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Abstract

Particulate matter (PM) is the blend of various solid

and liquid particles suspended in atmosphere. These sub-

micron particles are imperceptible for usual hand-held

camera photography, but become a great obstacle in mi-

croscopic imaging. PM removal from a single microscopic

image is a highly ill-posed and one of the challenging im-

age denoising problems. In this work, we thoroughly ana-

lyze the physical properties of PM, microscope and their in-

evitable interaction; and propose an optimization scheme,

which removes the PM from a high-resolution microscopic

image within a few seconds. Experiments on real world

microscopic images show that the proposed method sig-

nificantly outperforms other competitive image denoising

methods. It preserves the comprehensive microscopic fore-

ground details while clearly separating the PM from a sin-

gle monochromatic or color image.

1. Introduction

Microscopic imaging allows visualization of subcellular

structures at various levels of resolution with unprecedented

accuracy. It has become a vital source of visual data for

biologists and widely used as a primary tool in research and

medical assistance. It grants us a new vision for scrutinizing

miniature details and thereby fulfilling inquisitiveness of the

human mind.

However, presence of particulate matter (PM) in the at-

mosphere causes hindrance to the microscopy. PM is the

blend of various solid and liquid particles suspended in at-

mosphere with diameters larger than 10 nm and smaller

than 50 µm [39]. Comparing the size of PM with percep-

tible day-to-day objects, it becomes transparent or a mild

scattered noise (e.g. haze) for general purpose photography.

That is as the PM concentration in an atmosphere increases,

the visibility decreases. On the other hand PM settles over

the glass slide or objective lens of the microscope, where it

becomes comparable in size with the specimen. So in mi-

croscopic imaging, PM acts as an obstacle rather than just a

scattered noise. Final microscopic image is rendered often

Input microscopic image Particulate Matter
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Figure 1: Top: input image of the yeast colonies is contam-

inated by undesirable particulate matter (PM). Bottom: our

method separates PM to produce a clean specimen.

with undesired superposition of the true object (foreground)

and the ultra-fine unwanted PM (background). Here we ad-

dress the ill-posed problem of foreground and background

separation to produce a clean microscopic image as shown

in the Figure 1.

Microscopic image data acquisition has significant chal-

lenges like proper staining of the specimen, sustaining

certain humidity and surrounding temperature, maintain-

ing appropriate illumination to reduce photo toxicity, pre-

venting background clutter and separating overlapping nu-

clei [16, 24, 43, 64]. So there is scarcity of microscopic

labeled data [67]. Each image contains significant num-

ber of objects such as nuclei, cells or neurons, so avail-

ability of just few hundreds of microscopic images pro-

duces thousands of data points, which is enough to train

the learning based algorithms such as deep neural net-

works (DNN) for detection, segmentation or classification

tasks [2, 23, 52, 61, 62, 63]. However for image denoising,

each image serves as a single datum and there is often ab-

sence of a ground truth e.g. an underlying clean image.
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Thus it is necessary to resort to a non-learning based method

for enhancing the microscopic images.

Microscopic images of crystals or tissues exhibit peri-

odic or quasi-periodic texture, so significant visual infor-

mation will be concentrated within certain spots observed

in frequency domain [6]. So band-pass filtering, Gabor

filtering, curvelets and wavelet-based multiscale analysis

have proved to be effective for denoising in high-resolution

transmission electron microscopy [14, 22, 27, 28, 60]. Un-

like tissues, bacterial colonies do not always grow homoge-

neously [30], which limits the effectiveness of these trans-

form domain filtering methods.

Microscopic images are often acquired at low light to

reduce photo-toxicity of living cells [10], which induces

extra noise and subcellular components lose their fine de-

tails i.e. resolution [32]. These problems are alleviated

to some extent by changing the microscopic acquisition

process, such as long exposure image capture without a

photo-damage [7, 13, 42, 49]. Contrast enhancement meth-

ods [9, 31] also work equally well for uniform illumina-

tion and uniform background, but fail in non-ideal circum-

stances. For example histogram equalization methods in-

troduce color distortions and are not robust in dealing with

uneven illumination conditions [15, 66].

