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Abstract

Depth estimation is an essential component in under-

standing the 3D geometry of a scene, with numerous appli-

cations in urban and indoor settings. These scenarios are

characterized by a prevalence of human made structures,

which in most of the cases are either inherently piece-wise

planar or can be approximated as such. With these set-

tings in mind, we devise a novel depth refinement frame-

work that aims at recovering the underlying piece-wise pla-

narity of those inverse depth maps associated to piece-wise

planar scenes. We formulate this task as an optimization

problem involving a data fidelity term, which minimizes the

distance to the noisy and possibly incomplete input inverse

depth map, as well as a regularization, which enforces a

piece-wise planar solution. As for the regularization term,

we model the inverse depth map pixels as the nodes of a

weighted graph, with the weight of the edge between two

pixels capturing the likelihood that they belong to the same

plane in the scene. The proposed regularization fits a plane

at each pixel automatically, avoiding any a priori estima-

tion of the scene planes, and enforces that strongly con-

nected pixels are assigned to the same plane. The resulting

optimization problem is solved efficiently with the ADAM

solver. Extensive tests show that our method leads to a sig-

nificant improvement in depth refinement, both visually and

numerically, with respect to state-of-the-art algorithms on

the Middlebury, KITTI and ETH3D multi-view datasets.

1. Introduction

The accurate recovery of depth information in a scene

represents a fundamental step for many applications, rang-

ing from 3D imaging to the enhancement of machine vi-

sion systems and autonomous navigation. Typically, dense

depth estimation is implemented either using active de-

vices such as Time-Of-Flight cameras, or via dense stereo

matching methods that rely on two [41, 13, 38, 2] or more

[9, 15, 10, 32, 14, 40] images of the same scene to compute

its geometry. Active methods suffer from noisy measure-

ments, possibly caused by light interference or multiple re-

flections, therefore they can benefit from a post-processing

step to refine the depth map. Similarly, dense stereo match-

ing methods have a limited performance in untextured ar-

eas, where the matching becomes ambiguous, or in the pres-

ence of occlusions. Therefore, a stereo matching pipeline

typically includes a refinement step to fill the missing depth

map areas and remove the noise.

In general, the refinement step is guided by the image as-

sociated to the measured or estimated depth map. The depth

refinement literature mostly focuses on enforcing some kind

of first order smoothness among the depth map pixels, pos-

sibly avoiding smoothing across the edges of the guide im-

age, which may correspond to object boundaries [1, 40, 37].

Although depth maps are typically piece-wise smooth, first

order smoothness is a very general assumptions, which does

not exploit the geometrical simplicity of most 3D scenes.

Based on the observation that most human made environ-

ments are characterized by planar surfaces, some authors

propose to enforce second order smoothness by computing

a set of possible planar surfaces a priori and assigning each

depth map pixel to one of them [24]. Unfortunately, this re-

finement strategy imposes to select a finite number of plane

candidates a priori, which may not be optimal in practice

and lead to reduced performance.

In this article we propose a depth map refinement frame-

work, which promotes a piece-wise planar arrangement of

scenes without any a priori knowledge of the planar surfaces

in the scenes themselves. We cast the depth refinement

problem into the optimization of a cost function involving

a data fidelity term and a regularization. The former penal-

izes those solutions deviating from the input depth map in

areas where the depth is considered to be reliable, whereas

the latter promotes depth maps corresponding to piece-wise

planar surfaces. In particular, our regularization models the

depth map pixels as the nodes of a weighted graph, where

the weight of the edge between two pixels captures the like-

lihood that their corresponding points in the 3D scene be-

long to the same planar surface.

Our contribution is twofold. On the one hand, we pro-

pose a graph-based regularization for depth refinement that

promotes the reconstruction of piece-wise planar scenes ex-

plicitly. Moreover, thanks to its underneath graph, our regu-

larization is flexible enough to handle non fully piece-wise
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planar scenes as well. On the other hand, our regularization

is defined in order to estimate the normal map of the scene

jointly with the refined depth map.

The proposed depth refinement and normal estimation

framework is potentially very useful in the context of large

scale 3D reconstruction [10, 32, 14, 40, 39, 19, 20], where

the large number of images to be processed requires fast

dense stereo matching methods, whose noisy and poten-

tially incomplete depth maps can benefit from a subsequent

refinement [14, 40, 39, 19, 20]. It is also relevant in the

3D reconstruction fusion step, when multiple depth maps

must be merged into a single point cloud and the estimated

normals can be used to filter out possible depth outliers

[32, 20]. We test our framework extensively and show that

it is effective in both refining the input depth map and esti-

mating the corresponding normal map.

