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Abstract

Separating facial pose and expression within images re-

quires a camera model for 3D-to-2D mapping. The weak

perspective (WP) camera has been the most popular choice;

it is the default, if not the only option, in state-of-the-art fa-

cial analysis methods and software. WP camera is justified

by the supposition that its errors are negligible when the

subjects are relatively far from the camera, yet this claim

has never been tested despite nearly 20 years of research.

This paper critically examines the suitability of WP camera

for separating facial pose and expression. First, we theo-

retically show that WP causes pose-expression ambiguity,

as it leads to estimation of spurious expressions. Next, we

experimentally quantify the magnitude of spurious expres-

sions. Finally, we test whether spurious expressions have

detrimental effects on a common facial analysis applica-

tion, namely Action Unit (AU) detection. Contrary to con-

ventional wisdom, we find that severe pose-expression am-

biguity exists even when subjects are not close to the cam-

era, leading to large false positive rates in AU detection.

We also demonstrate that the magnitude and characteris-

tics of spurious expressions depend on the point distribu-

tion model used to model the expressions. Our results sug-

gest that common assumptions about WP need to be revis-

ited in facial expression modeling, and that facial analysis

software should encourage and facilitate the use of the true

camera model whenever possible.

1. Introduction

Facial expression analysis is one of the most studied

problems in computer vision, motivated by numerous ap-

plications in industry, clinical research, entertainment, and

marketing. Variations in head pose create a significant chal-

lenge for facial expression analysis [30], as expressions

look significantly different from different angles. Disen-

tangling facial expression from pose is important for im-

proving expression recognition accuracy, as well as from an

explainable AI standpoint, as one cannot reliably interpret
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Figure 1. (a) The three FOVs used in this paper; the perspective

effect increases with FOV. (b) Two subject-to-camera distances

for each FOV. (Z̄close, Z̄far) was (8.5m, 3.5m), (3.9m, 1.6m) and

(2.3m, 0.9m) for 30°, 60° and 90° FOV, respectively. (c) Illustra-

tion of head size relative to image size with Z̄close (top) and with

Z̄far (bottom); the head size was approximately the same, inde-

pendently of FOV, for either distance. (d) The FOV of several

cameras; the sources for these data are in [3, 6, 5, 4, 1, 2, 7]

the decisions of a facial behavior analysis system if the ex-

pression coefficients are confounded by head movements.

The dominant approach for disentangling pose and ex-

pressions within 2D images is to project facial shape to

the 3D space, where it can be decomposed into rigid (rota-

tion, translation) and non-rigid factors (expressions) (Sec-

tion 2.1). This process necessitates a camera model re-

sponsible for the 2D-3D projection. The weak perspective

(WP) camera (i.e., scaled orthographic camera) is the de

facto standard model, used in almost all state-of-the-art ap-

proaches (Section 1.1). The conventional wisdom is that

WP camera is appropriate when subjects are not close to the

camera (Section 1.1); however, to our knowledge, no study

investigated this claim in 20 years of research. Such an in-

vestigation is particularly urgent now, as advances in mo-

bile technologies and online communication lead to a surge

in facial videos recorded using cameras with large field-of-

view (FOV) from close distances, and WP camera’s approx-

imation errors increase under those circumstances [19].

In this paper, we theoretically and experimentally inves-
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tigate the suitability of WP camera for separating facial pose

and expressions. Specifically, we show that WP camera

leads to spurious expression estimation, thereby introducing

pose-expression ambiguity. This paper has four contribu-

tions. First, we theoretically prove the existence of spurious

expressions under WP camera. Second, we experimentally

quantify the magnitude of spurious expressions across a

large set of camera configurations, including different FOVs

and face sizes (Fig. 1) that are representative of a range

of modern cameras and common uses (e.g., photography,

webcam/smartphone recordings). Third, we show that the

magnitude of spurious expressions varies substantially with

the point distribution model (PDM) used to model facial ex-

pressions. Last, we show that errors in pose-expression sep-

aration have significant practical implications, as they lead

to false positives in Action Unit (AU) detection [30].

Our analyses yield the following conclusions, which are

important for both users of current 3D facial analysis soft-

ware and for researchers developing novel methods.

