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Abstract

We address anticipation of scene development by fore-

casting semantic segmentation of future frames. Several

previous works approach this problem by F2F (feature-

to-feature) forecasting where future features are regressed

from observed features. Different from previous work,

we consider a novel F2M (feature-to-motion) formulation,

which performs the forecast by warping observed features

according to regressed feature flow. This formulation mod-

els a causal relationship between the past and the future,

and regularizes inference by reducing dimensionality of the

forecasting target. However, emergence of future scenery

which was not visible in observed frames can not be ex-

plained by warping. We propose to address this issue by

complementing F2M forecasting with the classic F2F ap-

proach. We realize this idea as a multi-head F2MF model

built atop shared features. Experiments show that the F2M

head prevails in static parts of the scene while the F2F head

kicks-in to fill-in the novel regions. The proposed F2MF

model operates in synergy with correlation features and

outperforms all previous approaches both in short-term and

mid-term forecast on the Cityscapes dataset.

1. Introduction

Anticipated future [1, 29, 30] is invaluable input to many

decision making systems. For example, in autonomous

driving, future pedestrian location could enable potentially

life-saving decisions. Models for forecasting future events

can often be trained on unlabeled videos, which are an

inexhaustible source of training data. Some recent work

[20, 35, 26] addresses forecasting future RGB frames given

the past frames. However, this difficult task is not required

in many interesting applications. For instance, in the au-

tonomous driving context, we are more concerned about fu-

ture semantics [37] than about future appearance. Hence,

semantic forecasting [18] represents an interesting alterna-

tive with clear potential to improve accuracy and speed.

Several approaches have been proposed for future antic-

ipation on the semantic level. Direct semantic forecasting
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Figure 1. Overview of the proposed F2MF forecasting approach.

Observed RGB images Iτ , τ ∈ {t − 9, t − 6, t − 3, t}, are pro-

cessed into low-resolution features Xτ by a pre-trained recog-

nition module (CNN DN). The features are enriched with their

spatio-temporal correlation coefficients and forwarded to F2M and

F2F modules which specialize for forecasting previously observed

and novel scenery. Forecasted future features X̂t+∆t are a blend

(B) of F2M and F2F outputs. Dense predictions Ŝt+∆t are finally

recovered through a pre-trained upsampling module (CNN UP).

maps past predictions into future ones [18, 14, 2, 21, 4, 38].

Unfortunately, this approach risks propagating single-frame

prediction errors into the forecast. Additionally, successful

forecasting requires establishing at least implicit correspon-

dence across the past frames, which is not easily achieved

at the level of final predictions. Finally, this approach can

not be realized in a task agnostic manner.

Flow-based forecasting operates on dense image motion

vectors [34]. It receives reconstructed optical flow from the

past few frames and targets the optical flow between the fu-

ture frame and the last observed frame. Future predictions

can be recovered by warping past predictions with the fore-

casted flow. However, this approach requires pre-computed

optical flow, which implies separate training and decreases

inference speed. Additionally, purely geometric forecasting

can not take advantage of semantic information and gener-

ate ad-hoc content in disoccluded pixels.

Feature-level forecasting receives intermediate features
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from the past frames, and targets their future counterparts.

This approach has been successfully applied for semantic

segmentation [37, 28, 5], instance segmentation [17, 7, 32]

and action recognition [36]. In comparison with the previ-

ous two approaches, feature-level forecasting stands a better

chance to avoid propagating single-frame prediction errors,

since features are not constrained to commit to particular

predictions. Additionally, deep convolutional representa-

tions are typically subsampled w.r.t. input which allows for

efficient implementations in terms of memory footprint and

computational speed. There is also a promising potential

for end-to-end training and task-agnostic operation.

Most previous feature-level approaches express forecast-

ing as a pure recognition task [17, 28, 32]. This does not

appear satisfactory since it ignores the geometric nature of

future anticipation and makes it difficult for the model to

disentangle individual factors of variation. The forecast-

ing problem involves several geometric degrees of freedom

such as camera motion, depth, and individual object motion.