The article is organized as follows. Section 2 provides an

overview on the depth map refinement literature. Section 3

motivates the novel regularization term and derives the re-

lated geometry. Section 4 presents our problem formulation

and Section 5 presents our full algorithm. In Section 6 we

carry out extensive experiments to test the effectiveness of

the proposed depth refinement and normal estimation ap-

proach. Section 7 concludes the paper.

2. Related work

Depth refinement methods fall mainly into three classes:

local methods, global methods and learning-based methods.

Local methods are characterized by a greedy approach.

Tosi et al.[37] adopt a two step strategy. First, the input

disparity map is used to compute a binary confidence mask

that classifies each pixel as reliable or not. Then, the dispar-

ity at the pixels classified as reliable is kept unchanged and

used to infer the disparity at the non reliable ones, using a

wise interpolation heuristic. In particular, for each non reli-

able pixel, a set of anchor pixels with a reliable disparity is

selected and the pixel disparity is estimated as a weighted

average of the anchor disparities. Besides its low compu-

tational requirements, the method in [37] suffers two major

drawbacks. On the one hand, pixels classified as reliable are

left unchanged: this does not permit to correct possible pix-

els misclassified as reliable, which may bias the refinement

of the other pixels. On the other hand, the method in [37],

and local methods in general, cannot take advantage of the

reliable parts of the disparity map fully, due to their local

perspective.

Global methods rely on an optimization procedure to re-

fine each pixel of the input disparity map jointly. Barron and

Poole [1] propose the Fast Bilateral Solver, a framework

that permits to cast arbitrary image related ill posed prob-

lems into a global optimization formulation, whose prior re-

sembles the popular bilateral filter [36]. In [37] the Fast Bi-

lateral Solver has been shown to be effective in the disparity

refinement task, but its general purposefulness prevents it

from competing with specialized methods, even local ones

like [37]. Global is also the disparity refinement framework

proposed by Park et al. [24], which can be broken down into

four steps. First, the input reference image is partitioned

into super-pixels and a local plane is estimated for each one

of them using RANSAC. Second, super-pixels are progres-

sively merged into macro super-pixels to cover larger areas

of the scene and a new global plane is estimated for each

of them. Then, a Markov Random Field (MRF) is defined

over the set of super-pixels and each one is assigned to one

of four different classes: the class associated the local plane

of the super-pixel, the class associated to the global plane of

the macro super-pixel to which the super-pixel belongs, the

class of pixels not belonging to any planar surface, or the

class of outliers. The MRF employs a prior that enforces

connected super-pixel to belong to the same class, thus pro-

moting a global consistency of the disparity map. Finally,

the parameters of the plane associated to each super-pixel

are slightly perturbed, again within a MRF model, to allow

for a finer disparity refinement. This method is the closest

to ours in flavour. However, the a priori detection of a fi-

nite number of candidate planes for the whole scene biases

the refinements toward a set of plane hypotheses that may

either not be correct, as estimated on the input noisy and

possibly incomplete disparity map, or not be rich enough to

cover the full geometry of the scene.

Finally, recent learning based methods typically rely on

a deep neural network which, fed with the noisy or incom-

plete disparity map, outputs a refined version of it [35, 25].

In [35] the task is split into three sub-tasks, each one ad-

dressed by a different network and finally trained end to end

as a single one: detection of the non reliable pixels, gross re-

finement of the disparity map and fine refinement. Instead,

Knöbelreiter and Pock [25] revisit the work of Cherabier at

al. [4] in the context of disparity refinement. First, the dis-

parity refinement task is cast into the minimization of a cost

function, hence a global optimization, whose minimizer is

the desired refined disparity map. However, the cost func-

tion is partially parametrized, rather than fully handcrafted.

Then, the cost function solver can be unrolled for a fixed

number of iterations, thus obtaining a network structure,

and the parametrized cost function can be learned. Once

the network parameters are learned, the disparity refinement

requires just a network forward pass. Both the methods in

[35] and [25] permit a fast refinement of the input disparity.

However, due to their learning-based nature, they can fall

short easily in those scenarios which differ from the ones

employed at training time, as shown for the method in [25],

which performs remarkably well in the Middlebury bench-

mark [31] training set, while quite poorly in the test set of

the same dataset.

Our graph-based depth refinement framework, instead,
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does not rely on any training procedure. It adopts a global

approach which permits to compute a pair of consistent

depth and normal maps jointly. Moreover, it does not need

any a priori knowledge of the possible planar surfaces in

the scene, as it automatically assigns a plane to each pixel

based on its neighbors in the underneath graph. Finally, the

proposed framework does not call for a separate handling of

pixels belonging to planar surfaces and not, again thanks to

the graph underneath.