1. Facial pose and expression cannot be separated with

existing methods even when WP errors are small, as er-

rors are exacerbated in the optimization process. This

finding contradicts the conventional wisdom, which

suggests that pose and expression can be separated

with WP if the subject is far from the camera.

2. The PDM used to model expressions can significantly

contribute to the exacerbation of WP camera’s approx-

imation errors. Future research is necessary to design

PDMs and optimization procedures that allow for fa-

cial pose and expression separability.

3. WP camera makes large approximation errors and

should be abandoned for cameras that have high FOV

(60°+) especially when the face is relatively close to

the camera, as often happens with personal videos or

in online communication.

The results of our paper call for reconsideration of the use

of WP camera (Section 5). The paper’s main results can

be reproduced with the code on https://github.com/

sariyanidi/WP_pose-expression-separation.

1.1. Related work

Since the seminal study of Tomasi and Kanade [31], the

orthographic projection, which is a special case of WP pro-

jection [19], has been very popular in computer vision. WP

is a simplistic camera model as it cannot represent the per-

spective effect [19]; that is, parts of objects do not appear

relatively smaller or larger depending on their distance from

the camera. While WP is clearly not a realistic camera

model, the conventional wisdom is that it is appropriate for

facial analysis, because WP approximation errors are incon-

sequential if subjects are far enough from the camera since

the within-face depth variation is generally much smaller

than the subject-to-camera distance [13, 17, 26, 9, 35]. WP

camera has been broadly used in facial analysis [15, 27, 28,

42, 33, 17, 39, 36, 32, 37, 26, 9, 29, 35, 21, 22, 41, 16] as it

facilitates the projection of 2D facial shape to 3D space by

removing the non-linearity of perspective projection. More

specifically, WP camera is used to separate facial pose and

expression [13, 9, 27, 42, 17, 26, 35, 41] or, more generally,

to disentangle rigid and non-rigid motions [38, 40, 34, 14].

Notably, no study has tested the main assumption of the

WP camera in the context of facial expressions, and it is

unclear whether the approximation errors of WP are indeed

small enough to allow for facial pose-expression separation.

Revisiting this assumption is particularly timely as novel

studies continue to use WP camera [41, 10, 11, 22, 16].

Moreover, there is recent increased interest in 3D shape and

texture estimation from 2D images, with recently proposed

3D morphable models [25, 18] and publicly available soft-

ware [10, 20, 8], all using the WP camera.

2. Pose-expression separation

Studies that separate pose and expression within 2D im-

age(s) typically map the face onto the 3D space, as 3D fa-

cial shape can be expressed as a combination of pose and

expression (Section 2.1). Thus, one can separate facial pose

and expression by accurately estimating the pose and ex-

pression coefficients in this combination. Most methods use

the facial model that is reviewed in Section 2.1. We then re-

view in Section 2.2 the use of this model to estimate pose

and expression coefficients from 2D images. These reviews

allow us to theoretically demonstrate that pose-expression

ambiguity is inherent in WP camera (Section 3).

2.1. Modeling pose and expression

Let {X̄i}Ni=1 be a set of N 3D points (i.e., X̄i ∈ R
3
)

that represent a facial shape that is neutral and frontal w.r.t.

camera. Moreover, let {Xi}Ni=1 be a set of N points from

the same person but with a possible expression and pose

variation. Then, the latter can be plausibly generated as

Xi = R(X̄i +∆Xi), (1)

where R is a 3 × 3 rotation matrix (we ignore translation

for simplicity) and ∆Xi ∶= (∆Xi,∆Yi,∆Zi)T represents

the facial expression variation in ith point. Typically, the

expression variation is modeled with a linear model. That

is, (∆X
T
1 , . . . ,∆X

T
N)T=Be, where B ∈ R

3N×M
is a pre-

learnt expression basis matrix (referred to also as expression

PDM) with M components, and e is the set of coefficients

that explains the expression in the given facial shape.

