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Abstract

We consider the topic of data imputation, a foundational

task in machine learning that addresses issues with miss-

ing data. To that end, we propose MCFlow, a deep frame-

work for imputation that leverages normalizing flow gen-

erative models and Monte Carlo sampling. We address the

causality dilemma that arises when training models with in-

complete data by introducing an iterative learning scheme

which alternately updates the density estimate and the val-

ues of the missing entries in the training data. We pro-

vide extensive empirical validation of the effectiveness of

the proposed method on standard multivariate and image

datasets, and benchmark its performance against state-of-

the-art alternatives. We demonstrate that MCFlow is su-

perior to competing methods in terms of the quality of the

imputed data, as well as with regards to its ability to pre-

serve the semantic structure of the data.

1. Introduction

Missing data is a widespread problem in real-life ma-

chine learning problems. Because most of the existing

data analysis frameworks require complete datasets, impu-

tation methods are indispensable to practitioners in the field.

As a consequence, data imputation has been the focus of

extensive research in recent decades [30, 45]. Moreover,

much of the recent research in data imputation has lever-

aged advanced machine learning techniques. This has re-

sulted in the development of numerous shallow [44, 46, 42]

and deep learning frameworks [40, 49, 29, 33] which have

continuously pushed the state-of-the-art envelope. A per-

vasive shortcoming of traditional learning-based imputa-

tion methods is that their training relies on fully observed

data [15, 40]. A more reasonable assumption, however, is

that the training data itself may have missing entries, a limi-

tation addressed by recently proposed methods [49, 29, 33].

In this paper, we propose a data imputation framework that

leverages deep generative models and incorporates mech-

anisms that provide more accurate estimates of the miss-

ing data as compared to existing frameworks. In contrast to

competing methods that are based on Generative Adversar-

ial Networks (GANs) [49, 29] and on Deep Latent Variable

Models (DLVM) [33], our framework leverages normaliz-

ing flow models [10, 11, 23]. In particular, we take advan-

tage of the exact log-likelihood evaluation, latent variable

inference, and data sample reconstruction afforded by nor-

malizing flow models in order to explicitly learn complex,

high-dimensional data distributions.
We address the causality dilemma that arises when at-

tempting to construct probabilistic models of incomplete

data by adopting an alternating learning strategy inspired

by model-based multiple imputation approaches [31] such

as those based on Expectation Maximization [8] and Monte

Carlo Markov Chain [43] techniques. Recent examples of

related alternating techniques include applications to train-

ing generator networks [19, 14]. The overarching idea be-

hind the proposed framework is to alternately sample the

data and update the density estimate until a good approxi-

mation of the true empirical distribution is attained. This it-

erative process is enabled by the exact sampling and density

evaluation aspects afforded by the normalizing flow model

framework referenced above. We note that although accu-

rate density estimation is central to our framework, and au-

toregressive models achieve state-of-the-art performance in

that field [47, 5, 38], their slow sampling time would be a

significance hindrance to our algorithm. In order to address

the problem of missing data, we introduce a new imputation

algorithm called MCFlow. The proposed iterative learning

scheme calls for alternately optimizing two different ob-

jective functions: (i) the traditional log-likelihood loss in-

volved in training flow models, required to update the den-

sity estimate based on the complete data including imputed

values; and, (ii) a maximum-likelihood criterion involved

in sampling the latent flow space in order to find the opti-

mal values of the missing data given the current estimate of

the data distribution. While the former can be achieved by

implementing known backpropagation techniques, we in-

troduce a novel non-iterative approach to address the latter,
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which relies on a neural network trained to identify points

in the latent space that maximize a density value while min-

imizing the reconstruction error as computed on the ob-

served entries of the data. This approach can be viewed as

an instance of an algorithm that learns to optimize [28, 1]

and, although not as effective as iterative [22] or sampling-

based methods [43, 20], it is significantly more computa-

tionally efficient.

The primary contributions of this work can be summa-

rized as follows:

• a framework for data imputation based on deep gener-

ative normalizing flow models;
• an alternating learning algorithm that enables accurate

density estimation of incomplete, complex and high-

dimensional data by leveraging the efficient sampling

and density evaluation attributes of flow models;
• a neural network that learns to optimize in the embed-

ding flow space; and,
• extensive empirical validation of the proposed frame-

work on standard multivariate and image datasets, in-

cluding benchmarking against state-of-the-art imputa-

tion methods.