We hypothesize that learning and inference would be easier

if some of these factors were explicitly present in the model.

Feature-level forecasting can also be expressed as a pure

3D reconstruction task [37] given reconstructed ego-motion

and depth. However, 3D interpretation may introduce unde-

sired noise , while perhaps not being necessary for achiev-

ing optimal performance. This especially concerns the pro-

cess of ”imagining” unobserved scenery. Hence, we prefer

to formulate the forecast as 2D motion of previously ob-

served structure plus 2D generation of novel scenery.

This paper expresses feature-level forecasting by disen-

tangling variation caused by motion from variation due to

novelty. Our contributions are as follows. First, we im-

prove feature-based forecasting by enriching features with

their spatio-temporal correlation coefficients across the lo-

cal neighbourhood. This promotes generalization across

semantic classes and simplifies establishing temporal cor-

respondence. Second, we model variation due to mo-

tion by warping observed features with regressed feature

flow. We denote this procedure as F2M (feature-to-motion)

forecasting in order to emphasize its relation towards the

classic F2F (feature-to-feature) approach [17]. Third, we

leverage the complementary nature of F2F and F2M ap-

proaches by blending their forecasts according to densely

regressed weight factors, as illustrated in Figure 1. The

proposed F2MF forecasting model outperforms the classic

F2F approach by improving the accuracy in previously ob-

served regions, and encouraging the F2F module to focus on

”imagining” the novel scenery. F2M forecast can be imple-

mented either with forward or backward warping [33]. The

two approaches achieve equally good performance in our

experimental setup. Experiments on the Cityscapes dataset

show clear advantage of F2MF forecasting over the classic

F2F approach, both at short-term and mid-term period.

2. Related work

Optical flow. Optical flow reconstructs dense 2D-motion

between neighbouring image frames It and It+1. The flow

can be defined either in the forward or in the backward di-

rection. The future image It+1 can be approximated either

by forward warping [33] previous image It with the forward

flow f t+1
t = flow(It, It+1), or by backward warping It with

the backward flow f tt+1= flow(It+1, It):

It+1 ≈ warp fw(It, f
t+1
t ) ≈ warp bw(It, f

t
t+1) (1)

Approximate equality in (1) reminds us that a bijective map-

ping between two successive images often can not be estab-

lished due to (dis-)occlusions and changes of perspective.

Recent optical flow research leverages deep convolu-

tional models [8, 31] due to end-to-end trained correspon-

dence and capability to guess motion in (dis-)occluded re-

gions where correspondences are absent. These models are

based on local embeddings which act as a correspondence

metric, and explicit 2D motion recovery within the corre-

lation layer [8]. Note that correct flow-based forecasting

requires optical flow estimation between the past and the

future frame which is yet to be observed. Consequently,

straightforward extrapolation of past optical flow is bound

to achieve suboptimal accuracy even for short-term fore-

casting, especially at articulated objects such as pedestrians.

Temporal alignment. Semantic forecasting is related to

temporal alignment of observed images. Features from a

segmented key-frame can be warped towards the current

frame in order to speed up semantic segmentation in video

[41]. Groundtruth labels can be warped to surrounding un-

labeled frames in order to enlarge the training dataset [42].

Current predictions can be improved by enforcing temporal

consistency with respect to past frames [10, 27].

Direct semantic forecasting. Luc et al. [18] were the

first to forecast future semantic segmentation. Their S2S

model follows the direct forecasting approach by taking

past segmentations on the input, and producing the future

segmentation on the output. Bhattacharyya et al. [2] point

out the multimodal nature of the future and try to account

for it with dropout-based variational inference. Nabavi et

al. [21] formulate the forecasting in a recurrent fashion,

with shared parameters between each two frames. Their

work has been improved by enforcing temporal consistency

between neighbouring feature tensors and leveraging de-

formable convolutions [4]. This results in attention-based

blending, which is related to our forward warping based on

pairwise correlation features. However, the forecasting ac-

curacy of these approaches is considerably lower than in our

ResNet-18 experiments despite considerable forecasting ca-

pacity and better single-frame performance. This suggests

10649



that ease of correspondence and avoiding error propagation

may be important for successful forecasting.