Degradation of microscopic images has been tackled

by modeling the noise. In case of additive white Gaus-

sian noise, NL-means filter has given efficient and sim-

ple solution for noise reduction while preserving the im-

age geometry [8, 32]. For Poisson noise assumption, de-

noising is achieved by exploiting the image redundancy

via patch-based representation, principal component anal-

ysis, total variation denoising and dictionary learning meth-

ods [12, 21, 37, 50, 51]. These methods are effective when

the size of PM is extremely small as compared to specimen

i.e. PM behaves as a noise rather than an obstacle.

Integrated microscope allows simultaneous data acquisi-

tion from multiple optical imaging modalities [44, 58, 68].

Multimodal microscopy co-registers multiple images to

leverage the benefits from multiple structural and functional

mechanisms [59,68], so it can reduce the background noise.

However high-cost and bulkiness restrict their wide usage.

Artifact disentanglement network [40,41] removes metal

artifacts from clinical CT scan images; multimodal unsu-

pervised image-to-image translation (MUNIT) [26] and di-

verse image-to-image translation (DRIT) [34,35] are disen-

tangled representation frameworks which learn how to do

a translation between two image modalities from the un-

paired training data. In our case PM and Specimen are the

two modalities but abundant training data is not available.

We present detailed study about physical properties of

the PM and its interaction with the microscopic imaging

system, which helps to translate this domain knowledge into

suitable image priors. To simultaneously address the data
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Figure 2: Left side shows conventional microscopic imag-

ing process and basic components of the microscope. On

the right side, specimen assembly is shown in detail, where

the PM needlessly obstructs optical path in the microscope.

scarcity and image denoising problem in the microscopy,

we formulate a non-learning based optimization scheme.

2. Our Approach

To understand the image degradation process, we first

outline the principles of microscopy, then examine proper-

ties of the PM and its unavoidable interaction with the com-

ponents of a microscope.

2.1. Microscopic imaging

There are various kinds of microscopes, however basic

microscopic assembly and imaging concept can simply be

outlined like in Figure 2. It consists of a mainly monochro-

matic light source for illuminating the specimen to acquire

lucid visual data, a condenser lens to focus the light onto the

specimen, a glass slide and cover slips for holding the spec-

imen, an objective lens for image magnification and finally

CCD or CMOS sensors for digitally acquiring the visual

data [4]. To avoid any loss of the visual data, the pixel pitch

of these sensors is kept smaller than the minimum resolv-

able distance decided by the magnifying objective lens [11].

Thus even the slight presence of PM nearby specimen as-

sembly, which is exposed to nearby surroundings, will also

be captured in the final image. Occasionally an eyepiece is

used at the last stage for further magnification and directly

viewing the specimen.

2.1.1 Low illumination

Low sensitivity sensors (low ISO settings) are used in bright

light photography which in turn helps to reduce the back-

ground noise, because the obstructing effect of PM is over-

shadowed by the overwhelming visual information avail-

able from the true object due to higher illumination [19].

Specimen under microscopy is biological living organisms
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Plant-cells Paper

Algae Tumor-cells

Figure 3: Left side: Typical clean microscopic images (top

row: plant-cells, paper; bottom row: algae, tumor-cells).

Right side: Their gradient statistics. Average statistics is

better approximated by hyper-Laplacian with α = 0.8,

whereas quadratic or Gaussian approximation is unfit.

or reactive medical compounds. So to avoid living cell dam-

age, photo-bleaching or photo-reactions [47], the irradiating

photon budget is restricted in the microscopy and sensors

need to be operated at higher sensitivity which is suscep-

tible to background noise or the PM. Microscopic imaging

with these constrained resources, produces noisy visual data

in the presence of background PM.