2. Related Work

An imputation method is classified as a single or multi-

ple imputation method depending upon whether it estimates

one or more than one value for each missing entry, respec-

tively [30]. Even though a multitude of single imputation

methods have been proposed in the literature [44, 42, 50],

multiple imputation methods are often preferred as they

provide an assessment of uncertainty [30, 45, 35]. Multi-

ple imputation frameworks often rely on building statistical

models for the data, and then drawing samples from them in

order to perform the imputation. Early attempts at building

multiple imputation frameworks relied on simple paramet-

ric models such as Bayesian models [3, 41] as well as mix-

tures of Gaussians [30, 9]. More recently, with the advent of

sophisticated deep generative models, the focus has shifted

to investigating more effective ways to leverage the expres-

sivity of the models to address data imputation scenarios.

Initial efforts exploiting deep models for imputation re-

lied on the availability of fully observable training data [40].

More recent work has overcome this shortcoming. Two

such publications rely on modifications to the Generative

Adversarial Network (GAN) architecture [17]. The Gen-

erative Adversarial Imputation Network (GAIN) frame-

work [49] employs an adversarially trained imputer opti-

mized at discriminating between fake and real imputations.

While the GAN for Missing Data (MisGAN) approach [29]

also implements an adversarially trained imputer, it addi-

tionally includes an explicit model for the missing data. Un-

fortunately, being close GAN relatives, these models can be

difficult to train [39, 2]. Furthermore, we believe there is an

advantage to explicitly learning a probability density model

of the data in imputation tasks, a feature that GAN-based

frameworks generally don’t afford.

Models that enable approximate density learning rely on

estimating the variational bound [25, 40, 4]. While build-

ing such models requires observations of complete data,

the Missing Data Importance-Weighted Autoencoder (MI-

WAE) framework [33] extends the variational lower bound

principle to scenarios where only partial observations are

available. Unfortunately, such a family of methods is still

intrinsically limited to learning an approximation of the

density of the data and can therefore be challenging to opti-

mize [24].

In general, models that enable tractable density learning

can be classified into frameworks based on fully visible be-

lief networks (FVBNs) and those leveraging nonlinear in-

dependent components analysis (ICA). FVBNs rely on the

general product rule of probability which enables calcula-

tion of the joint distribution of a set of random variables us-

ing the product of conditional probabilities [13, 37]. How-

ever, given the sequential nature of the operations involved,

sampling the density estimate is not efficient. Nonlinear

ICA methods define a set of continuous and invertible non-

linear mappings between two spaces [7, 6, 10, 11, 23]. Their

main limitation stems from the fact that the mappings need

to be invertible, which may limit their expressivity.

3. Framework

Throughout the paper, we consider the scenario in which

data is Missing Completely at Random (MCAR) [31]. For-

mally speaking, assume that fully observable data points

x ∈ X ⊆ R
n are distributed according to pX(x), the set

of binary masks m ∈ {0, 1}n indicates the location of the

missing data entries, and the mask entries are distributed

according to pM (m|x). Data is MCAR when the missing-

ness is independent of the data, that is, when pM (m|x) =
pM (m). Suppose that we observe data point x̃(i) with cor-

responding mask m(i), which means that the k-th entry in

x̃(i), denoted x̃
(i)
k , is observed if m

(i)
k = 0 and missing if

m
(i)
k = 1. Often, it will be convenient to work with the

complement of mask m(i), which we denote m(i). We use

the notation x̃
(i)

m(i) and x̃
(i)

m(i) , respectively, to denote the set

of observed and unobserved entries in x̃(i) given mask m(i).