Flow-based forecasting. Direct semantic forecasting re-

quires a lot of training data due to necessity to learn all mo-

tion patterns one by one. This has been improved by al-

lowing the forecasting model to access geometric features

which reflect 2D motion in the image plane [14]. Fur-

ther development of that idea brings us to flow-based fore-

casting which warps the last dense prediction according to

forecasted optical flow [34] as illustrated in (1). This ap-

proach has achieved state-of-the-art short-term forecasting

accuracy prior to our work. Their convolutional LSTM

model receives backward optical flows from three observed

frames, and produces the backward optical flow for the fu-

ture frame. Such formulation is related to our F2M module

which also forecasts by warping with regressed flow. How-

ever, our F2M module operates on abstract convolutional

features, and requires neither external components nor addi-

tional supervision. We achieve that by joint training of our

compound deep model with feature regression loss. This

implies very efficient inference due to subsampled resolu-

tion and discourages error propagation due to end-to-end

training. Additionally, we take into account features from

all past four frames instead of relying only on the last pre-

diction. This allows our F2M module to detect complex

disocclusion patterns and simply copy from the past where

possible. Further, our module has access to raw semantic

features which are complementary to flow patterns [9], and

often strongly correlated with future motion (consider for

example cars vs pedestrians). Finally, we complement our

F2M module with pure recognition-based F2F forecasting

which outperforms F2M on previously unobserved scenery.

Optical flow has also been used for generating multi-modal

future video from single-frame input [16, 24]. Our F2M

method takes an opposite approach: we also forecast multi-

ple flows, however our flows connect a single future frame

with several past frames. Multi-modal forecasting would be

an interesting extension of our present work.

Feature-level forecasting. These approaches map past

features to their future counterparts, which is also known

as F2F (feature-to-feature) forecasting. The first F2F ap-

proach [36] operated on image-wide features from a fully

connected AlexNet layer. Later work addressed dense fore-

casting by regressing features along all levels of the FPN-

style upsampling path [17]. However, forecasting at fine

resolution is computationally expensive [7]. Hence, some

later work reverted to forecasting on the coarse feature level

[5]. State-of-the-art mid-term accuracy has been achieved

by leveraging deformable convolutions in the F2F module,

fine-tuning of the upsampling path with cross-entropy, and

a single-frame model without skip-connections [28]. Fore-

casting at coarse resolution is advantageous due to small

inter-frame displacements, rich contextual information and

small computational footprint, although some information

for recovering small objects may be lost in the process.

Our work improves on [28] as follows. First, we show

that forecasting accuracy can be improved by forecast-

ing normalized SPP features. Second, we model explicit

correspondence across neighbouring frames by recover-

ing spatio-temporal correlation between embedded convo-

lutional features. Such geometric insight further improves

the forecasting accuracy. Third, we introduce F2M fore-

casting which operates by warping previous features with

regressed feature flow. We show that F2M and F2F ap-

proaches complement each other in a multi-head F2MF

model with shared features. F2F proves better in novel parts

of the scene where the model has to imagine what will hap-

pen, while F2M prevails on previously observed scenery.

Our work is also related to [37] who formulate feature-

level forecasting as reprojection of reconstructed features to

the forecasted future ego-location. However, such purely

geometric approach is clearly suboptimal in presence of

(dis-)occlusions and changes of perspective. Additionally,

it is difficult to account for independent motion of moving

objects. Our method outperforms [37] by a wide margin,

which suggests that optimal forecasting performance re-

quires a careful balance between reconstruction and recog-

nition while explicit 3D reasoning may not be necessary.

3. Semantic forecasting with feature flow

We propose a feature-level forecasting approach which

complements recognition-based inference with causal ge-

ometric insight as illustrated in Figure 2. The proposed
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Figure 2. Details of the proposed F2MF forecasting approach.