3. Depth map model

In this section we investigate the relationship between a

plane in the 3D space and its 2D depth map. In particular,

we show that a plane imaged by a camera has an inverse

depth map described by a plane as well, thus motivating a

piece-wise planar model for the inverse depth map of those

scenes where planar structures are prevalent. Let us con-

sider a plane P in the 3D scene in front of a pinhole cam-

era. For the sake of simplicity and w.l.o.g., hereafter we

assume the scene coordinate system to coincide with the

camera one. In particular, the camera coordinate system is

assumed to be left handed, with the Z axis aligned with

the camera optical axis and pointing outside the camera.

The plane P can be described uniquely by a pair (P0,n0),
where P0 = (X0, Y0, Z0) ∈ P ⊂ R

3 is a point of the plane

and n0 = (a0, b0, c0) ∈ R
3, with ||n0||2 = 1, is the plane

normal vector defining the orientation of the plane itself.

Therefore, for all and only the points P = (X,Y, Z) ∈ P ,

the following equation holds true:

〈n0, (X,Y, Z)− (X0, Y0, Z0)〉 = 0, (1)

where 〈·, ·〉 denotes the dot product. Equivalently, Eq. (1)

can be rewritten as follows:

a0X + b0Y + c0Z − ρ0 = 0, (2)

where ρ0 = 〈n0, (X0, Y0, Z0)〉 ∈ R. In the pinhole model,

the 3D point P = (X,Y, Z) is projected into the camera

image plane at the pixel image coordinates (x, y) ∈ R
2:

x =
X

Z
fx + cx, y =

Y

Z
fy + cy, (3)

where (cx, cy) ∈ R
2 are the coordinates of the camera cen-

ter of projection and fx, fy are the horizontal and vertical

focal lengths, respectively. Solving for X and Y in Eq. (3),

the plane equation in Eq. (2) can be expressed as a function

of the image coordinates (x, y) and the corresponding depth

Z = Z(x, y):
(

a0
(x− cx)

fx
+ b0

(y − cy)

fy
+ c0

)

Z − ρ0 = 0. (4)

Similarly, in image coordinates, ρ0 reads as follows:

ρ0 =

(

a0
(x0 − cx)

fx
+ b0

(y0 − cy)

fy
+ c0

)

Z0,

where (x0, y0) is the projection of the point P0 into the cam-

era image plane.

Let us introduce the vector u(x0, y0) = (ux
0
, uy

0
) ∈ R

2:

ux
0
=

a0
ρ0fx

, uy
0
=

b0
ρ0fy

. (5)

Using the vector u(x0, y0) and introducing the inverse depth

d(x, y) = 1/Z(x, y) permits to rewrite Eq. (4) as follows:

d (x, y) = d (x0, y0)+ 〈u (x0, y0) , (x− x0, y − y0)〉. (6)

A proof is provided in the supplementary material [30].

Eq. (6) can be interpreted as a first order Taylor expansion

of the inverse depth map at the image coordinate (x0, y0),
such that u(x0, y0) should be close to ∇d(x0, y0). In par-

ticular, Eq. (6) shows that the inverse depth d(x, y) of every

point P ∈ P is described by a plane, which passes through

the point (x0, y0, d(x0, y0)) and has a plane normal vector

(u(x0, y0),−1) ∈ R
3.

We showed that the plane P is represented equiva-

lently by the pair (P0, n0) in the scene domain or by the

pair ((x0, y0, d(x0, y0)), u(x0, y0)) in the camera domain.

Eq. (5) permits to move from the scene domain to the cam-

era one by computing u(x0, y0) when n0 is given. To re-

cover n0 when u(x0, y0) is given instead, we can solve the

following non linear system in the variables a0, b0, c0:











ux
0
= (ρ0f

x)
−1

a0 (7a)

uy
0
= (ρ0f

y)
−1

b0 (7b)

a2
0
+ b2

0
+ c2

0
= 1, (7c)

where the constraints in Eqs. (7a)–(7b) refer to Eq. (5) and

Eq. (7c) is the normal unitary constraint ||n0||2 = 1. The

closed form solution of the system is provided in the sup-

plementary material [30]. In what follows, we present our

optimization problem to jointly estimate the normal map u
and the refined inverse depth map d.

4. Depth map refinement problem

Given an image I ∈ R
H×W we are interested in recover-

ing the corresponding depth map Z when only a noisy and

possibly incomplete estimate Z̄ is available. We assume

that Z̄ is provided together with a confidence mask m with

entries in [0, 1]. In particular, the confidence map is such

that, ∀i = (x, y) ∈ {0, . . . ,W − 1} × {0, . . . , H − 1},

mi = 0 when the entry Z̄i is considered completely inaccu-

rate, while mi = 1 when Z̄i is considered highly accurate.1

In the following, we focus on estimating the refined inverse

depth map d = 1/Z and the corresponding normal map,

1A wide variety of algorithms addressing pixel-wise confidence pre-

diction exist in the literature, either based on hand-crafted features or

learning-based [27]. In practice, also the simple stereo reprojection error

could be adopted [25].
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given the initial estimate d̄ = 1/Z̄ and the mask m. We

consider the following optimization problem:

d∗, u∗ = argmin
d,u

f (d) + λ g (d, u) (8)

where f(·) is a data term, g(·) is a regularization term for

piece-wise planar functions and λ ∈ R≥0 is a scalar weight

factor. The refined depth map is eventually computed as

Z∗ = 1/d∗, while the 3D normal map n∗ is obtained from

u∗ via the close form solution of the system in Eq. (7).