Note that it is always possible to determine which entries of

x̃(i) are missing and which are present, which means that

m(i) can be uniquely determined from x̃(i). Assuming x̃(i)

is a partial observation of unknown data point x(i) with en-

tries observed according to mask m(i), we formulate the

data imputation task of recovering x(i) as a maximum like-

lihood problem, namely:

x(i)∗ = argmax
x(i)

{

pX(x(i))
}

s.t. x
(i)

m(i) = x̃
(i)

m(i) (1)
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Because log is a monotonic function, Eq. 1 is equivalent

to

x(i)∗ = argmax
x(i)

{

log
(

pX(x(i))
)}

s.t. x
(i)

m(i) = x̃
(i)

m(i)

(2)

Note that, in general, pX(·) is unknown, but even if that

were not the case, solving the optimization task from Eqs. 1

and 2 would be challenging given that the distribution of

any data of interest is likely to be highly non-convex and

high-dimensional. One of the goals of this work is to make

this optimization task feasible. To that end, and for the sake

of argument, assume a tractable, explicit density model for

pX(x) exists. Let this model be in the form of a generative

network G mapping a sample of interest x ∼ pX(x) lying

in space X to an embedding representation z ∼ pZ(z) in

space Z ⊆ R
n. Further, assume that network G effects a

continuous, differentiable and invertible mapping g : X →
Z such that z = g(x) and

pX(x) = pZ(g(x))

∣

∣

∣

∣

det

(

∂g(x)

∂xT

)
∣

∣

∣

∣

(3)

This model is tractable if pZ(z) is tractable and if the

determinant of the Jacobian of g(·) is tractable [18]. Be-

cause g(·) is invertible, exact sample generation from den-

sity pX(x) is possible by drawing a sample z ∼ pZ(z) and

computing x = g−1(z). Additionally, computing the den-

sity on x involves computing the density of its embedding

vectors, and then scaling the result by the Jacobian deter-

minant as in Eq. 3 [11]. Transformations that take the form

of Eq. 3 fall under the category of nonlinear independent

component analysis. A variety of methods of this type have

been proposed in the literature [10, 11, 23]. In this paper,

we implement network G in the form of a normalizing flow

model, and modify existing architectures to support learn-

ing from data with missing entries. It is often computation-

ally convenient to work with the log-likelihood function.

Taking the log of both sides of Eq. 3 results in

log(pX(x)) = log(pZ(g(x))) + log

(∣

∣

∣

∣

det

(

∂g(x)

∂xT

)∣

∣

∣

∣

)

(4)

Given a complete set of training data (that is, data with-

out missing entries), and assuming g(·) is parameterized by

a set of parameters θ, learning network G corresponds to

finding an optimal set of parameters θ∗ such that

θ∗ = argmax
θ

{

log(pZ(gθ(x))) + log

(
∣

∣

∣

∣

det

(

∂gθ(x)

∂xT

)
∣

∣

∣

∣

)}

(5)

If network G were available, then the task of data impu-

tation as formulated in Eq. 2 would become feasible. For

instance, standard gradient-based optimization techniques

could be applied. Because missing data affects the training

set in the scenarios under consideration, however, direct es-

timation of the distribution of the data according to Eqs. 3

or 4 is not possible.

This scenario constitutes a causality dilemma. Draw-

ing inspiration from alternating algorithms such as Expecta-

tion Maximization (EM) [8], MCFlow iteratively fills in the

missing data according to Eq. 2 (i.e., based on the current

estimate of the density), and updates the generative network

parameters according to Eq. 5 (i.e., based on the generated

samples). The intuition behind this approach is that finding

the values of the missing entries in the data according to

the maximum likelihood condition requires knowledge of

the data distribution, and learning a model for the data dis-

tribution requires complete knowledge of the data. As will

become evident later, filling in for missing values in this it-

erative process involves drawing samples from the current

model for the data distribution. In this sense, the MCFlow

framework is more closely related to Monte Carlo versions

of the EM algorithm [48, 36] than to its vanilla version. In

MCEM implementations, the E step consists in generating

samples of the latent variables based on the current esti-

mate of the predictive conditional distribution, and the M

step estimates the parameters that maximize the observed

posterior. This similarity becomes more apparent if we in-

terpret the imputation tasks from Eqs. 1 and 2 as generat-

ing samples from the current approximation of the condi-

tional predictive distribution of the missing data given the

observed data and the current model parameters, pX(x|θ, x̃)
(E step). Furthermore, the optimization task from Eq. 5 can

be interpreted as updating the current approximation of the

posterior of the model parameters given the observed and

imputed values, p(θ|x, x̃) (M step).