F2M and F2F heads receive a processed concatenation (||) of fea-

tures Xt−9:t:3 from observed frames, and their spatio-temporal

correlation coefficients. The F2M head regresses future feature

flow which warps (W) past features into their future locations. The

F2F head forecasts the future features directly. The compound

forecast Xt+∆t is a blend (B) of F2M and F2F forecasts.
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F2MF model receives convolutional features Xt−9, Xt−6,

Xt−3, Xt (Xt−9:t:3 for short) extracted by a pre-trained

convolutional backbone (CNN DN). On output, the F2MF

module forecasts the corresponding future features X̂t+∆t,

which are subsequently converted to dense predictions

Ŝt+∆t by a pre-trained upsampling module (CNN UP).

3.1. Singleframe model

Figure 3 shows our single-frame dense prediction model.

The downsampling path (CNN-DN) contains an ImageNet-

pretrained backbone and a pyramid pooling module [39].

The resulting features Xt are 32× subsampled with respect

to the input resolution. The upsampling path (CNN-UP) has

three trained upsampling modules [15, 23] and a 1×1 dense

classifier, and concludes with 4× bilinear upsampling.

CNN

DN

CNN

UP

X
t

Figure 3. Our single-frame model is a SwiftNet [23] without skip-

connections. The downsampling path (CNN-DN) converts the in-

put image It to a condensed representation Xt. The upsampling

path (CNN-UP) produces dense semantic output Ŝt.

3.2. Spatiotemporal correlation features

Our correlation module determines spatio-temporal cor-

respondence between neighbouring frames. On input, it

receives a T×C×H×W tensor with convolutional features

Xt−9:t:3. In all experiments we have T=4 (time instants),

H=32, and W=64. We first embed features from all time

instants into a space with enhanced metric properties by

a shared 3×3×C’ convolution (C’=128). This mapping

can recover distinguishing information which is not needed

for single-frame inference. Subsequently, we construct our

metric embedding F by normalizing C’-dimensional fea-

tures to unit norm so that cosine similarity become dot prod-

uct. Finally, we produce d2 correspondence maps between

features at time τ and their counterparts at τ−3 within d×d

neighborhood, for each τ ∈ {t − 6, t − 3, t}. The correla-

tion tensor Cτ at location q and feature map ud+ v is a dot

product of a metric feature at time τ and location q ∈ D(F),
with its counterpart at time τ − 3 offset by (u, v) [8, 13]:

Cτ
ud+v,q = Fτ⊤

q Fτ−3
q+[u− d

2
,v− d

2
]
,where u,v ∈ [0 .. d). (2)

3.3. F2F forecasting

Our feature-to-feature module receives processed input

features and directly regresses the future features Xt+∆t.

This is similar to previous work [17, 5, 28], however there

is one important difference. Our F2F module has access to

spatio-temporal correlation features which relieve the need

to learn correspondence from scratch. Our experiments

show clear advantage of these features which suggests that

correspondence is not easily learned on existing datasets.

3.4. F2M forecasting

Our F2M module provides a regularized variant of F2F

forecasting. It assumes that there is a causal relationship

between the past and the future, which can be explained

by 2D warping. It receives processed input features and

outputs a dense displacement field for warping each of

the four feature tensors into its future counterpart X̂
(τ)
t+3,

τ ∈ {t − 9, t − 6, t − 3, t}. We finally blend the four fore-

casts with trained per-pixel weight vectors which we acti-

vate with softmax. Consequently, the forecast can utilize

the observed frame with the best view onto a disoccluded

part of the scene. We demonstrate this in Fig 7.

F2M with backward warp. F2M forecast can be con-

structed either by backward warping with f̂τt+∆t or by for-

ward warping with f̂ t+∆t
τ , as shown in (1). In the backward

case, the F2M model forecasts feature flows at time t+∆t:

f̂τt+∆t = F2M
(τ)
bw (Xt−9:t:3) , τ ∈ {t− 9, . . . , t} . (3)

Future feature tensors are subsequently obtained by back-

ward warping each of the four previous feature vectors:

X̂
(τ)
t+∆t = warp bw(Xτ , f̂

τ
t+∆t) . (4)

Backward warp obtains future activations by interpolating

at non-integer locations of the forecasted backward flow:

