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Abstract

The appearance of the world varies dramatically not

only from place to place but also from hour to hour and

month to month. Every day billions of images capture this

complex relationship, many of which are associated with

precise time and location metadata. We propose to use these

images to construct a global-scale, dynamic map of visual

appearance attributes. Such a map enables fine-grained un-

derstanding of the expected appearance at any geographic

location and time. Our approach integrates dense overhead

imagery with location and time metadata into a general

framework capable of mapping a wide variety of visual at-

tributes. A key feature of our approach is that it requires

no manual data annotation. We demonstrate how this ap-

proach can support various applications, including image-

driven mapping, image geolocalization, and metadata veri-

fication.

1. Introduction

Recent concern about “fake news” has lead to a sig-

nificant interest in verifying that imagery is real and un-

manipulated. Early work on this problem focused on low-

level image statistics [4, 6], but this approach is unable

to detect the falsification of image metadata. Matzen and

Snavely [21] introduce an approach for finding anomalous

timestamps, but their method is based on visual correspon-

dences and requires overlapping imagery. Recent work has

begun to look at this problem more thoroughly, with new

datasets [10] and proposals for comprehensive systems [3].

However, no previous work provides the dynamic map of

visual attributes that is necessary for detecting time/location

metadata falsification.

We propose to use visual attributes estimated from

ground-level images, such as those shown in Figure 1, to

learn a dynamic map of visual attributes. Beyond meta-

data verification, there are numerous applications for such

a map, including geolocalizing images, providing contex-

tual information for autonomous vehicles, and supporting

further studies on the relationship between the visual envi-
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Figure 1: Visual appearance changes dramatically due to

differences in location and time. Our work takes advan-

tage of sparsely distributed ground-level image data, with

associated location and time metadata, in conjunction with

overhead imagery to construct dynamic maps of visual ap-

pearance attributes.

ronment and human health and happiness [26].

Predicting visual attributes directly from location and

time is difficult because of the complexity of the distribu-

tion. It would, for example, require memorizing the loca-

tion of every road and building in the area of interest. To

overcome this, our model combines overhead imagery with

location and time using a multi-modal convolutional neu-

ral network. The result is a model capable of generating a

worldwide, dynamic map of visual attributes that captures

both local and global patterns.

We focus on two visual attributes: the scene cate-

gory [44], such as whether the image views an attic or a zoo,

and transient attributes [15], which consist of time-varying
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properties such as sunny and foggy. We selected these be-

cause they are well known, easy to understand, and have

very different spatiotemporal characteristics. The former is

relatively stable over time, but can change rapidly with re-

spect to location, especially in urban areas. The latter has

regular, dramatic changes throughout the day and with re-

spect to the season.

Our approach has several useful properties: it does not

require any manually annotated training data; it can model

differences in visual attributes at large and small spatial

scales; it captures spatiotemporal trends, but does not re-

quire overhead imagery at every time; and is extendable to

a wide range of visual attributes. To evaluate our approach,

we created a large dataset of paired ground-level and over-

head images each with location and time metadata, which

we call Cross-View Time (CVT). Using CVT, we demon-

strate the effectiveness of our dynamic mapping approach

on several tasks. In each case, our full model, which com-

bines overhead imagery and metadata, is superior.

2. Related Work

Recent advances in computer vision have enabled the

estimation of a wide variety of visual attributes, including

scene category [44], weather conditions [15], and demo-

graphics [7]. As these techniques mature, many application

areas have developed that require an understanding of the

relationship between visual attributes, geographic location,

and time.

2.1. Image­driven mapping

Typically image-based methods for generating maps

start by extracting visual attributes from large-scale geo-

tagged image collections and then apply a form of spa-

tial smoothing, such as locally weighted averaging. Exam-

ples include methods for mapping land cover [17], scenic-

ness [41], snowfall [34], facial appearance [2], and a variety

of other visual attributes [33].

Integrating overhead imagery with image-driven map-

ping reduces the need for spatial smoothing, resulting in

higher quality maps. This has been demonstrated for a va-

riety of visual attributes, including building properties [40],

natural beauty [39], scene layouts [42], soundscapes [25],

object distributions [9, 24], and land use [28]. Recent work

has taken this to the extreme by synthesizing complete

ground-level images [5, 23, 42].