4. Model Architecture

The MCFlow architecture utilizes a hybrid framework

comprised of a normalizing flow network G (referred to

herein as flow network or model) that is trained in an un-

supervised manner, and a feedforward neural network that

is trained in a supervised manner. The flow network pro-

vides an invertible mapping gθ(·), where θ are the tunable

parameters of the network, between data space X and em-

bedding space Z and vice versa. The feedforward network

H operates in the embedding space by mapping input em-

bedding vectors to output embedding vectors via function

hφ(·), where φ are the tunable parameters of the network.

In general, the role of the flow model is to learn the distri-

bution of the data. The role of the feedforward network is to

find the embedding vector with the largest possible density

estimate (i.e., the likeliest embedding vector) that maps to

a data vector whose entries match the observed values (i.e.,

values at locations indexed by the complement of the mask).

A high-level overview of the model is illustrated in Fig. 1.

As with traditional flow implementations, training the
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Figure 1. High-level view of the MCFlow architecture.

generative portion of the framework involves finding the set

of parameters θ∗ that optimizes the mapping gθ(·) pursuant

to Eq. 5. Because the optimization task from Eq. 5 does

not natively support incomplete data, a specific imputation

scheme is implemented at initialization. This scheme in-

volves sampling the marginal observed density of the vari-

able that contains the missing data in the case of multivari-

ate, tabular data, and nearest-neighbor sampling in the case

of image data. After preprocessing the data as described

above, an initial density estimate exists, and the model is

now capable of performing data imputation. The estimates

for missing values in x̃ are updated during defined subse-

quent iterations of training with the output of the model, x̂.

This is illustrated by the dotted arrow in Fig. 1. The alternat-

ing nature of the training process is more clearly illustrated

in Fig. 2, which shows how the trained model from the pre-

vious epoch is used to update the missing value estimates

for use in the current epoch.

The training stage of the generative portion of the frame-

work can be formalized as follows: assume N training sam-

ples, x̃(i), i = 0, 1, . . . , N − 1 with corresponding masks

m(i) are available. For every incomplete sample x̃(i), a

full training data sample ẋ(i) is computed by combining the

observed values with imputed values from imputed sample

x̂(i) according to ẋ(i) = x̃(i) ⊙m(i) + x̂(i) ⊙m(i). Here,

⊙ denotes the Hadamard, or element-wise product between

two vectors. With a full training set constructed, learning

the optimal set of parameters θ∗ in gθ(·) is accomplished by

minimizing the following cost function:

−
1

N

N−1
∑

i=0

log(pX(ẋ(i))) (6)

or equivalently, using Eq. 4

−
1

N

N−1
∑

i=0

[

log(pZ(gθ(ẋ
(i))) + log

(
∣

∣

∣

∣

det

(

∂gθ(ẋ
(i))

∂ẋ(i)T

)
∣

∣

∣

∣

)]

(7)

which is the batch version of Eq. 5. In other words, the op-

timal parameters of network G are the ones that maximize

the log-likelihood of the imputed data, with the imputation

mechanism being iteratively updated. The black arrow in

Fig. 2 illustrates the direction in which the gradients are

backpropagated when training the generative model.

Once an initial density estimate is available, learning the

optimal mapping function hφ(·) in the embedding space is

performed by training feedforward network H . The input

to H is the embedding of the imputed training set, namely

ż(i), i = 0, 1, . . . , N − 1, where ż(i) = gθ(ẋ
(i)). Feedfor-

ward network H , which maps inputs ż(i) to outputs ẑ(i),

is trained by finding the set of parameters φ in hφ(·) that

minimizes the following objective function:

1

N

N−1
∑

i=0

[

MSE(ẋ
(i)

m(i) , x̂
(i)

m(i))− λ log(pX(x̂(i)))
]