X̂
(τ)
t+∆t[q] = bilinear interp(Xτ ,q+ f̂τt+∆t[q]) . (5)

F2M with forward warp. This F2M variant forecasts

forward feature flow at times τ ∈ {t− 9, t− 6, t− 3, t}:

f̂ t+∆t
τ = F2M

(τ)
fw (Xt−9:t:3) (6)

Future feature tensors are obtained by forward warping each

of the four previous feature vectors:

X̂
(τ)
t+∆t = warp fw(Xτ , f̂

t+∆t
τ ) (7)

This produces future activations by splatting [33] observed

features at non-integer locations provided by the forecasted

forward flow. Unfortunately, a splatting implementation for

GPU hardware [22] became available only after the time

of our experiments. We have therefore devised a simple

although inefficient implementation based on matmul:

X̂
(τ)
t+∆t[q] =

1

Nq

∑

p∈D(X)

k(p+ f̂ t+∆t
τ [p],q) ·Xt[p]. (8)
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In the above equations, k represents the RBF kernel, while

Nq is a normalizing factor which ensures that the norm of

the forecasted features remains within the usual range:

k(x,x′) = exp

(

−
‖x− x′‖2

2σ2

)

, (9)

Nq =
∑

p∈D(X)

k(p+ f̂ t+∆t
τ [p],q) . (10)

Expression (8) is computationally much more intensive than

(5), but it is nevertheless feasible due to small resolution.

The presented two formulations of feature flow are quite

different. The forward flow (6) is aligned with the observed

features, while the corresponding backward flow (3) aligns

with the forecasted features. Consider a pixel at some mov-

ing object in the last observed image. Its forward flow is in-

ferred by looking (convolutionally speaking) at the present

object location. On the other hand, the backward flow has

to look at the future object location. Hence, backward flow

requires larger receptive field in order to operate correctly.

Backward F2M addresses effects of the motion: it makes

decisions by considering all possible observed activations

which may ”come” into the particular location of the future

tensor. Consequently, it stands a good chance to correctly

resolve contention due to occlusion, provided its receptive

field is large enough. On the other hand, forward F2M ad-

dresses causes of the motion: it makes decisions by consid-

ering observed motion of feature activations. Hence, for-

ward F2M is able to model a probabilistic distribution over

feasible displacements, which may make it an interesting

choice for longer-term forecasting of multi-modal future.

3.5. Compound F2MF model

The compound F2MF model blends F2M and F2F out-

puts with dense softmax activated weights wF2F and wF2M
τ :

X̂F2MF
t+∆t = wF2F · X̂F2F

t+∆t +
∑

τ

wF2M
τ · X̂

(τ)
t+∆t (11)

Note that the F2MF model reuses softmax preactivations

of wF2M
τ which are regressed by F2M. There is 1 convo-

lutional layer in the fusion module, 6 layers in the shared

module, and 1 layer in F2F and F2M heads. All layers are

BN-ReLU-dconv where dconv stands for deformable con-

volution [40]. We use two auxiliary losses LF2M and LF2F,

as well as the compound loss LF2MF, as shown in Fig. 2.

All losses have equal contribution.

4. Experiments

We perform experiments on finely annotated subset of

the Cityscapes dataset with 2975 train, 500 validation, and

1525 test images. Each labeled image corresponds to the

20-th frame of a 1.8 second long video clip (30 frames)

[6]. We use pre-trained single-frame models based on

DenseNet-121 [12] or ResNet-18 [11]. Our forecasts tar-

get normalized features from the most condensed represen-

tation of the single-frame model (cf. 3.1). We train for

160 epochs with L2 loss, early stopping, batch size 12, and

ADAM with cosine annealing (lrmax=5e-4, lrmin=1e-7).

We evaluate F2MF forecasting on the semantic segmen-

tation task in short-term (∆t=3 frames ahead, 180 ms) and

mid-term (∆t=9 frames, 540 ms) experiments. We report

the accuracy for all classes (mIoU All), and 8 classes with

moving objects (mIoU MO) [18, 17]. In some experiments

we augment the training data by horizontal flipping and ran-

dom sliding of the training tuple across the video clip. Most

experiments use backward warping due to better efficiency.