In more details, the data fidelity term f(·) enforces con-

sistency between the inverse depth map estimate d and the

input inverse depth map d̄. We adopt a data term of the

following form:

f (d) =
∑

i

|di − d̄i|mi,

which enforces that the estimated inverse depth map d is

close to d̄ at those pixels i where the latter is considered

accurate, i.e., where mi tends to one.2

Then, the regularization term g(·) enforces the inverse

depth map d to be piece-wise planar, according to the model

developed in Section 3. In particular, we choose to model

the inverse depth map as a weighted graph, where each pixel

represents a node and where the weight of the edge between

two pixels can be interpreted as the likelihood that the cor-

responding two points in the 3D scene belong to the same

plane. Namely, if the image looks locally similar at two dif-

ferent pixels, the probability is large for these pixels to be-

long to the same physical object, hence the same plane. The

regularization term parametrizes the inverse depth at each

pixel with a different plane, but it enforces strongly con-

nected pixels in the graph, i.e., those pixels connected by an

edge with high weight, to share the same plane parametriza-

tion. Specifically, our regularization term g(·) encompasses

two terms balanced by a scalar weight α ∈ R>0 and reads

as follows:

g (d, u) =
∑

i

√

∑

j∼i

w2

ij (dj − di − 〈ui, j − i〉)
2

(9a)

+ α
∑

i

∑

j∼i

wij‖uj − ui‖2, (9b)

where {j ∼ i} describes the direct neighbours of i in the

graph and wij ∈ R>0 is the weight associated to the edge

between the pixel i and its neighbour pixel j.

The first term of the regularization in Eq. (9a) enforces

the following constraint between the pixel i and its neigh-

boring pixel j, for every j ∼ i:

dj = di + 〈ui, j − i〉,

2The quality of the confidence map m can affect the quality of the re-

fined depth map. However, in the case of missing confidence, i.e., m con-

stant, our formulation in Eq. (8) still promotes piece-wise planar scenes.

which requires the inverse depth map in the neighbourhood

of the pixel i to be approximated by the plane Pi whose

orientation is given by the vector ui ∈ R
2. This constraint

recalls Eq. (6) and it is weighted by the likelihood wij that

i and j are the projections of two points Pi and Pj ∈ R
3

belonging to the same plane Pi in the 3D scene. However,

using only Eq. (9a) does not guarantee that the plane Pj ,

fitted at the pixel j, and the plane Pi are the same (e.g., the

plane normal vectors uj and ui coincide). Therefore, the

second term of the regularization in Eq. (9b) enforces that

the two planes fitted at i and j, with orientations ui and uj ,

respectively, are consistent with each other when Pi and Pj

are considered likely to belong to the same plane P .

We conclude by observing that Eq. (9b) can be inter-

preted as a generalization of the well-known anisotropic To-

tal Variation (TV) regularization [6], typically referred to as

Non Local Total Variation (NLTV) [12] in general graph set-

tings. In fact, the quantity ‖uj − ui‖2 can be interpreted as

the magnitude of the derivative of u at the node i in the di-

rection of the node j [34], so that Eq. (9b) enforces a piece-

wise constant signal u on the graph, which enforces the sig-

nal d to be piece-wise planar. This corresponds to the depth

map model of Section 3.

5. Depth refinement algorithm

In this section we present the structure of the graph un-

derneath the regularization in Eqs. (9a)–(9b). Then, we de-

tail the optimization algorithm adopted to find the solution

of the joint depth refinement and normal estimation prob-

lem presented in Eq. (8).