(8)

where ẋ(i) = g−1
θ (ż(i)), x̂(i) = g−1

θ (ẑ(i)), ẑ(i) = hφ(ż
(i)),

and MSE(x, y) denotes the mean-squared error operator be-

tween vectors x and y. The first cost term in Eq. 8 encour-

ages network H to output an embedding whose reconstruc-

tion g−1
θ (ẑ(i)) matches the training sample ẋ(i) at the ob-

served entries. The second cost term encourages network H

to output the vector with the highest density value accord-

ing to the current density estimate. Both terms combined

yield estimates in the form of the likeliest embedding vec-

tor that matches the observed values, effectively solving the

maximum likelihood objective from Eqs. 1 and 2. The red

arrows in Fig. 2 illustrate the computation of the different

terms in Eq. 8. The solid segments of the arrows indicate the

sections of the framework that contain weights affected by

the computations, while the dotted segments indicate where

the computations take place and how they are propagated

through the framework without affecting any parameters.

More specifically, the MSE term is computed in the data

space but it only affects weights in neural network H as it

is backpropagated. On the other hand, the log-likelihood

term is computed in the embedding space of the flow model

G and is used to update the weights in H .

We note that optimizing the cost function from Eq. 8 re-

quires repeated log-likelihood evaluation (e.g., in the com-

putation of log(pX(x̂))), latent variable inference (e.g., in

the computation of ż from ẋ), and data sample reconstruc-

tion (e.g., in the computation of x̂ from ẑ), all of which can

be effectively computed with flow network G. While other

generative models may outperform flow approaches at one

task or another, we found flow models to constitute the best

compromise for the needs of our framework. Pseudocode
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Figure 2. Unrolled view of the architecture and backpropagation process.

for the training procedure is provided in Algorithm 1. Note

that we concurrently update the parameters of G and H in

order to achieve some computational savings: updating G

first and then H would require two separate forward passes

through G (one to update G itself and one to compute the

mappings involved in updating H).

Algorithm 1 Training Procedure

Data: N data points x̃(i), i = 0, 1, . . . , N−1 with corre-

sponding masks m(i) indicating location of observed and

missing entries

Naively impute missing data in x̃ to produce ẋ:

ẋ← x̃⊙m+ x̂⊙m

for n = 1 to nEpochs do

Forward Pass:

ż ← gθ(ẋ)
ẑ ← hφ(ż)
x̂← g−1

θ (ẑ)
ẑ ← gθ(x̂)
Backpropagation:

Compute loss according to Eq. 5

Compute loss according to Eq. 8

Update θ and φ by backpropagating loss

ẋ← x̃⊙m+ x̂⊙m

Once the model is trained, MCFlow imputes missing val-

ues according to Algorithm 2. The procedure involves en-

coding the naively imputed data sample ẋ into ż, forward

propagating ż through the feedforward neural network to

obtain ẑ, and reconstructing data sample x̂ by decoding ẑ.

The final imputed sample ẋ is obtained by filling in the

missing entries with corresponding entries in x̂

Algorithm 2 Imputation Procedure

Data: Test data point x̃ with corresponding mask m

Naively impute missing data in x̃ to produce ẋ:

ẋ← x̃⊙m+ x̂⊙m

ż ← gθ(ẋ)
ẑ ← h(ż)
x̂← g−1

θ (ẑ)
ẋ← x̃⊙m+ x̂⊙m

4.1. Implementation Details

The MCFlow architecture, comprised of various neu-

ral network layers, multiple optimizers and competing loss

functions, can be implemented in the manner described in

this section. A Pytorch implementation of the MCFlow al-

gorithm is available online.1 Preprocessing each dataset

was done in two steps: 1) initializing x̃
(i)

m(i) , and 2) scal-

ing the data for training. Each data point x̃(i) requires

the construction of initial estimates for x̃
(i)

m(i) . This initial

step can be performed easily using naive strategies such

as zero imputation. We, however, employed two different

initialization strategies, both of which estimate initial val-

1https://github.com/trevor-richardson/MCFlow
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ues for x̃
(i)

m(i) based on observable values in the dataset.