2.1.2 Specimen assembly

Specimen assembly as shown in Figure 2 consists of an ob-

ject (i.e. specimen) placed over a thick glass slide and cov-

ered with a thin glass from the top. It protects the specimen

from an accidental contact and dust by sealing it from the

surrounding environment. A liquid stain is added over the

specimen to better highlight the individual features of the

living cell. The cover slip is about 100 to 200 µm thick, it

keeps the substrate in a flat or an even thickness and protects

it from oxidation or evaporation [54].

2.1.3 Gradient statistics of the specimen

General real-world images exhibit sparse spatial gradient

statistics [38, 53]. In Figure 3, we analyze the gradient

distributions for representative microscopic images, which

are mostly free from background clutter by the PM. It val-

idates that average gradient statistics of clean microscopic

images is nicely approximated by hyper-Laplacian distribu-

tion, whereas quadratic or Gaussian distribution is far from

the fit. So we model the distribution for specimen S as,

P (∇S) =
∏

i∈I

1

w1
exp



−
1

σ1

∑

∂j∈JS

|(∂j ∗ S)i|
α



 , (1)

where scalars w1, σ1 are normalizing weight and spread re-

spectively, i is the pixel index ∈ I = {1, · · · , N}, ∗ is the

Incident light wave

Typical obstacle (PM)
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Figure 4: Incident light wave interacts with the spheri-

cal obstacle and it gets refracted, reflected, absorbed and

diffracted before reaching the imaging plane. Intensity pro-

file in the final captured image shows a smooth variation.

convolution operator, and the derivative filters ∂j belonging

to the set JS = {[1,−1], [1,−1]T } and α = 0.8.

2.2. Particulate matter

PM is categorized as coarse particles with a diameter be-

tween 2.5 and 10µm (PM10) and fine particles with a diam-

eter up to 2.5µm (PM2.5) [29] and larger PM is up to size

50 µm [39]. The major constituents of PM10 and larger par-

ticles are organic compounds, metal oxides, pollen grains,

dust and sea salt, whereas PM2.5 includes ultra-fine pollu-

tants like hydrocarbons, nitrogen and sulfur oxides etc. [1].

It is difficult to maintain cleanliness standards like semi-

conductor workstations in research laboratories or at daily

work. Moreover microscopic imaging is also carried out

in outdoor conditions, so the interaction between specimen

assembly and the PM is inevitable. What if one wipes out

specimen assembly to remove the PM before microscopy?

Wiping process initiates the triboelectric effect, where spe-

cific material becomes electrically charged and attracts the

nearby particles upon the frictional contact. That is why

LCD screens, window glasses are commonly covered with a

thin dusty layer. Glass and the constituents of PM10 are fur-

ther apart in the triboelectric series [55]. So it even speeds

up the settlement process of coarse PM on the specimen as-

sembly (see Figure 2 right part). It is necessary to maintain

certain humidity nearby the specimen assembly to avoid the

osmolarity changes [16], and PM particles are hygroscopic

which can cause further reduced visibility or noise [3].

2.2.1 Translucency of the PM

Size of the PM is well within few multiple orders of the

wavelength λ of the light source (Figure 2), and they are

obstructing the optical path (section 2.2). So as λ is compa-

rable with the obstacle size, the diffraction of light is promi-

nent and even if the PM is much larger, the diffraction arises

from its edges, as shown in Figure 4. As light is not com-
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pletely obstructed, the hindrance from PM in microscopic

imaging becomes translucent.

Considering the Fraunhofer diffraction at the contour of

the PM in near forward direction [56], the total intensity

I(θn) as a function of forward angle θn is given by,

I(θn) =
I0

2k2x2
α4

{J1(α sin θn)

α sin θn

}2

, (2)

where diffraction order is n, input illumination is I0, k =
2π
λ

is a wave number, distance between the PM and the

imaging plane is x, J1() is the Bessel function of the first

kind of order unity and α = 2πr
λ

is the dimensionless size

parameter. This model does not depend on optical proper-

ties of the obstacle, hence it is applicable to the PM which

is a mixture of different objects having variety of shapes.