In this work, we perform image-driven mapping using

overhead imagery, with location and time as additional con-

text, resulting in high-resolution, dynamic maps of visual

attributes. Most previous work has either ignored time, or

merely used it to filter images outside of a time interval prior

to spatial smoothing. Our work is similar to [37], but we fo-

cus on mapping visual attributes.

2.2. Image geolocalization

Recently, there has been a significant interest in the

problem of image geolocalization, i.e., estimating the ge-

ographic location of the camera, or an object in the scene,

given visual attributes extracted from the image [11, 35].

More recent work has shown that learning a feature map-

ping between ground-level and overhead image view-

points enables image localization in regions without nearby

ground-level images [18, 19, 36, 38]. From this work, we

see that image geolocalization requires the ability to extract

visual attributes from ground-level images and an under-

standing of the geospatial distribution of these attributes.

The former motivates our focus on generating high-quality,

dynamic maps of visual attributes.

2.3. Location context aids image understanding

Studies have shown that additional context can aid vi-

sual understanding. Tang et al. [29] use the location an im-

age was captured to improve classification accuracy. Luo

et al. [20] use overhead imagery as additional context to

improve event recognition in ground-level photos. Zhai et

al. [43] describe methods for learning image features using

location and time metadata. Lee et al. [16] use map data

to learn to estimate geo-informative attributes such as pop-

ulation density and elevation. Wang et al. [32] use location

information along with weather conditions to learn a feature

representation for facial attribute classification. One poten-

tial use of our dynamic mapping approach would be as a

model of the context needed for such image understanding

applications.

3. Cross-View Time (CVT) Dataset

In an effort to support dynamic image-driven mapping,

we introduce a new large-scale dataset that contains geo-

tagged ground-level images, corresponding capture time,

and co-located overhead images. We refer to our dataset

as the Cross-View Time (CVT) dataset. It is similar to pre-

vious cross-view datasets [31, 36, 38], but ours is unique in

providing timestamps for all images.

Our dataset is built from two sources of ground-level

images. The first source is the Archive of Many Outdoor

Scenes (AMOS) [13], a collection of over a billion images

captured from public outdoor webcams around the world.

This subset [22] includes images captured between the

years 2013 and 2014, from 50 webcams, totaling 98 633 im-

ages. Each image is associated with the location of the web-

cam and a timestamp (UTC) indicating when the image was

captured. The second source is a subset of the Yahoo Flickr

Creative Commons 100 Million Dataset (YFCC100M) [30].

This subset [43] contains geotagged outdoor images, with

timestamps, captured by smartphones.

We combined images from both of these sources to form
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Figure 2: An overhead image and the corresponding ground-level images from our CVT dataset.

Figure 3: The spatial distribution of the CVT dataset. The

blue (yellow) dots represent the training (testing) data.

a hybrid dataset containing 305 011 ground-level images.

For each image, we also downloaded an orthorectified over-

head image from Bing Maps (800×800, 0.60 meters/pixel),

centered on the geographic location. We randomly selected

25 000 ground-level images, and the corresponding over-

head images, and reserved them for testing. This resulted

in a training dataset of 280 011 image pairs. Figure 2 shows

example images from the CVT dataset.

Figure 3 shows the spatial distribution of the training

images (blue dots) and testing images (yellow dots). Vi-

sual analysis of the distribution reveals that the images are

captured from all over the world, with more images from

Europe and the United States. Furthermore, examining the

capture time associated with each image shows that the im-

ages cover a wide range of times. Figure 4 visualizes the

distribution over month and hour for both ground-level im-

age sources. We observe that the webcam images are cap-

tured more uniformly across time than the cellphone im-

ages. The dataset is available at our project website.1

4. Dynamic Visual Appearance Mapping

We present a general approach for dynamic visual ap-

pearance mapping that could be used to model a broad range

of attributes and support many tasks.

1https://tsalem.github.io/DynamicMaps/

Figure 4: The temporal distribution of the CVT dataset.