4.1. Comparison with previous state of the art

Table 1 compares our F2MF model with previous work

on Cityscapes val. The first section presents the usual up-

per bound (oracle) and the usual baseline (copy last seg-

mentation) [18]. The second section shows results from

the literature where LSTM M2M [34] and DeformF2F [28]

achieve best short-term (67.1 mIoU) and mid-term (53.6

mIoU) performance, respectively. The last section presents

our DenseNet-based F2MF model trained without and with

data augmentation. Our best model achieves state-of-the-art

both in short-term and mid-term forecasting while outper-

forming the two runner-ups by 2.5 and 4.3 mIoU points.

4.2. Qualitative results

Figures 4 and 5 show our short-term and mid-term se-

mantic segmentation forecasts on six clips from Cityscapes

val. The first three rows show the last observed image, and

Short term: ∆t=3 Mid term: ∆t=9

Accuracy (mIoU) All MO All MO

Oracle 75.8 75.2 75.8 75.2

Copy last segmentation 53.3 48.7 39.1 29.7

3Dconv-F2F [5] 57.0 / 40.8 /

Dil10-S2S [18] 59.4 55.3 47.8 40.8

LSTM S2S [21] 60.1 / / /

Mask-F2F [17] / 61.2 / 41.2

FeatReproj3D [37] 61.5 / 45.4 /

Bayesian S2S [2] 65.1 / 51.2 /

DeformF2F [28] 65.5 63.8 53.6 49.9

LSTM AM S2S [4] 65.8 / 51.3 /

LSTM M2M [34] 67.1 65.1 51.5 46.3

F2MF-DN121 w/o d.a. 68.7 66.8 56.8 53.1

F2MF-DN121 w/ d.a. 69.6 67.7 57.9 54.6

Table 1. Evaluation of our DenseNet-121-based F2MF model for

semantic segmentation forecasting on Cityscapes val. All denotes

all classes, MO — moving objects, and d.a. — data augmentation.
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the future image overlayed with the oracle prediction and

our F2MF forecast. The last row visualizes wF2M = 1−wF2F

=
∑

τ w
F2M
τ which reveals whether the particular pixel is

forecasted by F2M (red) or F2F (blue). We observe that

our forecasts incur some loss of details (cf. classes pole and

person), but are otherwise quite accurate. The F2M head

is preferred in static regions where establishing correspon-

dence is relatively easy (cf. red wF2M in columns 3, 4 in

Fig. 4, and columns 2, 4 in Fig. 5). The F2F head con-

tributes to dynamic scenery and assumes full responsibility

in previously unobserved pixels (cf. blue wF2M in column 2

in Fig. 4, and columns 1, 3, 6 in Fig. 5). Contribution of

the F2F head is best visible in column 1 of Fig. 5. A car

on the right leaves the scene while disoccluding a large part

of previously unobserved background. Our model assigns

disoccluded pixels to the F2F head which correctly fills-in

road, sidewalk and building pixels. This suggests that F2F

and F2M complement each other.

4.3. Influence of the singleframe model

Table 2 explores influence of single-frame performance

to the forecasting accuracy. We consider two backbones

with very lean representations in the last convolutional

layer. The model based on DenseNet-121 has a more ac-

curate backbone and wider pyramid pooling (C=512 vs.

C=128). These advantages result in 3.3 pp mIoU higher

Oracle Short-term Mid-term

Accuracy (mIoU) All MO All MO All MO

F2MF-RN18 72.5 71.5 66.9 65.6 55.9 52.4

F2MF-DN121 75.8 75.2 68.7 66.8 56.8 53.1

Table 2. Influence of the single-frame semantic segmentation

model to the forecasting performance on Cityscapes val. We do

not use data augmentation in order to speed up the training.

single-frame performance as shown in columns 2-3 (ora-

cle). However, some of this performance gain does not

transfer onto the forecasting tasks. The advantage drops to

1.8 pp mIoU at short-term and to 0.9 pp mIoU at mid-term.

