp (after [1, 3] in which slerp
was shown to offer best performance), and decode the in-
terpolated point to generate the output sketch. Fig. 7 pro-
vides visual examples of inter- and intra- class interpolation
for each method evaluated. In all cases the proposed to-
kenized transformer (TForm-Tok-Dict) outperforms other
transformer variants and baselines, although the perfor-
mance separation is narrower for shorter strokes echoing
results of the reconstruction experiment. The stability of
our representation is further demonstrated via local sam-
pling within the embedding in Fig. 5.

4.3. Crossmodal Matching

We evaluate the performance of Sketchformer for sketch
based retrieval of sketches (S-S) and images (S-I).

Sketch2Sketch (S-S) Matching. We quantify the
accuracy of retrieving sketches in one modality (raster)
given a sketched query in another (vector, i.e. stroke
sequence) – and vice-versa. This evaluates the performance
of Sketchformer in discriminating between sketched visual
structures invariant to their input modality. Sketchformer is
trained on QD-2.5M and we query the test corpus QD-826k
using QD-345Q as the query set. We measure overall
mean average precision (mAP) for both coarse grain (i.e.
class-specific) and fine-grain (i.e. instance-level) similarity.
As per [3] for the former we consider a retrieved record
a match if it matches the sketched object class. For the
latter, exactly the same single sketch must match (in its
different modality). To run raster variants, a rasterized
version of QD-862k (for V-R) and of QD345-Q (for R-V)
is produced by rendering strokes to a 256 × 256 pixel
canvas using the CairoSVG Python library. Table 4 show
that for both class and instance level retrieval, the R-V con-
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Figure 7. Representative sketch interpolations from each of the five embeddings evaluated in Table 3. For each embedding: (first row)

inter-class interpolation from ’birthday cake’ to ‘ice-cream’ and (second row) intra-class interpolation between two ‘birthday cakes’.

Figure 8. Representative visual search results over Stock10M indexed by our proposed embedding (TForm-Tok-Dict) for a vector sketch

query. The two bottom rows (‘animal migration’ and ‘tree’) are failure cases.

figuration outperforms V-R indicating a performance gain
due to encoding this large search index using the vector
representation. In contrast to other experiments reported,
the continuous variant of Sketchformer appears slightly
preferred, matching higher for early ranked results for the
S-S case – see Fig. 9a for category-level precision-recall
curve. Although Transformer outperforms RNN baselines
by 1-3% in the V-R case the gain is more limited and
indeed the performance over baselines is equivocal in the
S-S where the search index is formed of rasterized sketches.

Sketch2Image (S-I) Matching. We evaluate sketch
based image retrieval (SBIR) over Stock10M dataset of di-
verse photos and artworks, as such data is commonly in-
dexed for large-scale SBIR evaluation [6, 3]. We compare

against the state of the art SBIR algorithms accepting vec-
tor (LiveSketch [3]) and raster (Bui et al. [28]) sketched
queries. Since no ground-truth annotation is possible for
this size of corpus, we crowd-source per-query annotation
via Mechanical Turk (MTurk) for the top-k (k=15) results
and compute both mAP% and precision@k curve averaged
across all QD345-Q query sketches, both with k = [1−15].
Table 5 compares performance of our tokenized variants to
these baselines, alongside associated Precision@k curves in
Fig. 9b. The proposed dictionary learned transformer em-
bedding (TForm-Tok-Dict) delivers the best performance
(visual results in Fig. 8).
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Partition Embedding Intra- Inter-

Short (10th cent.)

SketchRNN [1] 0.00 2.06

LiveSketch [3] 25.8 30.9

TForm-Cont 14.0 6.18

TForm-Tok-Grid 19.4 17.5

TForm-Tok-Dict 31.2 33.0

Uncertain 8.60 10.3

Mean (50th cent.)

SketchRNN [1] 0.00 0.00

LiveSketch [3] 25.2 20.2

TForm-Cont 15.6 16.0

TForm-Tok-Grid 15.6 19.1

TForm-Tok-Dict 35.8 35.1

Uncertain 7.36 9.57

Long (90th cent.)

SketchRNN [1] 0.00 0.00

LiveSketch [3] 25.0 21.1

TForm-Cont 12.5 8.42

TForm-Tok-Grid 16.7 10.5

TForm-Tok-Dict 40.6 50.5

Uncertain 5.21 9.47

Table 3. User study quantifying interpolation quality for a pair of

sketches of same (intra-) or between (inter-) classes. Preference

is expressed by 5 independent workers, and results with > 50%
agreement are included. Experiment repeated for short, medium

and longer stroke sequences.

Figure 9. Quantifying search accuracy. a) Sketch2Sketch via

precision-recall (P-R) curves for Vector-2-Raster and Raster-2-

Vector category-level retrieval. b) Sketch2Image (SBIR) accuracy

via precision @ k=[1,15] curve over Stock10M.

Method Instance Category

Livesketch [3]
V-R 6.71 20.49
R-V 7.15 20.93

TForm-Cont
V-R 5.29 22.22
R-V 6.21 23.48

TForm-Tok-Grid
V-R 6.42 21.26
R-V 7.38 22.10

TForm-Tok-Dict
V-R 6.07 21.56
R-V 7.08 22.51

Table 4. Quantifying the performance of Sketch2Sketch retrieval

under two RNN baselines and three proposed variants. We report

category- and instance-level retrieval (mAP%).

Method mAP%

Baseline
LiveSketch [3] 54.80
CAG [4] 51.97

Proposed
TForm-Tok-Grid 53.75
TForm-Tok-Dict 56.96

Table 5. Quantifying accuracy of Sketchformer for Sketch2Image

search (SBIR). Mean average precision (mAP) computed to rank

15 over Stock10M for the QD345-Q query set.

5. Conclusion

We presented Sketchformer: a learned representation for
sketches based on the Transformer architecture [10]. Sev-
eral variants were explored using continuous and tokenized
input; a dictionary learning based tokenization scheme de-
livers classification performance gains of 6% on previous
LSTM autoencoder models (SketchRNN and derivatives).
We showed interpolation within the embedding yields plau-
sible blending of sketches within and between classes, and
that reconstruction (auto-encoding) of sketches is also im-
proved for longer, more complex sketches. Sketchformer
was also shown effective as a basis for indexing sketch and
image collections for sketch based visual search. Future
work could further explore our continuous representation
variant, or other variants with more symmetric encoder-
decoder structure. We have demonstrated the potential for
Transformer networks to learn a multi-purpose represen-
tation for sketch, but believe many further applications of
Sketchformer exist beyond the three tasks studied here.
For example, fusion with additional modalities might en-
able sketch driven photo generation [41] using complex
sketches, or with a language embedding for novel sketch
synthesis applications.
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