5.1. Graph construction

We assume that areas of the image I sharing the same

texture correspond to the same object and likewise to the

same planar surface in the 3D scene. Based on this assump-

tion, we associate a weight to the graph edge (i, j), which

quantifies our confidence about the two pixels i and j to be-

long to the same object. Formally, first we define a B ×B
pixels search window centered at the pixel i. Then, for each

pixel j in the window we compute the following weight:

wij = exp

(

−
‖Qi −Qj‖

2

F

2σ2

int

)

exp

(

−
‖i− j‖2

2

2σ2
spa

)

, (10)

where Qi ∈ R
Q×Q is a patch centered at the pixel i of

the image I , ‖ · ‖F denotes the Frobenius norm and σint,

σspa ∈ R>0 are tunable parameters. The first exponential in

Eq. (10) has a high weight, hence high likelihood, when the

values of the image pixels in two patches centered at i and

j are similar; it is low otherwise [3, 17, 8, 29]. The second

exponential then makes the weight decay as the Euclidean

distance between i and j increases.
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After the weights associated to all the pixels in the con-

sidered B ×B search window have been computed, we de-

sign a K Nearest Neighbours graph by keeping only the

K ∈ N edges with the largest weights. Limiting the number

of connections at each pixel to K reduces the computation

during the minimization of the problem in Eq. (8), on the

one hand, and it avoids weak edges that may connect pixels

belonging to different objects, on the other one.

5.2. Solver

The problem in Eq. (8) is convex, but non smooth. Mul-

tiple solvers specifically tailored for this class of problems

exist, such as the Forward Backward Primal Dual (FBPD)

solver [5]. However, the convergence of these methods

calls for the estimation of multiple parameters before the ac-

tual minimization takes place, such as the operator norm of

the implicit linear operator associated to the regularization

term in Eqs. (9a)–(9b), which can be very time demanding.

Therefore, we decide to solve the problem in Eq. (8) us-

ing Gradient Descent with momentum, in particular ADAM

[16], as we empirically found it to be considerably faster

(time-wise) than FBPD in our scenario.

Overall, our algorithm consists of two tasks: the graph

construction and the solution of the problem in Eq. (8) with

ADAM. Resorting to [7], the graph construction has a com-

plexity O(HWB log
2
B) regardless of the patch size Q.

The complexity of a single ADAM iteration is O(HWK),
with K ≪ B2, and it is due to the gradient computation.

Finally, to further speed up ADAM convergence, we

adopt a multi-scale approach. The noisy and possibly

incomplete inverse depth map d̄ is progressively down-

sampled by a factor r ∈ N to get d̄ℓ ∈ R
⌊H/rℓ⌋×⌊W/rℓ⌋

with ℓ = 0, . . . , L− 1 and L ∈ N the number of scales. An

instance of the problem in Eq. (8) is solved for each d̄ℓ and

the solution at the scale ℓ is up-sampled and scaled by a fac-

tor r to initialize the solver at the scale ℓ − 1.3 The scaling

is a consequence of the relation uℓ−1 = r−1uℓ. In fact, the

up/down-sampling operations emulate a change of the pixel

area, while the camera sensor area remains constant. We

refer to the supplementary material [30] for a formal proof.

6. Experimental results

We test the effectiveness of our joint depth refinement

and normal estimation framework on the training splits of

the Middlebury v3 stereo dataset [31] at quarter resolution,

of the KITTI 2015 stereo dataset [23] and of the ETH3D

Multi-View Stereo (MVS) dataset [33] at half resolution.

Since these datasets come with ground truth depth maps but

lack ground truth normals, we provide numerical results for

3All up-sampling and down-sampling operations are performed using

nearest neighbor interpolation.

the depth refinement part of the framework, while we pro-

vide only visual results for the normal estimation part.

Regarding the ground truth normal map ngt, we approx-

imate it by solving the system in Eq. (7) with u = ∇dgt,
where the gradient is computed using a 5 × 5 pixels Gaus-

sian derivative kernel with standard deviation σ = 0.2 pix-

els. The small standard deviation permits to recover fine

details, as the ground truth inverse depth map dgt is not af-

fected by noise. Although this does not permit a numerical

evaluation, it permits to appreciate the normals estimated by

our framework.

6.1. Middlebury and KITTI datasets

Similarly to the recent disparity refinement method in

[37], we refine the disparity maps computed via Semi-

Global Matching (SGM) [13] and census-based Block

Matching (BM) [41]. We compare our framework to the

disparity refinement method recently proposed in [37], as

it also relies on a confidence map and, most importantly, it

showed to outperform many other widely used disparity re-

finement methods, e.g., [26, 22, 21, 42, 1], on both the Mid-

dlebury and the KITTI datasets. Moreover, since our new

regularization in Eqs. (9a)–(9b) resembles NLTGV [28], we

compare to NLTGV as well. In particular, we replace g(·)
with NLTGV in our problem formulation in Eq. (8).