For a spherical obstacle as in Figure 4, the diffraction

gets traced into concentric rings of intensities, whose radii

depend upon the PM size [45, 57]. From (2) the acquired

intensity is inversely proportional to the square of the sepa-

ration x between PM and the imaging plane. According to

Figure 2, the PM is farther from the imaging plane as com-

pared to specimen by the amount of thickness of the cover

slip (sec. 2.1.2). So their intensity drops very quickly and

patterns become blurrier than specimen.

Considering the zeros of the J1(), we can derive that the

radius of low intensity concentric ring R is inversely pro-

portional to the obstacle size i.e. R ∝ 1
r

. Thus diffraction

is noticeable for smaller objects like PM, whereas for larger

ones like specimen it is non-evident.

Thus due to translucency and smooth variation of the in-

tensity around the edges of PM, we model gradient statistics

for the background PM with the Gaussian-like distribution,

P (∇B) =
∏

i∈I

1

w2
exp



−
1

σ2
2

∑

∂j∈JB

‖(∂j ∗B)i‖
2



 , (3)

where σ2 is the standard deviation, w2 is a normalizing

weight and JB is the set of second order derivative filters

JB = {[1,−2, 1], [1,−2, 1]T }.

2.3. Optimization

Microscopic image I is formed via superposition of PM

as a background B and the specimen S (sec. 2.1) i.e. I =
S + B. Being a linear operator, this composition is valid

in gradient domain as well. We decompose these layers by

maximizing the joint probability, i.e. equivalently minimiz-

ing − logP (∇S,∇B). Sections 2.1 and 2.2 indicate that

S and B are independent, additionally they cannot be more

intense than the actual image (S,B ≤ I) and should be

non-negative (0 ≤ S,B); with slight algebraic manipula-

tion on − log() function and substituting B = I − S, we

obtain the energy minimization problem as,

min
S

∑

j∈JS

|∇jS|
α +

γ

2

∑

j∈JB

‖∇jS −∇jI‖
2

s.t. ∀i 0 ≤ Si, Bi ≤ Ii. (4)

The cost function in (4) is non-convex as α < 1, so we

use half-quadratic splitting technique [20, 33] to solve (4)

iteratively. It requires objective function to be separable,

hence we introduce an auxiliary variable Y which splits the

cost in (4) as,

min
S,Yj

∑

j∈JS

{

|Yj |
α +

β

2
‖∇jS − Yj‖

2

}

+ (5)

γ

2

∑

j∈JB

‖∇jS −∇jI‖
2

s.t. ∀i 0 ≤ Si, Bi ≤ Ii.

At each iteration t the positive weight β increases and as

β →∞, the problems (4) and (5) become equivalent. We

solve (5) by iteratively updating the variables as described

in the following.

Solving Y . Discarding the variables unrelated to Y

gives,

Y
(t+1)
j = argmin

Yj

{

|Yj |
α +

β

2

∥

∥

∥Yj −∇jS
(t)
∥

∥

∥

2
}

. (6)

The (6) is solved independently for each pixel i, so it is a

single variable optimization which can be speedily solved

with the help of a lookup table (LUT) [33]. We map 103

values from ∇jS
(t) to Yj within a range −0.5 to 0.5 in the

LUT. This range is chosen as the average gradient distribu-

tion from Figure 3 is bound within this range. The missing

values from LUT are interpolated on demand.

Solving S. After fixing Y , the (5) becomes quadratic in

S. It can be easily solved by differentiating with respect

to S and equating to 0. As manipulation involves intensive

image gradients or filtering, we apply 2D FFT F for fast

recovery of S as,

S
(t+1)

=F
−1







γ
∑

j∈JB

F∇j⊙F∇j⊙FI + β
∑

j∈JS

F∇j⊙FY
(t)
j

γ
∑

j∈JB

F∇j⊙F∇j + β
∑

j∈JS

F∇j⊙F∇j + ǫ







(7)

where F∇j is the optical-transfer function or the Fourier

transform of the jthderivative filter kernel from the set JB
or JS ; and F∇j is its complex conjugate. A small scalar

ǫ = 10−8 is added for avoiding division by 0. In (7) the

final division and the product⊙ is performed element-wise.