Thus, we use the model based on ResNet-18 in all further

experiments in order to speed up the processing.

4.4. Ablation and validation experiments

Table 3 evaluates the contribution of correlation features

and the F2M head. We first compare independent F2F and

F2M approaches (row 1 vs row 2, and row 4 vs row 5).

F2F is somewhat better overall (up to 1 pp mIoU), except in

mid-term forecast with correlation features where the two

approaches perform equally well. Subsequently we explore

the contribution of correlation features (rows 1, 2, 3 vs. rows

4, 5, 6). We note a consistent performance improvement,

0.8-1.1 pp mIoU at short-term, and 1.7-3.1 pp mIoU at mid-

term. The compound F2MF model profits more than the

independent F2F model. Finally, we observe that the com-

pound model outperforms independent models even though

its capacity is only marginally larger (most of F2F and F2M

features are shared). Hence, the improvement is likely due

to stronger learning signal. F2MF outperforms F2F for 0.4-

1.1 pp mIoU (without correlation), and 0.6-1.6 pp mIoU

(with correlation). Overall, correlation features and F2M

F2MF-RN18 Configuration Short-term mIoU Mid-term mIoU

F2F F2M Correlation All MO All MO

✓ 64.8 63.4 52.2 47.6

✓ 65.4 64.0 52.8 48.6

✓ ✓ 65.8 64.7 53.4 49.7

✓ ✓ 65.6 64.4 54.5 50.7

✓ ✓ 66.3 64.9 54.5 50.8

✓ ✓ ✓ 66.9 65.6 55.9 52.4

Table 3. Ablation of correlation, F2F, and F2M on Cityscapes val.

Standalone F2F and F2M models are trained independently.

Figure 4. Short-term accuracy of our best model. The rows contain i) the last observed image, ii) prediction by our oracle, iii) our forecast,

and iv) heat map of wF2M where red denotes F2MF preference of F2M forecast. Rows ii) and iii) are overlaid with the future image.
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Figure 5. Mid-term accuracy of our best model. The rows contain i) the last observed image, ii) prediction by our oracle, iii) our forecast,

and iv) heat map of wF2M where red denotes F2MF preference of F2M forecast. Rows ii) and iii) are overlaid with the future image.

head bring significant improvement upon the F2F baseline:

1.5 pp mIoU at short-term and over 3 pp mIoU at mid-term.

Table 4 compares backward and forward formulations

of independent F2M forecasting as presented in Section

3.4. Forward warping uses the RBF kernel with σ2 =
0.125. The first section shows that, interestingly, the two ap-

proaches achieve very similar results in the standard setup.

Hence, we use the backward formulation in all other exper-

iments as a more efficient option. The second section con-

siders a variant of the F2M model which has only three con-

volutional layers (instead of eight), and uses regular instead

of deformable convolutions. These experiments show clear

advantage of forward warping in case of limited receptive

field, and support our hypothesis that F2M with backward

warp requires a larger receptive field.

Short-term Mid-term

Accuracy (mIoU) All MO All MO

F2M-BW 64.8 63.4 52.2 47.6

F2M-FW 64.6 63.2 52.2 47.3

F2M-BW (limited r.f.) 60.4 58.1 45.4 37.8

F2M-FW (limited r.f.) 61.2 59.1 47.6 41.1

Table 4. Comparison of backward and forward warping in terms

of independent F2M forecasting accuracy on Cityscapes val. For-

ward F2M has an edge in experiments with small receptive field.

4.5. F2M vs F2F performance across pixel groups

Table 3 shows that, overall, independent F2F outper-

forms independent F2M. However, we know that F2M per-

forms very poorly in novel pixels, and hence hypothesize

that F2M may outperform F2F in previously observed re-

gions. We therefore stratify pixels with respect to F2M

weights wF2M (as predicted by the F2MF model), and

test our hypothesis by comparing the forecasting accuracy

across ten pixel groups as shown in Fig. 6.