It is crucial to observe that, originally, NLTGV was in-

troduced in the context of optical flow [28] as a general

purpose regularization, without any ambition to connect the

geometry of the optical flow and the geometry of the un-

derneath scene. Here instead, we aim at modeling the joint

piece-wise planarity of the inverse depth map and of the un-

derneath scene explicitly. In fact, the mixed ℓ1,2–norms em-

ployed in both the terms of our regularization, as opposed

to the simple ℓ1–norm of NLTGV, are chosen to make our

regularization more robust in its global plane fitting.4

The SGM and BM disparity maps to refine are provided

by the authors in [37], who provided also their refined dis-

parity maps and binary confidence maps. In order to carry

out a fair comparison, these confidence maps are used by all

the methods considered in the experiments. As described in

[37], the considered binary confidence maps are the result of

a learning-based framework trained on a split of the KITTI

2012 stereo dataset [11], therefore there is no bias toward

the Middlebury and KITTI 2015 datasets.

Since our framework assumes a depth map at its input,

we convert the disparity map to be refined into a depth map

and we then convert the refined depth map back to the dis-

parity domain, in order to carry out the numerical evalua-

tion. The evaluation involves the bad pixel metric, which

is the percentage of pixels with an error larger than a prede-

fined disparity threshold, together with the average absolute

4A through analysis of the differences between the proposed regular-

ization and NLTGV is provided in the supplementary material [30].
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error (avgerr) and the root mean square error (rms). We

carry out the evaluation on all the pixels with an available

ground truth, regardless of the occlusions.

For a fair comparison, in the graph construction we adopt

the same parameters for both NLTGV and our framework:

weight parameters σint = 0.07 and σspa = 3 pixels, search

window size B = 9, patch size P = 3 and maximum num-

ber of per pixel connections K = 20. For both, we also set

the number of scales L = 2 and r = 2. Instead, the mul-

tipliers λ and α in front and inside the regularization g(·),
respectively, are the result of a grid search and listed below.

Middlebury dataset The Middlebury training dataset

[31] consists of 15 indoor scenes carefully crafted to chal-

lenge modern stereo algorithms. Some scenes contain mul-

tiple untextured planar surfaces, which represent a hard

challenge for stereo methods but are compliant with the

model underneath our framework; other scenes are inher-

ently non piece-wise planar instead. Due to its variety, the

Middlebury dataset permits to evaluate the flexibility of our

framework to different settings.

For NLTGV we set λ = 7.5 and α = 50, regardless of

the scale. For our framework and SGM disparity maps at

the input, we set λ = 15 and 25 at the low and high scales,

respectively; for BM disparity maps at the input instead, we

set λ = 10 and 20 at the low and high scales, respectively;

we set α = 3.5 regardless of the input disparity map.

The results of our experiments on the Middlebury dataset

are presented in Table 1. When BM is considered, our

framework outperforms the method in [37] and NLTGV in

all the considered metrics. Similarly, when SGM is con-

sidered, our framework outperforms the method in [37] and

NLTGV in four of the five metrics; in the bad 1px metric,

where the best error is achieved by the method in [37], our

result is comparable. Moreover, in the most common bad

2px metric, our framework always provides the best error

regardless of the input disparity map. Clearly, some scenes

in the dataset are far from fulfilling our piece-wise planar

assumption, e.g., Jadeplant and Pipes: these affect the

average results in Table 1 and mask the large improvement

exhibited by our framework in those scenes which fulfill the

assumption even partially.

In Figure 1 we provide the results of our experiments on

the scene Piano, when the stereo method BM is consid-

ered. The normal map associated to the input BM disparity

map and to the one refined by the method in [37] are com-

puted with the same approach adopted for the ground truth

normal map, while employing σ = 5 pixels in order to han-

dle the noise. In fact, the input BM disparity is significantly

noisy, especially in the walls surrounding the piano. The

method in [37] manages to decrease the error in some areas

of the surrounding walls: however, since no global consis-

tency is considered, the result is a speckled error. Instead,

Table 1. Disparity refinement on the Middlebury dataset [31]. The

first column specifies the stereo method whose disparity map is

refined. The second column provides the error metric used in the

evaluation: bad px thresholds, the average absolute error (avgerr)

and the root mean square error (rms). All the pixels with a ground

truth disparity are considered. The columns from four to six re-

port the error of the disparity maps refined by the method in [37],

NLTGV [28], our method. The best result for each row is in bold.

Err. metric Input [37] [28] Ours

SGM [13]

bad 0.5px 41.33 39.14 36.57 35.70

bad 1px 28.90 25.58 26.02 25.71
bad 2px 23.48 19.55 19.88 19.25

avgerr 4.06 3.32 3.31 2.87

rms 9.75 8.27 7.99 6.86

BM [41]

bad 0.5px 47.48 39.01 38.49 35.01

bad 1px 37.56 25.83 28.28 25.40

bad 2px 33.98 20.61 22.03 19.41

avgerr 8.41 3.48 3.35 2.79

rms 17.32 8.58 7.91 6.97
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Figure 1. Middlebury [31] scene Piano. The first row hosts, from

left to right, the reference image and the ground truth disparity and

normal maps. Each other row hosts, from left to right, the bad 2px

disparity error mask and the disparity and normal map. The sec-

ond row refers to the stereo method BM [41], whose disparity is

refined by the method in [37], NLTGV [28] and ours, in the rows

three to five, respectively. The pixels in the error maps are color

coded: error within 2px in dark blue, error larger than 2px in yel-

low, missing ground truth in white. The bad 2px error percentage

is reported on the bottom right corner of each disparity map.