4.1. Problem Statement

Our objective is to construct a map that represents the

expected appearance at any geographic location and time.

The expected appearance is defined using a set of visual

attributes, which could be low level, such as a color his-

togram, or high level, such as the scene category. For a

given visual attribute, a, such a map can be modeled as

a conditional probability distribution, P (a|t, l), given the

time, t, and location, l, of the viewer. The distribution

P (a|t, l) is challenging to learn because it essentially re-

quires memorizing the Earth and how it changes over time.

We assume we are given a set of ground-level images,

{Ii}, each with associated capture time, {ti}, and geolo-

cation metadata, {li}. Furthermore, we assume we have

the ability to calculate, or estimate with sufficient accuracy,

each visual attribute from all images. The computed visual

attributes, {ai}, can be considered samples from the proba-
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Figure 5: An overview of our network architecture, which includes the network we train to predict visual attributes (left) and

the (frozen) networks we use to extract visual attributes from the ground-level images (right).

bility distribution, P (a|t, l), and used for model fitting.

4.2. Approach Overview

To overcome the difficulty of directly modeling

P (a|t, l), we also condition the distribution on an overhead

image, I(l), of the location. Specifically, we define a condi-

tional probability distribution, P (a|t, l, I(l)). In doing so,

the network no longer has to memorize, for example, the

location of every road, river, and building in the world. We

implement this using a mixture of convolutional and fully-

connected neural networks to map from the conditioning

variables to the parameters of distributions over a visual

attribute, P (a|F (t, l, I(l); Θ)), where Θ represents the pa-

rameters of all neural networks.

See Figure 5 for an overview of our complete architec-

ture, which, in this case, simultaneously predicts two visual

attributes. From the left, we first construct a feature em-

bedding for each conditioning variable using a set of con-

text neural networks. We combine these context features to

predict the visual attributes using a per-attribute, estimator

network. From the right, a set of pre-trained networks ex-

tract visual attributes from the ground-level images. These

networks are only used for extracting visual attributes and

are not trained in our framework.

This macro-architecture was carefully designed to bal-

ance several criteria. Most importantly, the overhead image

is not dependent on time. This means that an overhead im-

age is not required for every timestamp, t, of interest. An

overhead image is required for each location, but this is not

a significant limitation given the wide availability of high-

resolution satellite and aerial imagery. In addition, at in-

ference time, feature extraction for the satellite image only

needs to happen once, because the extraction process is not

time or attribute dependent.

4.3. Network Architecture Details

We propose a novel macro-architecture for modeling a

dynamic visual appearance map. In this section, we de-

fine the specific neural network architectures and hyper-

parameters we used for evaluation.

Visual Attributes We focus on two visual attributes:

Places [44], which is a categorical distribution over 365
scene categories, and Transient [15], which is a multi-label

attribute with 40 values that each reflect the degree of pres-

ence of different time-varying attributes, such as sunny,

cloudy, or gloomy. To extract the Places attributes, we

use the pre-trained VGG-16 [27] network. To extract the

Transient attributes, we use a ResNet-50 [12] model that

we trained using the Transient Attributes Database [15].

Context Networks The context networks encode every

conditioning variable, i.e., time, geographic location, and

overhead image, to a 128-dimensional feature vector. For

the time and geolocation inputs, we use two similar encod-

ing networks, each consisting of three fully connected lay-

ers with a ReLU activation. The layers have 256, 512, and

128 neurons respectively. The geographic location is rep-

resented in earth-centered earth-fixed coordinates, scaled to

the range [−1, 1]. The time is factored into two compo-

nents: the month of the year and the hour of the day. Each

is scaled to the range [−1, 1]. For the overhead image, we

use a ResNet-50 model to extract the 2048-dimensional fea-

ture vector from the last global average pooling layer. This

feature is passed to a per-attribute head. Each head consists

of two fully connected layers that are randomly initialized

using the Xavier scheme [8]. The layers of each head have

256 and 128 neurons respectively, each with a ReLU acti-

vation.