Satisfying constraints. We impose the constraints in (7)

at each iteration t via addition of a normalizing constant κ

to all pixels in S(t), such that 0 ≤ κ+S(t) ≤ I . There is no
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Algorithm 1 Clean specimen layer recovery

1: Input: input microscopic image I; optimization weight

γ; total number of iterations T

2: Initialize: S(0) = I, β = β0

3: for iteration t from 1 to T do

4: update Y
(t)
j using (6)

5: recover S(t) using (7)

6: update S(t) = κ+ S(t) using (8)

7: close the gap between (4) and (5) via β = 2β

8: output: clean specimen image S = S(T )

penalty if κ + S(t) falls within bounds, but there should be

a fixed penalty once it disobeys the constraints. Thus using

an unit-step function U() we find suitable κ by minimizing

the loss function (8) with a gradient descent update,

min
κ

∑

i∈I

U
(

κ+ S(t) − I
)2

+ U
(

−κ−S(t)
)2
. (8)

We summarize this iterative optimization process in the Al-

gorithm 1, where at t = 0 the specimen layer is initialized

with the input microscopic image S(0) = I . Our experi-

ments showed that approximate T = 6 iterations are suffi-

cient to arrive at a good solution.

3. Experiments

In this section, we describe the implementation details

and the experimental setup. The effectiveness of the pro-

posed approach is verified through sets of experiments

and comparisons with the state-of-the-art image denoising

methods using real-world as well as synthetic inputs. All

our results for the clean microscopy (i.e. denoised specimen

images), including the one in Figure 1, are obtained by us-

ing Algorithm 1 without any further image post-processing.

Dataset. We have constructed a new dataset with sig-

nificant 500 real-world and synthetic microscopic images.

They are of diverse genre including medical (e.g. drugs, tu-

mor cells with or without stains etc.), biological (e.g. bac-

terial cultures, yeast growth in brewing process etc.) and

artificial objects (e.g. salt crystals, carbon nano-structures

etc.); which are captured at low to high-illumination with

different thickness of the cover slip (section 2.1). Consid-

ering photo-toxicity for living cells [47], only artificial ob-

jects were captured at very bright illumination. Dataset in-

cludes monochromatic and color images of resolution from

300×400 to high-resolution 1920×1920. To help repro-

ducibility, this dataset as well as our Matlab implementation

will be publicly available for download.

Implementation. Algorithm 1 was implemented in Mat-

lab without any GPU usage, where empirically we have set

β0 = 20, γ = 300 and rational behind the values of other

parameters has already been given in the section 2.

Competitive methods
Clean microscopy

PSNR SSIM

Lefkimmiatis (UDNet) [36] 10.91 dB 0.8658

Homomorphic filtering [46] 11.70 dB 0.5898

CLAHE (Contrast manipulation) [69] 13.24 dB 0.8114

Xu et al. (TW sparse coding) [65] 10.90 dB 0.8785

Fu et al. (Underwater Enh) [17] 13.28 dB 0.3733

Ren et al. (Multiscale ConvNet) [48] 13.25 dB 0.6600

Fu et al. (Fusion Enh low light) [18] 11.84 dB 0.8802

Berman et al. (Non-local method) [5] 14.00 dB 0.6444

Ours (Iterative optimization) 18.56 dB 0.9501

Table 1: Quantitative comparison with various methods. In

each column, top three values are color coded as RGB re-

spectively; and the rows satisfying PSNR >10dB as well as

SSIM > 0.80 are displayed with a gray background.