The facial model used in most methods that decouple

pose and expression [41, 12, 21, 26, 34] is essentially the

same as (1); the main difference is the way in which neutral

face is modeled. Neutral face {X̄i}Ni=1 is generally assumed

to be unknown and estimated with an identity PDM [41, 12].
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Since the aim of our study is to analyze pose-expression

separability, we will assume that the neutral face is known

and thus avoid possible errors in its estimation.

2.1.1 2D-3D mapping

With the formulation in (1), the problem of pose and expres-

sion separation is essentially equivalent to the accurate esti-

mation of the rotation matrix R and expression coefficients

e. The estimation of R and e from 2D images requires a

proper mapping defined between the 2D and 3D points.

Suppose that the images are captured with a CCD cam-

era. Then the 2D image points, xi, are accurately computed

with a perspective projection [19] matrix P defined as
1

P ∶=
⎛⎜⎜⎝
αx 0 cx
0 αy cy
0 0 1

⎞⎟⎟⎠ , (2)

where (cx, cy) is the principal point and αx and αy are

the focal length of the camera in the horizontal and verti-

cal direction, respectively. To obtain the image point xi

corresponding to Xi, we first compute the homogeneous

image coordinates X
′

i ∶= (X ′

i, Y
′

i , Z
′

i)T defined as X
′

i ∶=

P(R(X̄i +∆Xi) + t), where t ∶= (tx, ty, tz)T is the 3D

location of the camera. The image point xi can finally be

obtained by dehomogenizing, i.e.

xi = (αxX
′

i/Z ′

i + cx, αyY
′

i /Z ′

i + cy)T . (3)

For analytical clarity, hereafter we assume that tx = ty = 0.

2.1.2 Mapping via weak perspective camera

A major challenge to separating pose and expression is that

the camera model (i.e., P) is generally not known. More-

over, the dehomogenizing in the perspective transformation

adds a non-linearity that complicates the estimation of un-

known variables. Therefore, most studies use the WP pro-

jection (Section 1.1), which is a simple model but gener-

ally considered to be reasonable when the camera-to-object

distance is large compared to within-object depth variation.

The image point corresponding to the 3D point Xi under a

WP camera model can be computed as [19]

W(σ)R(X̄i +∆Xi) + c, (4)

where W(σ) is the WP projection matrix defined as

W(σ) ∶= (σx 0 0

0 σy 0
) , (5)

and c = (cx, cy)T . The parameters σx and σy in (5) are

the horizontal and vertical scale factors, respectively. The

1
We ignore possible radial distortion effects for clarity.

practical role of those factors is to make the face appear

bigger or smaller depending on its proximity to the camera;

the WP model cannot otherwise adjust the face size as it

does not have the perspective effect.

2.2. Estimating pose and expression coefficients

We can now formulate the problem of estimating pose

and expression coefficients under WP camera. We assume

that we know the neutral face (i.e. the points {X̄i}) to facil-

itate the interpretation of experimental outcomes, as in this

case R and e remain as the only unknowns.

Suppose that we are given a set of 3D points {X̄}Ni=1 cor-

responding to a neutral and frontal face of a person, and a

set of 2D image points representing the facial shape of the

same person, {xi}Ni=1, with a possible pose (i.e., rotation)

and expression variation. Let {x̃i}Ni=1 be the zero-mean

image points defined as x̃i ∶= xi−(1/N)∑N

i=1 xi. Then,

the rotation and expression coefficients can be estimated by

minimizing the error function JB defined as

JB(R, e,σ)∶=
N

∑
i=1

∣∣x̃i−W(σ)R(X̄i+ [Be]i)∣∣ , (6)

w.r.t. variables σ,R and e which respectively correspond

to WP scale parameter, rotation matrix and expression co-

efficients
2
. (The term c in (4) can be eliminated when we

operate on zero-mean image points [31].) R is subject to the

implicit constraint R ∈ SO(3). The operation [⋅]i outputs

a 3-vector that represents the expression variation in the ith

point; that is, [Be]i contains the three values of the vec-

tor Be corresponding to positions 3i−2, 3i−1 and 3i. The

minimization of error function (6) is often carried out with

the Gauss-Newton method [13, 28, 12, 11].