For numerical multivariate datasets, each missing element

in x̃(i) is replaced by sampling the marginal observed den-

sity of the variable containing the missing data. For the im-

age datasets, each missing pixel was selected by randomly

choosing one entry from the set of nearest observable neigh-

bors of the missing pixel. After completing the selection of

values for the missing data points, data was scaled to be in

the interval [0, 1] via min-max normalization. For multivari-

ate datasets, only observed values for each variable were

used to determine the maximum and minimum values for

that variable. For image datasets, the possible maximum

of 255 and minimum of 0 were used for each pixel. These

steps are required to construct the initial instantiation of ẋ.

For all datasets and experiments, the Adam optimizer

was used. For multivariate datasets, we used a learning rate

of 1× 10−4 and a batch size of 128. Normalizing flow net-

work G was built using affine coupling layers as introduced

by the Real NVP framework [11]. Our implementation of G

uses six affine coupling layers and a random masking strat-

egy in contrast to the deterministic masking strategy used in

Real NVP. The operations involved in the forward pass of

each affine coupling transformation are depicted in Eq. 9:

yD = xD,

y¬D = x¬D ⊙ exp(s(xD)) + t(xD)
(9)

In Eq. 9, D (¬D) represents the set of randomly selected

indices which will not (will) be scaled or translated in the

current affine transformation. Indices in D were initial-

ized using a binomial distribution with a 50% success rate.

These indices remain constant after initialization. In our

implementation of G, the s and t functions of every cou-

pling layer are defined by 4-layer fully connected neural

networks. Both s and t networks use Leaky ReLu as the

activation function in the hidden layers. The final output

layer for s and t utilizes the activation functions tanh and

linear, respectively.

Network H has five linear layers with the same number

of neurons in each layer as the dimensionality of the data.

Leaky ReLu was chosen as the activation function between

layers. For the image datasets, the following changes were

made as a result of resource constraints: First, the batch

sizes used for MNIST, CIFAR-10 and CelebA were 128,

128 and 512 respectively; second, for missing data rates

above 60%, a learning rate of 1 × 10−3 was employed. A

detailed description of the training procedure for MCFlow

can be seen in Algorithm 1.

MCFlow periodically updates the missing entries in the

training data and resets the θ parameters in the flow model

function, gθ(·). To that end, we use an exponential schedul-

ing mechanism, where the data update and parameter reset

occurs at every epoch that is a power of 2. This implies

that in order to perform inference on arbitrary data points,

it is necessary to save the model parameters for both hφ(·)
and gθ(·) after updating ẋ according to Eq. 10 but before

resetting the model parameters in gθ(·):

ẋ = x̃⊙m+ x̂⊙m (10)

Based on this exponential scheduling scheme, inference

in the MCFlow architecture, as described in Algorithm 2,

requires all of the models saved during training. The num-

ber of saved models and passes through the architecture is a

function of the number of epochs trained, M . More specif-

ically, training MCFlow involves saving the parameters for

hθ(·) and gθ(·) at every epoch that is a power of 2, ulti-

mately requiring ⌈log2(M)⌉ saved models in order to prop-

erly impute missing data for new samples. The longest the

model took to converge was 500 epochs, which required

nine saved models to properly inference testing datapoints.

Imputing missing data in the test dataset involves perform-

ing initial naive imputation followed by full passes through

each saved architecture. At the end of this process, the final

prediction from MCFlow of x in x̂ is returned and perfor-

mance metrics are recorded.

5. Experimental Results

5.1. Datasets

We evaluate the performance of MCFlow as well as

competing methods on three standard, multivariate datasets

from the UCI repository [12] and three image datasets. The

UCI datasets considered are Default of Credit Card Clients,

Letter Recognition and Online News Popularity. The im-

age datasets used in this research are MNIST[27], CIFAR-

10 [32] and CelebA [26]. The MNIST dataset contains

28 × 28-pixel grayscale images of handwritten digits; we

used the standard 60,000/10,000 training/test set partition.

CIFAR-10 contains 32 × 32-pixel RGB images from ten

classes; we used the standard 50,000/10,000 training/test set

partition. CelebA contains 178× 218-pixel RGB images of

celebrity faces. It was split using the first 162,770 images as

the training set and the last 19,962 images for testing. The

CelebA images were center cropped and resized to 32× 32
pixels using bicubic interpolation.

5.2. Experimental Setup

Imputation performance on multivariate and image data

was measured using using root mean squared error (RMSE).