Estimator Networks For each visual attribute there is a

separate estimator network, with only fully connected lay-

ers, that directly predicts the visual attribute. The input

for these is the concatenation of the outputs of the context
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Places Transient

Model Top-1 Top-5 Within-0.1 Within-0.2
loc (k-NN) 17.68 40.26 50.96 77.10

time (k-NN) 5.84 17.82 48.75 75.77
time+loc (k-NN) 19.08 41.15 51.84 77.51

loc (CNN) 12.70 32.45 48.50 75.45
time (CNN) 4.45 16.91 47.37 75.34

time+loc (CNN) 17.05 35.50 54.69 79.15
sat (CNN) 15.16 38.40 49.87 76.55

sat+loc (CNN) 16.98 41.46 50.57 77.17
sat+time (CNN) 19.66 40.78 56.14 79.79

sat+time+loc (CNN) 21.58 44.00 56.91 80.55

Table 1: A comparison of the prediction accuracy of our full

approach, sat+time+loc, with various baseline models.

networks. For each estimator network, the first two layers

(which have ReLU activations) contain 256 and 512 neu-

rons, respectively. The third layer represents the output,

with the number of neurons depending on the visual at-

tribute. In this case, there are 365 output neurons for the

Places estimator, with a softmax activation, and 40 for the

Transient estimator, with a sigmoid activation.

4.4. Implementation Details

We jointly optimize all estimator and context networks

with losses that reflect the quality of our prediction of the

visual attributes extracted from ground-level images, {Ii}.

For the Places estimator, the loss function is the KL diver-

gence between attributes estimated from the ground-level

image and the network output. For the Transient estimator,

the loss function is the mean squared error (MSE). These

losses are optimized using Adam [14] with mini-batches of

size 32. We applied L2 regularization with scale 0.0005 and

trained all models for 10 epochs with learning rate 0.001.

All networks were implemented using TensorFlow [1]

and will be shared with the community. Input images are re-

sized to 224×224 and scaled to [−1, 1]. We pre-trained the

overhead context network to directly predict Places and Im-

ageNet categories of co-located ground-level images, min-

imizing the KL divergence for each attribute. The weights

are then frozen and only the added attribute-specific heads

are trainable.

For extracting Transient attributes from the ground-level

images, we train a ResNet-50 using the Transient Attributes

Database [15] with the MSE loss. The weights were ini-

tialized randomly using the Xavier scheme, and optimized

using Adam [14] until convergence with learning rate 0.001
and batch size 64. The resulting model achieves 3.04%

MSE on the test set, improving upon the 4.3% MSE pre-

sented in the original work [15].

5. Evaluation

We evaluate our approach using the CVT dataset quanti-

tatively, qualitatively, and on a variety of applications. We

use Top-1 and Top-5 classification accuracy as the metric

for evaluating quality of the Places attribute predictions.

For the Transient attribute we use the percent of attribute

predictions within a threshold (0.1 or 0.2) of the ground

truth. In both cases, these are averaged across the full test

set.

5.1. Exploratory Dataset Analysis

To better understand the relationship between location,

time, and these attributes, we conducted a preliminary study

without using overhead imagery. For the Places attribute,

we use a k-NN classifier (k = 30) to explore this re-

lationship. As features we used time (linear) and lati-

tude/longitude (degrees). We scaled the time using grid-

search to optimize the accuracy when using all features. The

resulting classifier obtained 19.08% accuracy on the test set

(see Table 1). If we remove the time feature, the accuracy

drops a small amount to 17.68%. If we remove both lo-

cation features, the accuracy is 5.84%, which is better than

ignoring all features (1.96%). From this, we can see that the

Places attribute is highly dependent on location but less-so

on time. We were surprised that the time feature by itself re-

sulted in such high accuracy. We suspect that this is due to

differences in the types of pictures taken at different times

of year.