3. Ambiguity in pose-expression separation

If the image points {xi}Ni=1 represent a facial shape with

neutral expression, then the expression coefficients e esti-

mated by minimizing (6) should ideally be 0. As we theo-

retically demonstrate below, this is not the case; instead, the

use of WP camera leads to inherent ambiguity.

If a facial shape {Xi}Ni=1 has a neutral expression, then

∆Xi = 0 for i = 1, . . . , N and (1) can be rewritten as

Xi = RX̄i. (7)

Since we assume that there is no expression, let us for now

assume that the expression PDM is the null matrix, i.e.,

B = 0. Then, the function (6) simplifies to

J0(R,σ) ∶=
N

∑
i=1

∣∣x̃i −W(σ)RX̄i∣∣ . (8)

2
For notational simplicity, hereafter we use the symbol R as an opti-

mization variable corresponding to rotation matrix, even though in Sec-

tion 2.1 it was used as the true rotation.
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Note that this can be interpreted as the 3D-to-2D mapping

error of the WP camera for parameters R and σ, since

(x̃i −W(σ)RX̄i) represents the difference between the

correct 2D projection of the point Xi and the 2D projec-

tion of the same point under the WP camera [see (4) for

∆Xi = 0]. The minimal 3D-to-2D mapping error (in terms

of ℓ2) is encoded in the residual vector

r ∶= x̃ − Ẇ(σ∗)Ṙ∗

X̄, (9)

where x̃ and X̄ are column vectors x̃∶=(x̃T
1 , . . . , x̃

T
N)T

and X̄∶=(X̄T
1 , . . . , X̄

T
N)T . Ẇ(σ∗) and Ṙ

∗
are

block-diagonal matrices with N matrices on their di-

agonals, Ẇ(σ∗)∶=diag (W(σ∗), . . . ,W(σ∗)) and

Ṙ
∗
∶=diag (R∗

, . . . ,R
∗). R

∗
and σ

∗
are minimizers

of (8). We now list this paper’s main theoretical result.

Theorem 3.1. Suppose we have 3D facial points with a

neutral expression, {X̄i}Ni=1, and 2D image points {xi}Ni=1
corresponding to those 3D points but with a rotation. Let

R
∗

and σ
∗

minimize J0(R,σ), r be defined as in (9), and

B∈R
3N×M

be a matrix such that rank (Ẇ(σ∗)Ṙ∗
B) =

M < 2N . Then,

min
R,e,σ

JB(R, e,σ) ≤ min
R,σ

J0(R,σ). (10)

Moreover, this inequality holds strictly (i.e., without equal-

ity) if r ∉ Null [(Ẇ(σ∗)Ṙ∗
B)T ], in which case ∣∣e∗∣∣>0

where e
∗

is the minimizer of JB(R, e,σ) w.r.t. variable e.

For the proof, refer to Supplementary Appendix A. The

assumption rank (Ẇ(σ∗)Ṙ∗
B)=M is a mild one, be-

cause PDMs are typically obtained with principal compo-

nent analysis, which yields skinny and full column-rank

matrices, and also because Ṙ and Ẇ(σ∗) are full (row)

rank. Moreover, as we argue in Supplementary Appendix B,

r ∈ Null [(Ẇ(σ∗)Ṙ∗
B)T ] is not a practically likely

event. The theorem states that the error in (6) will be smaller

than the error in (8) even when there is no expression (i.e., a

neutral face), since the error between the correct 2D projec-

tion of the point Xi and the 2D projection of the same point

under the WP camera will be reduced by employing spuri-

ous expression coefficients in (6). Thus, this theorem for-

mally demonstrates that spurious expressions will be gener-

ated (i.e., e
∗
≠ 0) if r ∉ Null [(Ẇ(σ∗)Ṙ∗

B)T ]. Next, we

empirically investigate whether those spurious expressions

are sufficiently large to be harmful in practice.

4. Experimental Analysis

We now experimentally show that the WP camera cre-

ates facial pose-expression ambiguity. Our experiments are

coherent with our theoretical analysis in Section 3; that is,

we use sequences that contain a neutral (i.e., expression-

less) face and demonstrate that the use of WP camera leads

to spurious expression detection.