We report performance numbers on each test set from

models obtained upon convergence of the training process,

where convergence is determined based on stabilization of

the training losses for both G (Eq. 7) and H (Eq. 8). We

emphasize that the training set itself has missing data and

that the training loss is computed only on observed data

points in order to mimic real-world scenarios as faithfully

as possible. Imputation performance on the UCI datasets
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Table 1. Imputation Results on UCI Datasets - RMSE (lower is better, 0.2 missing rate)

Default Credit Card Online News Popularity Letter Recognition

MICE .1763 ± .0007 .2585 ± .0010 .1537 ± .0006

MissForest .1623 ± .0120 .1976 ± .0015 .1605 ± .0004

Matrix .2282 ± .0005 .2602 ± .0073 .1442 ± .0006

Auto-Encoder .1667 ± .0014 .2388 ± .0005 .1351 ± .0009

EM .1912 ± .0011 .2604 ± .0015 .1563 ± .0012

GAIN .1441 ± .0007 .1858 ± .0010 .1198± .0005

MCFlow .1233±.0012 .1760±.0032 .1033±.0017

Table 2. Imputation Results on Image Datasets - RMSE (lower is better)

Missing Rate→ .1 .2 .3 .4 .5 .6 .7 .8 .9

MNIST

GAIN .11508 .12441 .13988 .14745 .16281 .18233 .20734 .24179 .27258

MisGAN .11740 .10997 .11377 .11297 .12174 .13393 .15445 .19455 .27806

MCFlow .07464 .07929 .08508 .09187 .10045 .11255 .12996 .15806 .20801

CIFAR-10

GAIN .10053 .12700 .13248 .11785 .12451 .13130 .13832 .18728 .53728

MisGAN .18923 .15223 .14746 .12947 .13027 .14746 .17335 .24060 .31722

MCFlow .06012 .06232 .06686 .07215 .08311 .10048 .13132 .15015 .16939

CelebA
GAIN .06752 .07493 .08367 .08479 .09292 .10608 .11720 .14042 .52050

MCFlow .05733 .06243 .06266 .06946 .07261 .07890 .08487 .11073 .12225

Table 3. FID Results on Imputed MNIST Data (lower is better)

Missing Rate→ .1 .2 .3 .4 .5 .6 .7 .8 .9

GAIN .0696 .4035 1.24 3.277 6.337 12.44 22.91 43.69 92.74

MisGAN .0529 .1015 .2085 .2691 .3634 .8870 1.324 2.334 6.325

MCFlow .0521 .0779 .2295 .6097 .8366 .9082 1.951 6.765 15.11

Table 4. Classification Accuracy on Imputed MNIST Data (higher is better)

Missing Rate→ .1 .2 .3 .4 .5 .6 .7 .8 .9

GAIN .989 .988 .985 .978 .969 .931 .852 .629 .261

MisGAN .989 .988 .986 .980 .968 .945 .872 .690 .334

MCFlow .991 .990 .990 .988 .985 .979 .963 .905 .705

was evaluated with a data missingness rate of 20% using

five-fold cross validation. We report the mean and standard

deviation of the imputation accuracy across all folds for six

competing methods: MICE [46], MissForest [42], Matrix

Completion (Matrix) [34], Auto-Encoder [16], Expectation-

Maximization (EM) [15] and GAIN [49]. For MNIST,

CIFAR-10 and CelebA, the testing imputation accuracies

are reported across missing rates ranging from 10% to

90% in steps of 10%. Competing methods considered in-

clude GAIN [49] and MisGAN [29]. All reported numbers

are measured with respect to imputation accuracy over the

missing data, namely x̃
(i)

m(i) . Despite considerable efforts

to make MisGAN achieve reasonable performance numbers

on CelebA, we weren’t able to manage it based on the cur-

rently published code. No other versions of the code were

available directly from the authors. We also measured the

quality of the imputed MNIST images with the Fréchet In-

ception Distance (FID) [21], which has been shown to cor-

relate well with human perception. Lastly, we measured the

ability of the algorithms to preserve semantic content by

performing a classification task on imputed imagery with

networks pretrained on fully observed data.