The x-axis shows F2M weights, the left y-axis shows the

accuracy (bar plot) while the right y-axis shows pixel inci-

dence (red line). We omit the pixel group with wF2M=0.05

since very few pixels belong there. The pixel incidence

curve shows that F2MF believes F2M in majority of pix-

els. This is correct behaviour, because independent F2M

outperforms independent F2F in the right parts of the two

plots (wF2M ≥0.75). However, the F2F model prevails in

hard pixels (left parts of the two plots, wF2M ≤0.45).

Note that here, as well as in subsection 4.4, we con-

sider independently trained F2M and F2F models in order to

avoid interference of the compound training. This analysis

corroborates experiments from Section 4.2 which show that

F2MF model succeeds to output low wF2M at novel pixels

and high wF2M at static scenery. These weights can be seen

as a proxy for how easy the F2M forecast is at a particular

pixel. Therefore, these results also confirm our hypothesis

that the two approaches complement each other.

Figure 6. Stratified comparison of independent F2F and F2M

forecast on Cityscapes val at short-term (left) and mid-term (right).

We present the accuracy of the two models (bar plot, mIoU) and

the F2MF pixel incidence (red line, %) across wF2M bins.

4.6. Importance of feature normalization

Table 5 explores the influence of feature normalization

with training set mean and variance to the forecasting ac-

curacy. This facilitates the optimization process by making
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all feature maps equally important. Note that this also re-

quires denormalization of the forecasted features before the

upsampling path. The normalization improves the accuracy

by 1.4 and 3.1 pp mIoU at short-term and mid-term period.

Short-term Mid-term

Accuracy (mIoU) All MO All MO

F2MF w/ norm. 66.9 65.6 55.9 52.4

F2MF w/o norm. 65.5 64.1 52.8 48.1

Table 5. Influence of feature normalization to F2MF accuracy on

Cityscapes val. We normalize w.r.t. training mean and variance.

4.7. Visual interpretation of model decisions

Fig. 7 provides further insight into difference between

F2MF and F2F forecasting by visually comparing their gra-

dients w.r.t. the input frames [19]. The columns show four

observed frames, and the future frame overlayed with se-

mantic forecast and ground truth. We focus at the pixel des-

ignated with the green square and explain the corresponding

model decision (max-log-softmax) by showing locations of

top 0.1% largest gradients w.r.t. the input pixels (red dots).

First, we consider a pixel on the bicycle wheel (rows 1-2).

F2F gradients spread in an irregular manner over the whole

bicycle and the background (row 1), while F2MF gradients

concentrate around the wheel position in the last frame (row

2). Second, we consider a background pixel which is dis-

occluded by the cyclist motion. The F2F model tries to re-

construct the forecast from the context by looking around

the cyclist in the last frame. On the other hand, the F2MF

model succeeds to detect that this part of the scene has ac-

tually been observed in the most distant past frame. Thus, it

performs the forecast by simply copying the corresponding

representation into the future.

5. Conclusion

We have presented a novel feature-level forecasting ap-

proach which regularizes the inference by modeling a

causal relationship between the past and the future. The

proposed F2M (feature-to-motion) forecasting generalizes

better than the classic F2F (feature-to-feature) approach

in many (but not all) image locations. We achieve the

best of both worlds by blending F2M and F2F predictions

with densely regressed weight factors. The resulting F2MF

model surpasses the state-of-the-art in semantic segmenta-

tion forecasting on the Cityscapes dataset by a wide margin.

To the best of our knowledge, this is the first account

of using correlation features for semantic forecasting. Our

experiments show that these features bring clear advantage

in all three feature-level approaches: F2F, F2M, and F2MF.

We have considered two F2M variants with respect to warp

direction. F2M with forward warping performs better in se-

tups with small receptive field and allows probabilistic mod-

eling of motion uncertainty. However, F2M with backward

warping generalizes equally well in our regular setup.

Despite encouraging results, real-world applications will

require lots of future work. In particular, our method does

not address multi-modal future, which is a key to long-term

forecasting and worst-case reasoning. Other suitable ex-

tensions include overcoming obstacles towards end-to-end

training, applications to other tasks and RGB forecasting,

and enforcement of temporal consistency.
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