Our experimental analysis is threefold. Section 4.3 quan-

tifies the 3D-to-2D mapping errors of the WP camera w.r.t.

pose. Section 4.4 quantifies spurious expressions and also

investigates the effect of the facial expression PDM (i.e., B)

choice. Section 4.5 shows that spurious expression coeffi-

cients lead to false positives in AU estimation.

4.1. Dataset

We conduct our analysis on synthesized data to ensure

that the facial sequences that we use contain no expression

variations, and to know the exact facial pose (i.e., ground

truth) and 3D locations of facial points. We experiment with

three fields of view, 30°, 60°and 90°, and two face sizes (rel-

ative to image) per FOV, namely large and small (Fig. 1b,c).

We synthesize facial sequences using the Basel’09

model [24]. We generate 100 facial identities by randomly

choosing 100 different identity coefficients from the Basel

model (Fig. 2a). We use the widely used set of N = 68 fa-

cial landmarks, known also as iBUG-68 points (see Fig. 2b).

Throughout experiments, we study the effect of (out-of-

plane) pose variation, namely rotation along the yaw and

pitch axes. To this end, for each synthesized identity we

generate two sequences, each containing a face rotated from

-45° to 45° along one of the two afore-listed axes (see

Fig. 3). Thus, our experiments involve 200 sequences per

FOV and distance, and since we have three FOVs and two

distances, a total of 1200 sequences.

(b)(a)

Figure 2. (a) Examples of the generated facial identities that were

used in the experiments. We use only facial shape but here we

show also facial texture to enhance interpretation. (b) The 68-point

facial shape model (iBUG-68) that is used for the experiments, and

the illustration of the interocular distance diod. Note that even a

spurious expression of 0.1diod magnitude is large enough to create

the impression, say, of a blink or a raised eyebrow.

(a)

-45o -22.5
o

0
o

22.5
o

45
o -45o -22.5

o
0
o

22.5
o

45
o

(b)

Figure 3. The rotation range; (a) yaw rotation, (b) pitch rotation.
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Figure 4. 3D-to-2D mapping errors vs. rotation amount for various FOVs (30°, 60°, 90°) and subject-to-camera distances (close, far; Fig. 1).

(a) yaw rotation; (b) pitch rotation. The y axis shows error rate relative to interocular distance (Fig. 2); e.g., 0.01 means 0.01diod. Note that

errors increase with FOV; the range of y axis is scaled separately for each subplot to enhance interpretation.

4.2. Optimization

In all experiments, we use the Gauss-Newton optimiza-

tion algorithm to minimize (6) and (8), as this algorithm has

been used by previous studies (Section 2.2). To initialize the

estimated rotation matrix for (6), we use the rotation matrix

obtained by minimizing the simpler function (8).

4.3. Analysis of 3Dto2D mapping errors

We now experimentally analyze how the 3D-2D map-

ping error of the WP camera varies with head rotation.

Metric. The mapping error for the ith facial point of

kth sequence is ∣∣x̃k
i −W(σ∗)R∗

X̄
k
i ∣∣, where σ

∗
and R

∗

are obtained by minimizing J0 (Section 3). We report the

average mapping error for all the N = 68 landmark points

(eoverall) and also the average for landmarks related to brows

(ebrow), eyes (eeyes) and mouth (emouth). Let Ieyes be a set

that contains the landmark indices corresponding to the eyes

(i.e., the yellow points in Fig. 2b). Then, average mapping

error for the eye landmarks, eeyes, is computed by averaging

both over the sequences and over the landmarks in Ieyes as

eeyes∶=
1

K

K

∑
k=1

1

∣Ieyes∣
N

∑
i=1

∣∣x̃k
i −W(σ∗)R∗

X̄
k

i ∣∣
dkiod

, (11)

where we divide to the interocular distance of the 3D face,

d
k
iod, to better interpret the error (Fig. 2b). The errors

eoverall, ebrows and emouth are computed similarly by replac-

ing the set Ieyes accordingly (Ioverall is {1, . . . , N}).