our method manages to approximate the surrounding walls

better, using multiple planes. Finally, NLTGV fails to cap-

ture the geometry of the surrounding wall, as its relying on
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Reference BM [41] [37] NLTGV [28] Ours

26.97% 7.99% 7.39% 5.46%

Figure 2. KITTI [23] scene 126. The first column hosts, from top to bottom, the reference image and the ground truth disparity and normal

maps. Each other column hosts, from top to bottom, the bad 3px disparity error mask and the disparity and normal map. The second

column refers to the stereo method BM [41], whose disparity is refined by the method in [37], NLTGV [28] and ours, in the columns three,

four and five, respectively. The pixels in the error maps are color coded: error within 3px in blue, error larger than 3px in yellow, missing

ground truth in white. The bad 3px error percentage is reported on the bottom right corner of each disparity map.

a simple ℓ1–norm makes it more sensible to outliers than

our mixed ℓ1,2–norm when trying to fit planes.

KITTI dataset The KITTI 2015 training dataset [23]

consists of 200 scenes captured from the top of a mov-

ing car. As a consequence, the prevalent content of each

scene are the road, possible vehicles and possible buildings

at the two sides of the road. At a first glance, this con-

tent may seem to match our piece-wise planar assumption.

In practice, however, the buildings at the sides of the road

are mostly occluded by the vegetation, which is far from

piece-wise planar. We select 20 scenes randomly and test

our framework on them, in order to analyze its flexibility.

For NLTGV we set λ = 7.5 and α = 15 regardless of

the scale. For our framework we set λ = 10 and 20 at the

lowest and highest scales, respectively, while we set α = 15
regardless of the scale.

The results of our experiments on the KITTI dataset are

presented in Table 2. Regardless of the considered metric

and input stereo method, NLTGV outperforms the method

in [37], while our framework outperforms all the others.

Moreover, when the most common bad 3px error is consid-

ered, our framework improves the SGM and BM disparity

maps by more than 4.57% and 31.75%, respectively.

In Figure 2 we provide the results of our experiments on

the scene 126, when the stereo method BM is considered.

The method in [37], NLTGV and our framework manage

all to reduce sensibly the high amount of noise that affects

the input disparity map, represented by the yellow speck-

les. However, only NLTGV and our framework manage to

preserve fine details like the pole on the left side of the im-

age, which appears broken in the disparity map associated

to [37]. Finally, our framework provides the sharpest dis-

parity map, as NLTGV exhibits some disparity bleeding at

object boundaries. This is visible on the car at the bottom

right corner of the image, both by observing the disparity

maps and the error masks. This is also confirmed by the nu-

merical results, as our bad 3px error is significantly lower.

Table 2. Disparity refinement on the KITTI dataset [23]. The first

column specifies the stereo method whose disparity map is refined.

The second column specifies the considered error metric: bad px

thresholds, the average absolute error (avgerr) and the root mean

square error (rms). All the pixels with a ground truth disparity are

considered. The columns from four to six report the error of the

disparity maps refined by the method in [37], NLTGV [28] and our

method, respectively. The best result for each row is in bold.

Err. metric Input [37] [28] Ours

SGM [13]

bad 2px 14.25 11.58 10.49 9.82

bad 3px 10.11 7.65 6.07 5.54

avgerr 21.12 2.97 1.62 1.51

rms 46.50 8.49 7.91 7.88

BM [41]

bad 2px 40.96 16.75 11.09 10.54

bad 3px 38.15 12.80 6.76 6.40

avgerr 1.94 1.63 1.30 1.22

rms 5.46 4.52 3.43 3.15

6.2. ETH3D dataset

Large scale 3D reconstruction methods [10, 32, 18, 14,

40, 39, 20] estimate the depth map of a reference image

from a large number of input images of the same scene, by

leveraging geometric and photometric constraints, and sub-

sequently fuse them to produce a model of the scene itself.

Large scale 3D reconstruction methods can largely benefit

from a refinement of the estimated depth maps and can ex-

ploit the corresponding normal maps during the fusion step.

In order to demonstrate the suitability of our joint depth re-

finement and normal estimation framework on high resolu-

tion images from challenging MVS configurations, we test

it on the training split of the ETH3D dataset [33], a popu-

lar benchmark for large scale 3D reconstruction algorithms,

involving both indoor and outdoor sequences.