For the Transient attributes, we used a similar setup. The

only change was using a k-NN regression model. Table 1

shows that the difference between features is less dramatic

than it was for the Places attributes. Instead, we focus on

the impact of removing the location and time features on the

individual attributes. When removing the location feature,

we found, for example, that the accuracy for some attributes

went down more than 6% (e.g., busy, fog, gloomy) while

for others it went up more than 2% (e.g., dawndusk, dark,

night). For the time feature, we found that the accuracy

went down for all attributes, with some going down signif-

icantly (e.g., winter, snow, lush) but others only marginally

(e.g., rain, sunrisesunset, sentimental).

These results highlight that the relationship between vi-

sual attributes, location, and time is complex and that our

dataset enables us to translate intuitive notions into concrete

experimental results.

5.2. Quantitative Evaluation

We trained several variants of our full model,

sat+time+loc. For each, we omit either one or two of

the conditioning variables but retain all other aspects. We

use the same training data, training approach, and micro-

architectures. In total, we trained six baseline models: loc,
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Figure 6: Dynamic visual attribute maps for different Transient attributes. In each, yellow (blue) corresponds to a higher

(lower) value for the corresponding attribute. Each attribute exhibits unique spatial and temporal patterns, which closely

match the authors’ personal travel experiences.

time, sat, time+loc, sat+loc, and sat+time. We evaluate the

accuracy of all methods on the test set.

Table 1 shows the accuracy for all approaches on both

visual attributes. We find that our method has the highest

accuracy. However, the ranking of baseline models changes

depending on the visual attribute. For example, the accu-

racy for the sat+loc model is relatively worse for the Tran-

sient attribute than the Places attribute. This makes sense

because the former is highly dependent on when an image

was captured and the latter is more stable over time. We

also note the significant improvement, for both attributes,

obtained by including overhead imagery in the model. For

example, the time+loc model is significantly worse than our

full model.

5.3. Examples of Visual Attribute Maps

Figure 6 shows several example attribute maps rendered

from our model. To construct these we use the CVUSA

dataset [38], which contains overhead imagery across the

continental United States. Specifically, we use a subset of

488 243 overhead images associated with the Flickr images

in the dataset. For each overhead image, we compute visual

attributes using our full model, sat+time+loc. We specify

the time of day as 4pm, and vary the month.

The trends we observe are in line with our expectations.

For example, for the transient attribute lush, which refers

to vegetation growing, January has low values (blue) in the

northernmost regions. However, the highest estimates (yel-

low) include regions like Florida and California. The lush-

ness estimate progressively increases from January through

April, achieving its highest value in July. Similarly, the

warm attribute is highest in the southwest during both win-

ter and spring, but reaches higher overall values in the sum-

mer months. Meanwhile, the gloomy attribute is highest

during winter, with a bias towards the Pacific Northwest,

and decreases during the summer.

Figure 7 shows an example of how the estimated attribute

varies over time. Our proposed model captures changes in

the different attributes not only over months of the year but

also over hours of the day. In Figure 7 (top, right) the cold

attribute during a day in January is higher than a day in

July, whereas in Figure 7 (bottom, right) the warm attribute

is opposite. These results demonstrate that our model has

captured temporal trends.

6. Applications

We show how our dynamic mapping approach can be

used to support three image-understanding applications: lo-

calization, retrieval, and metadata verification. Together,

they demonstrate that combining overhead imagery, loca-

tion, and time is critical for correctly modeling the dynamic

distribution of visual attributes.

A key component of each application is computing the

distance between the visual attributes of a ground-level im-

age and the visual attributes predicted by our model. For

the Places attribute we use the KL divergence and for the

Transient attribute we use the L2 distance. We also define

Combine which is a weighted average of these two, with λ
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Latitude: 47.367
Longitude: 8.55

Figure 7: For a given location and corresponding overhead

image, (top, right) shows the predictions from our model

for the cold attribute. Similarly, (bottom, right) shows the

warm attribute. Both examples show that our model has

learned dynamic patterns of visual attributes.

Transient Places Combine

Context Top-1% Top-5% Top-1% Top-5% Top-1% Top-5%

sat 4.80 15.30 18.80 42.00 21.60 42.60
sat+loc 5.50 15.40 23.00 45.40 23.90 45.00
sat+time 13.10 22.50 23.90 43.60 24.90 44.00

sat+time+loc 13.70 25.00 28.70 47.60 31.20 49.30

Table 2: Localization accuracy of different models and dis-

tance measures.

as the weight for Places and 1− λ for Transient. The value

of λ is selected empirically for each application.