5.3. Quantitative Results

Tables 1 and 2 depict MCFlow’s performance at MCAR

imputation against competing methods. For all datasets and

missing rates, the MCFlow framework outperforms all other

methods at imputation accuracy from the perspective of the

RMSE between the predictions of the model in question and

the ground truth values. For the UCI datasets, MCFlow
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produces an average reduction in square error of 11% as

compared to the existing state of the art, GAIN. In addi-

tion, MCFlow produces an average reduction in RMSE of

19%, 38% and 27% as compared to the next best perform-

ing method on MNIST, CIFAR-10 and CelebA respectively.

Sec. 1 in the Supplementary Material contains imputation

results on the training dataset and in terms of PSNR. The

results in Table 2 illustrate the pixel-level quality of the im-

puted imagery; in contrast, Table 3 includes FID perfor-

mance which is meant to be indicative of quality as per-

ceived by humans. It can be seen that MisGAN outperforms

competing methods across most of the missingness range.

As will be illustrated in Sec. 5.4, while this means that im-

puted images more closely resemble attributes of the target

image population, they do not necessarily preserve the orig-

inal semantic content of the partially observed inputs.

In order to illustrate the performance of the methods be-

yond image quality metrics, we tested their imputation abil-

ities within the context of a larger data processing pipeline

where incomplete data is imputed before being processed

through a classifier trained on complete data. To that end,

we measured the classification performance of a LeNET-

based handwritten digit classifier on imputed MNIST data

with various degrees of missingness. The LeNET network

was pre-trained on MNIST data without missing values. Ta-

ble 4 contains these results. It can be seen that the impu-

tation results produced by MCFlow have the smallest im-

pact on the semantic content of the imagery, as classifica-

tion results are consistently higher for images imputed with

our method. This phenomenon becomes more evident as

the missing data rate increases: the classifier operating on

MCFlow-imputed imagery is able to achieve good classifi-

cation accuracy up to the highest rate of missingness tested,

and performs acceptably even in this extreme scenario.

5.4. Qualitative Results

Fig. 3 illustrates the imputation performance of compet-

ing methods for the 90% missing data rate on the MNIST

dataset. Images along columns (a) and (b) contain the origi-

nal and observed images, respectively. Pixels that are not

observed are assigned a value of 0 for visualization pur-

poses. The imputation models only see the observed im-

ages; complete images are included for reference only. Im-

ages along columns (c), (d) and (e) include the imputed

results after using GAIN, MisGAN and MCFlow, respec-

tively. It can be seen that MCFlow does the best job

among the competing methods at preserving and recover-

ing the semantic content of the intended image, which fur-

ther supports the results from Table 4. Numbers in GAIN-

imputed images are, for the most part, illegible. In contrast,

MisGAN-imputed images are visually impressive, which is

in line with the results from Table 3. One shortcoming of

MisGAN, however, is that the imputations produced often

(a) (b) (c) (d) (e)
Figure 3. Sample imputation results for MNIST at 0.9 missingess

rate: (a) Original, (b) observed, (c) GAIN-imputed, (d) MisGAN-

imputed, and (e) MCFlow-imputed images.

fail to represent the digit contained in the original image.

Sec. 2 in the Supplementary Material contains additional

qualitative results on MNIST and CIFAR-10.

6. Conclusions

We proposed MCFlow, a method for data imputation

that leverages a normalizing flow model as the underly-

ing density estimator. We augmented the traditional gen-

erative framework with an alternating learning scheme that

enables it to accurately learn distributions from incomplete

data sets with various degrees of missingness. We empiri-

cally demonstrated the superiority of the proposed method

relative to state-of-the-art alternatives in terms of RMSE

between the imputed and the original data. Experimental

results further show that MCFlow outperforms competing

methods with regards to preservation of the semantic struc-

ture of the data. This is evidenced by the superior classi-

fication performance on imputed data achieved by a clas-

sifier trained on complete data, which holds across the full

range of missing data ratios evaluated. The ability of the

method to make sense of and recover the semantic content

of the data at every tested missing rate indicates that it is

effectively learning the underlying statistical properties of

the data, even in extreme paucity scenarios.
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