3.1. Quantitative comparisons

Using the empty specimen assembly (sec.2.1.2), an im-

age of the PM alone can be obtained at that specific time

and configuration. Due to requirement of the ground truth

(GT) for quantitative comparisons, we have synthesized the

input microscopic image (shown in Figure 5a) by mixing

an approximate clear specimen image with the PM. We also

made sure that, the appearance of the synthetic input resem-

bles to that of real-world microscopic images having natural

contamination from the PM as shown in Figure 6a.

For validating the effectiveness of the proposed method,

we extensively compare it with the various relevant methods

shown in Table 1. As discussed in section 1, we have se-

lected the recent methods for comparative analysis namely,

DNN based learning approach Universal Denoising Net-

works (UDNet) [36], homomorphic filtering to reduce mul-

tiplicative noise [46], Contrast Limited Adaptive Histogram

Equalization (CLAHE) [69], Trilateral Weighted Sparse

Coding (TWSC) real-world image denoising scheme [65],

underwater image enhancement method [17], non-local [5]

and DNN [48] based approach for image dehazing and the

fusion based low-light enhancement technique [18].

The results are compared using both the peak signal-

to-noise ratio (PSNR) and structural similarity index

(SSIM) [25], because being a global measure, PSNR does

not account for local variation between images; whereas

SSIM is perceptual metric which quantifies structural vi-

sual quality degradation. Thus quantitatively better denois-

ing methods are those which simultaneously produce high

PSNR and SSIM. These are highlighted with gray back-

ground of the rows in Table 1 and visually analyzed fur-

ther in Figure 5. Among contrast manipulation methods, we

chose CLAHE [69] for further visual analysis as it showed

some better results on real-world inputs (Figure 6).
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10.87 dB 10.91 dB 13.24 dB 10.90 dB 14.00 dB 18.56 dB ← PSNR

0.8559 0.8658 0.8114 0.8785 0.6444 0.9501 ← SSIM

(a) Synthetic (b) UDNet [36] (c) CLAHE [69] (d) TWSC [65] (e) Dehaze [5] (f) Ours (g) Ground truth

Figure 5: Quantitative comparisons are performed using a synthetic image in (a). The results of various methods are shown

from (b) to (f) columns, which are then compared with the ground truth (g) to obtain the corresponding PSNR and SSIM

values. Image regions affected with the PM are highlighted using bounding-boxes and enlarged at the bottom of each image.

Underwater image enhancement method by Fu et al. [17]

has achieved good PSNR at 13.28 dB however drastically

failed to attain any reasonable SSIM. Similarly the dehaz-

ing methods [48] and [5] showed high PSNR but low SSIM.

Underwater environment and the haze, share similar photo-

characteristics of diffused illumination due to intense light

scattering effect. So these methods are specifically tailored

towards discovering the visual data hidden under uniformly

diffused and scattered illumination. However for micro-

scopic imaging, as discussed in section 2.2.1, the artifacts

are generated mainly from the light diffraction from the

PM. Thus dehazing like image enhancement methods col-

lectively produced low SSIM. We chose only the non-local

dehazing method [5], a slightly better performing method

among them for more visual comparisons in Figure 5 and 6.

Figure 5 visually analyzes results of the important com-

petitive methods from Table 1. Image regions containing

the evident artifacts from the PM are highlighted using col-

ored bounding boxes, which are then enlarged at the bottom

of corresponding image. UDNet [36] being a universal de-

noising method, reduces the whatever Poisson noise present

in the microscopic imaging, as shown in Figure 5b, and im-

proves PSNR to 10.91 dB along with SSIM to 0.8658. How-

ever localized acute noise due to the PM remains unharmed.

Sparse coding based denoising approach (TWSC) [65] at-

tempts further in reducing the PM noise but barely scratches

it out as shown in the cropped region at the left bottom of

Figure 5d and produces slightly better 0.8785 SSIM.