Results. Fig. 4 shows the average errors eoverall, ebrow,

eeyes and emouth against rotation amount; each panel shows

the error for a unique FOV and subject-to-camera distance

combination. The symbols θ and φ denote rotation around

yaw and pitch axes, respectively. As expected, the map-

ping errors increase with FOV when the face size is con-

stant (Fig. 1c). Errors are also higher when the subject is

closer to the camera. Since faces are approximately sym-

metric w.r.t. the vertical line, the rotation around the the

yaw axis (Fig. 3a) generates a nearly symmetric error pat-

tern (Fig. 4a). The average error varies for each facial fea-

ture. Eyebrows generate consistently the highest error for

yaw rotations, followed by eyes and mouth. For pitch ro-

tations, the ranking of features in terms of errors depends

on the rotation amount. The error for a FOV of 60° can get

close to 0.1diod, which is a magnitude quite noticeable to

the eye; for example, it is large enough to create an impres-

sion of a raised/lowered brow or a blink (Fig. 2b).

4.4. Analysis of spurious expression coefficients

We now analyze the magnitude of spurious expressions,

whose existence is suggested by Theorem 3.1. Importantly,

we show how spurious expressions vary with the choice of

facial expression PDM, B, as well as facial pose, FOV and

subject-to-camera distance.

Metrics. We measure the magnitude of spurious expres-

sions via the ℓ2 norm of the estimated expressions in the kth

sequence, Be
∗

k . Since our sequences contain no expression

variation (Section 4.1), a non-zero e
∗

k will always indicate

spurious expressions. Similarly to Section 4.3, we report

results separately for eyes, brows and mouth. The average

magnitude of spurious expression for eyes is denoted with

yeyes and computed by averaging over the K sequences as

yeyes ∶=
1

K

K

∑
k=1

1

∣Ieyes∣ ∑
i∈Ieyes

∣∣[Be
∗

k]′i∣∣
dkiod

(12)

where Ieyes and d
k
iod are defined as in Section 4.3. Here we

consider only the spurious expression magnitude along the

x and y axes: The [⋅]′i operator parses the two values that

correspond to the expression variation ignoring the z axis;

that is [Be
∗

k]′i contains the values of the vector Be
∗

k cor-

responding to the positions 3i−2, 3i−1. This allows us to

compare the magnitude of spurious expressions yeyes with
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True projection (CCD camera)

WP Projection

(a)

(b)

(c)

Figure 5. Projection of facial points according to the correct per-

spective projection (CCD camera model) and according to the WP

projection for a camera with FOV of 90° and close subject-to-

camera distance and for -45°, 0° and 45° pitch rotation. The WP

projection is carried out with (a) no expression PDM, i.e. B = 0,

(b) with the Basel’17 PDM and (c) with the ITWMM PDM.

the 3D-to-2D mapping errors eeyes, when there is no rota-

tion. The average magnitude of spurious expressions for all

points, yoverall, and for other facial features, ybrows, ymouth,

are computed similarly.

Facial expression PDMs. We use two PDMs which,

to our knowledge, are the only publicly available PDMs

to model expressions alone: (i) Basel’17: The expression

PDM of the Basel’17 model [18]; and (ii) ITWMM: The ex-

pression PDM of the in-the-wild method by Zhu et al. [41],

used also by a morphable model in-the-wild study [12]. We

omitted PDMs which do not model expressions alone (e.g.

OpenFace PDMs [10], Surrey PDM [20]).

Results. When we use an expression PDM, estimated

2D points improve significantly (e.g. compare Fig. 5b,c with

Fig. 5a) as predicted by Theorem 3.1. However, this causes

spurious expressions (Fig. 6) and therefore harms pose-

expression separation, as we elaborate in this section.