6.1. Application: Image Localization

We evaluated the accuracy of our models on the task

of image geolocalization, using a set of 1000 ground-level

query images randomly sampled from the test set. To lo-

calize an image, we first extract its visual attributes. Then,

we predict the visual attributes for all 1000 overhead im-

ages. As context, we use the location of the corresponding

overhead image and the capture time of the ground-level

image. We compute the distance between these predicted

attributes and the attributes extracted from the image. We

use λ = 0.58 when computing the Combine distance.

Table 2 shows the results of this experiment. Each num-

ber represents the percentage of query images that were cor-

rectly localized within the Top-k% of candidate locations.

For a given threshold, a higher percentage localized is bet-

ter. This experiment shows that our full model outperforms

the baselines and that using the Combine distance results in

the highest accuracy. It also shows that the time attribute is

essential when localizing using the Transient feature. In all

cases, using only the imagery, which is the current state of

the art, results in the lowest accuracy.

Transient Places Combine

Context Top-1% Top-5% Top-1% Top-5% Top-1% Top-5%

time 13.4 48.90 10.85 45.40 13.25 48.85
loc+time 31.50 81.50 27.20 74.90 36.20 82.10
sat+time 34.50 81.65 31.65 79.55 37.50 83.30

sat+time+loc 32.95 82.30 33.60 79.85 40.30 84.35

Table 3: Time verification accuracy of various baselines and

two thresholds. Our approach with the Combine distance

outperforms all other methods.

6.2. Application: Image Retrieval

In this qualitative application, we show how we can

use our model to retrieve a set of ground-level images that

would be likely to be observed at a given location and time.

We start with an overhead image, specify a time of inter-

est, and predict the visual attributes. We use the Combine

distance defined in the previous section to find the closest

ground-level images. In Figure 8, we show examples of

images retrieved using this process. We observe that the

ground-level images contain the expected scene type and

appear to be from the appropriate time of day. For example,

the top left overhead image contains a bridge and the clos-

est ground-level images are visually consistent at both input

timestamps.

6.3. Application: Metadata Verification

We focus on verifying the time that an image, with

known location, was captured. For a given ground-level im-

age, we first extract its visual attributes and then predict the

visual attributes for a range of different times. We compute

the distance between the actual and predicted attributes re-

sulting in a distance for each possible time. Figure 9 shows

heatmaps of these distances for two test examples, using our

full model and the Combine distance. These show that our

model is able to identify a small set of likely times.

We conducted a quantitative evaluation on a sample of

2000 images. For each image, we compute the distances as

described above and then rank the times based on distance.

Ideally, the correct time will have the lowest distance. In Ta-

ble 3, we show the percent of images for which the correct

time was within the Top-k% of possible times. The results

show that the Combine distance outperforms both Places

and Transient. While this approach does not fully solve the

problem of detecting metadata falsification, it demonstrates

that our model could be an important part of the solution.

7. Conclusion

We introduced a novel method for constructing dynamic

visual attribute maps. In several large scale experiments,

we demonstrated the practical utility of the model and high-

lighted the importance of including time, location, and an

overhead image of the location as conditioning variables.
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Overhead Image 5pm (UTC) 2am (UTC)

Figure 8: For each overhead image, we predict the visual attributes using our full model and compute the average distance

between them and those of the ground-level images in the test set. (left) The overhead images of two query locations. The

closest images when using August at 5pm as input (middle) and when using August at 2am (right).

Figure 9: Two examples highlighting temporal patterns learned by our model. For each example, we show the original

image and the overhead image of its location. For every possible hour and month, we use our full model to predict the

visual attributes. The heatmap shows the distance between the true and predicted visual attributes, with dark green (white)

representing smaller (larger) distances.

Such a model has many potential uses, including image-

driven mapping, image localization, and metadata verifi-

cation. In future work, we plan to focus on adapting this

model to more directly support the application of metadata

verification and to include additional visual attributes.
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