Dehazing [5] improves contrast of the input image a lot

to obtain high PSNR till 14 dB, but disturb the original color

consistency and in-fact enhance the PM noise; so it offers

low 0.6444 SSIM in Figure 5e CLAHE [69] more or so does

the same thing but in moderation, so image composition is

not largely diverged from the GT and produce 0.8114 SSIM

(Figure 5c) which is lower than the input (Figure 5a).

As our method appropriately modeled the diffraction ef-

fects from PM and the highly sparse gradient statistics of

specimen, it has successfully reduced the PM noise along

with preserving structural and color composition of the un-

derlying true image. Our method does not change any con-

trast or luminance of the input image. It is solely developed

for the purpose of preserving underlying true information

of the specimen with reducing the PM artifacts. From the

cropped regions at the bottom of Figure 5f, we can clearly

see that the PM is almost disappeared. So quantitatively

it achieves significantly higher 18.56 dB PSNR and 0.9501

SSIM for cleaning the microscopic images.

3.2. Comparisons on the real-world images

Figure 6 shows the qualitative results of various denois-

ing methods on real-world important microscopic images,

which are of varying resolution, illumination, specimen

content and the process of capture e.g. stained vs non-

stained microscopy. We also include the real-world images

gathered from online sources in our experimentation for ef-

fectively verifying the ubiquitous presence and undesirable

side effects of PM in the microscopy. We have included ad-

ditional experimental results on real-world microscopic im-

ages and minute details about the proposed method in the

supplementary material.

Figure 6 serves an important reference for the qualitative

microscopy imaging analysis, where the denoising results

on each input from 6a by competitive methods are shown

in 6b to 6f. Average time taken by them to process all inputs

from 6a is shown in the last row of Figure 6 and discussed in

section 3.3. Important regions containing the PM and some

part of the specimen are highlighted using colored bounding

boxes, which are zoomed in at the bottom of each image for

better visualization. In the following paragraphs we provide

the comparative analysis for each row of the Figure 6.
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Proc. time→ 5.93 sec. 0.48 sec. 513.2 sec. 2.64 sec. 5.52 sec.

(a) Inputs ↑ (b) UDNet [36] (c) CLAHE [69] (d) TWSC [65] (e) Dehaze [5] (f) Ours

Figure 6: Qualitative comparison using various kinds of real-world microscopic images. Specific regions are high-lighted

using colored bounding boxes and their enlarged versions are also shown at the bottom of each image. 1st row: Brewing

process is captured under microscope at low and non-uniform illumination, where the noise due to PM is significant. 2nd row:

Image before formation of the yeast colonies at low but uniform illumination. 3rd row: Bacterial image using cell staining

process for acquiring better contrast of the cell parts. 4th row: Artificial sub-micron particles at very bright illumination,

where artifacts due to the PM are still present. Bottom row shows an average computation time for processing all the inputs.
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First row in Figure 6 shows the brewing process cap-

tured at non-uniform and low illumination, where the arti-

fact due to PM (highlighted and shown in the inset) resem-

bles other circular shapes in the specimen but differently

shows the mild fringing pattern i.e. diffracted first ring like

in Figure 4. As our method explicitly characterizes this phe-

nomenon, it precisely separates the PM without affecting

the nearby specimen (Figure 6f). UDNet [36] greatly re-

duced just the speckled noise, TWSC [65] kept input almost

unaltered; whereas CLAHE [69] and Dehaze [5] amplified

the artifacts by enhancing contrast of the image.

Second row in Figure 6 presents the image of yeast cells

at low but uniform illumination to avoid any unforeseeable

cell damage possibly due to photo-bleaching [16]. Low

light causes Poisson noise to peek in the system. Addi-

tionally it also includes the PM artifacts of different sizes

and structures, as highlighted by the red, green and blue

bounding boxes e.g. dispersed spiny structure of the PM is

shown in the blue box (smallest cropped inset). So this im-

age serves an excellent reference for investigating the glob-

ally diffused and locally acute microscopic noise. In red or

top-left inset, the noise is mostly globally diffused where

UDNet [36] showed the best denoising results (followed

by TWSC [65]) without affecting contrast or brightness of

the original image; whereas our method reduced the global

noise with the expense of slightly altering the brightness;

and contrary CLAHE [69] and Dehaze [5] significantly al-

tered the specimen by amplifying both noise and brightness.