The ground truth ETH3D depth maps are very sparse, but

characterized by twice the resolution adopted in our tests.

Therefore, similarly to [14], we back project the sparse

ground truth depth maps to half resolution in order to get

denser ones, to be used in our evaluation. In [20], the au-

thors propose a novel deep-network-based confidence pre-

diction framework for depth maps computed by MVS algo-
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Table 3. Refinement of MVS-derived [20] depth maps from the

ETH3D training dataset [33]. The table is divided into a top and

a bottom sub-table, with their first columns specifying the test

scenes, whose number of images is specified in brackets. The top

sub-table reports the percentage of pixels with an error exceeding a

predefined threshold: 2cm and 5cm. The bottom sub-table reports

the average absolute error (avgerr) and the root mean square er-

ror (rms) in the second and third columns, respectively. For each

scene and error metric, the best result is in bold.

2cm 5cm
Input [28] Ours Input [28] Ours

Pipes (14) 18.16 11.17 10.71 14.18 7.64 7.10

Delivery (44) 24.15 19.20 18.33 12.05 6.41 5.80

Office (26) 47.54 39.34 38.59 39.32 30.23 29.13

avg. 29.95 23.24 22.54 21.85 14.76 14.08

avgerr rms
Input [28] Ours Input [28] Ours

Pipes (14) 0.347 0.119 0.082 2.090 0.685 0.460

Delivery (44) 0.233 0.025 0.023 26.06 0.227 0.211

Office (26) 0.330 0.183 0.167 1.218 0.409 0.381

avg. 0.303 0.109 0.091 9.303 0.440 0.351

rithms, hence in the context of large baselines and severe

occlusions. For our experiments, in order to estimate the

confidence map m, we re-train the network proposed in [20]

jointly on the synthetic dataset proposed in the same work

and on the dense ground truth depth maps of the ETH3D

training split. For an unbiased evaluation, we extract three

sequences of the ETH3D training split (Pipes, Office,

Delivery Area) from the training procedure and use

them exclusively for our evaluation. We compare our re-

fined depth and normal maps against the depth and normal

maps derived by the PatchMatch-based [2] MVS method

presented in [20].

For both NLTGV and our framework we set λ = 7.5 and

α = 7.5 regardless of the scale, adopt the graph parameters

selected for Middlebury and KITTI, set the number of scales

L = 4 and r = 2. The continuous confidence map provided

by the trained network is binarized with a 0.5 threshold.

Table 3 compares the input MVS depth map with those

refined by NLTGV and our method. The top part of the

table reports the percentage of pixel, computed over all

the pixels of all the images in the sequence, with an error

within a given threshold: 2cm and 5cm. On average, our

method outperforms NLTGV and manages to improve the

input depth maps by more than 7% when the 2cm threshold,

the most common in the ETH3D benchmark, is considered.

In the bottom part of the same table, we provide also the

average absolute error (avgerr) and the root mean square

error (rms). The rms metric is very sensitive to outliers

and, especially in the Delivery Area sequence, it high-

lights our improvement over the input depth map. Finally,

a visual example is provided in Figure 3 for the sequence

Pipes, which is characterized by multiple untextured pla-

nar surfaces, representing a hard challenge for MVS meth-
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Figure 3. ETH3D [33] Pipes. The first row hosts, from left to

right, the reference image and the ground truth depth and nor-

mal maps. Each other row hosts, from left to right, the 2cm er-

ror map, the depth and normal maps. The second row refers to the

MVS method [20], whose depth is refined by NLTGV [28] and our

method in the rows three and four, respectively. The pixels in the

error maps are color coded: error within 2cm in blue, error larger

than 2cm in yellow, missing ground truth in white. The error per-

centage associated to the 2cm threshold is reported on the bottom

right corner of each depth map.

ods. Our method targets exactly these scenarios instead: in

fact, it manages to refine the input depth map by captur-

ing the main planes, as exemplified by the estimated normal

map. Moreover, it manages to fit better planes than NLTGV,

which fails to capture the correct floor orientation.

7. Conclusions

In this article, we presented a variational framework to

address the problem of depth map refinement. In particular,

we cast the problem into the minimization of a cost function

involving a data fidelity and a graph-based regularization

term. The latter enforces piece-wise planar solutions explic-

itly, by estimating the depth map and the corresponding nor-

mal map jointly, as most human made environments exhibit

a planar bias. Moreover, the graph-based nature of the reg-

ularization makes our framework flexible enough to handle

non fully piece-wise planar scenes as well. We showed that

the proposed framework outperforms state-of-the-art depth

refinement methods when the considered scene meets our

piece-wise planar assumption, and it leads to competitive

results otherwise. Interesting perspectives include the a pri-

ori segmentation of the reference image into planar and non

planar areas, so that the strength of the regularization could

be adapted accordingly.
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