Blue or the smallest inset shows the locally acute PM ar-

tifact which is enhanced further by CLAHE [69] and De-

haze [5] as shown in Figure 6c and 6e. UDNet [36] has

slightly reduced it and TWSC [65] has completely ignored

it whereas our method has completed removed it without

damaging the adjacent yeast cells. Green or the largest inset

contains mixed (global and local) noise, where our method

performed the best followed by UDNet [36].

Third row in Figure 6 depicts the biological image of

isolated bacilli-form bacteria obtained using microscopic

staining, which offers better contrast for highlighting the

various cellular matter. It is clean specimen image and al-

most free from noise or any significant PM artifacts. It is

used here to compare and check any potential side effects of

the denoising methods on a clean specimen. Cropped image

region in an inset below shows a fully grown large bacterial

cell with few other tiny cells. TWSC [65] and CLAHE [69]

have preserved the original content as it is, however UD-

Net [36] has mistakenly removed the tiny specimen cells

considering them as noise. Our methods has slightly altered

contrast near the cell walls however original specimen in-

formation is kept intact. Dehaze [5] has drastically changed

the color consistency but has preserved all the structural cell

information, which is the most important requirement in mi-

croscopy i.e. to preserve true underlying data.

Fourth row in Figure 6 portrays artificial sub-micron par-

ticles (diameter 3µm) imaged at very bright illumination

as there is no light irradiance constraints for non-living and

non photo-reactive specimen. Artifact due to the PM is still

present even at this bright illumination, which is shown in

red or large inset below the image; and a mild dark noisy

spot is shown in the small inset. Interestingly at bright il-

lumination, CLAHE [69] has not altered the contrast drasti-

cally, moreover it has reduced the bright noisy spot. As the

global speckled noise is absent at a higher illumination, UD-

Net [36] and TWSC [65] have just kept input image unmod-

ified. Dehaze [5] has not only enhance the bright noisy spot

but also has introduced additional non-uniform illumination

in the output. Our method has clearly spotted bright and

dark artifacts due to PM, and comfortable removed them to

produce the clear specimen image.

So overall our method arguably produce the best results

as shown in Figure 6f across all illumination, specimen

type, various shape and sizes of the PM. It removes glob-

ally diffused as well as locally acute noise without sacrific-

ing the true underlying specimen details.

3.3. Processing time

Using the authors provided implementations executing

in an identical computational environment, average process-

ing time for all the methods is reported in the Figure 6.

Though CLAHE [69] and Dehaze [5] methods are much

faster, according to their qualitative results they are far from

usability in the microscopic image denoising. UDNet [36]

and TWSC [65] took approximately 6 and 500 seconds re-

spectively. The proposed method produces the best results

within a decent average time about 5.5 seconds per image,

as FFT and LUT based quick iterations help it to handle

high-resolution images quite well in an optimization.

4. Discussion

We have proposed the scheme for automatic separating

the particulate matter (PM) from a single high-resolution

microscopic image. We have thoroughly analyzed the phys-

ical properties of the PM, microscopic image acquisition

process and their inevitable interaction which causes hin-

drance in the microscopic imaging. Thereby translating do-

main knowledge into the appropriate image priors, we have

formulated a non-learning based optimization scheme for

simultaneously addressing the data scarcity and image de-

noising problem in the microscopy.

Our method approximates the diffraction patterns of PM

and exploits the disparity of gradient statistics between

specimen and the PM. Its iterative solution based on FFT

and LUT is quite stable and faster than other off-the-shelf

optimization solvers. We hope that this work along with

collected dataset will help researchers to gain insight into

the vast array of microscopic imaging affairs.
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