Fig. 7 quantifies the magnitude of spurious expressions

for different PDMs as well as FOVs and subject-to-camera

distances. As predicted by Theorem 3.1 and the argument

that follows it, there are always spurious expressions. The

magnitude of spurious expressions increases with FOV and

is also higher when the subject is close to the camera. How-

ever, Fig. 7 uncovers an important result that is not obvi-

ous: Facial parts that have small 3D-to-2D mapping errors

can have high spurious expressions and vice versa. For ex-

ample, mapping errors for the mouth (Fig. 4a) are lower

compared to other features, and yet spurious expressions

for the mouth are larger than those of other features for the

ITWMM PDM (Fig. 7a). Another novel result is that the

magnitude of spurious expressions is generally larger than

the mapping errors. These observations are explained by

the fact that e is not the only variable when minimizing (6),

and that the optimal R and σ determined by the optimiza-

tion algorithm depend on whether B is 0 or not. The differ-

ences in the values of R and σ cause additional landmark

movement, which is compensated by the algorithm via ad-

ditional activation of e coefficients. Another important re-

sult of Fig. 7 is that the magnitude of spurious expressions,

and the facial features that have the highest spurious expres-

sions, depend on the PDM used. For example, the ITWMM

(a) (b)

Figure 6. The spurious expressions obtained by minimizing JB

where the B used is the (a) Basel’17 PDM and (b) the ITWMM

PDM. Each red arrow depicts the effect of the spurious expression

Be
∗

on the corresponding landmark.

PDM makes larger errors for the mouth region, whereas the

Basel’17 PDM makes comparable errors across all features.

4.5. Analysis of spurious Action Units

While we have demonstrated the presence of spurious

expressions, the question of whether they have significant

practical implications for automated facial expression anal-

ysis systems remains. In this section, we show that spuri-

ous expressions can indeed be damaging, and lead to false

positives in the application of AU detection. To this end,

we train AU detectors that take as input the expression co-

efficients e
∗

and output the predicted AU. We use an SVM

classifier and avoid more sophisticated classifiers (e.g., deep

learning) as our purpose is not to maximize AU detection

accuracy but to analyze the possible false positives that may

be caused by spurious expression coefficients e
∗

.

Training AU detectors. To train AU detectors, we use

the 327 videos from MMI dataset [23] that contain tem-

poral phase annotation. We train 8 detectors for 8 AUs,

namely AU1, AU2, AU4, AU45 AU12, AU17, AU25 and

AU26. To train them, we compute the e
∗

coefficients by

minimizing (6). Since the MMI dataset is 2D, it does not

have the neutral 3D facial shape {X̄i}Ni=1 needed in (6). To

estimate {X̄i}Ni=1 we use the first frame of each MMI video;

this contains a neutral expression and therefore we can use

the Basel’09 model to estimate the 3D shape of the person

from this frame. We train each AU detector with differen-

tial features; that is, we subtract the expression coefficients

of the first (i.e. neutral) frame from the frame that contains

the AU. As negative samples, we used the frames with other

AUs and frames without AUs (i.e., neutral frames other than

the first frame). We validated each AU detector with a 5-

fold cross-validation via F1 score (Table 1). The false pos-

itive rate (FPR) of any AU was not higher than 0.02 (Ta-

ble 1), highlighting the feasibility of the experiment; i.e.,

we can reliably assert that false positives in the test set will

be mostly due to spurious expressions. The Basel’17 PDM

achieved the highest F1 score for most AUs [23].

Test sequences. Our testing sequences are strictly the

1200 synthesized sequences (Section 4.1) that have no ex-

pression variation, as our purpose is to analyze how an AU

detector behaves when it is fed spurious coefficients. There-

fore, an AU detector that yields a positive output to any

frame in our test sequences will be yielding a false positive.
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Figure 7. The magnitude of spurious expressions against the rotation amount, shown separately for the Basel’17 PDM and the ITWMM

PDM, and for various FOVs (30°, 60°, 90°) and subject-to-camera distances (close, far; see Fig. 1). (a) Yaw rotation; (b) pitch rotation.

The y axis shows error rate relative to interocular distance diod (Fig. 2). Note that spurious expressions increase with FOV; the range of y

axis is scaled separately for each subplot to enhance interpretation.
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Figure 8. The AU false positive rates (FPRs) against the rotation amount for various various FOVs (30°, 60°, 90°) and subject-to-camera

distances (close, far; see Fig. 1). (a) Yaw rotation; (b) pitch rotation.

Table 1. AU detection results in terms of F1 score, true positive

rate (TPR) and false positive rate (FPR) on MMI dataset reported

separately for the Basel’17 PDM and the ITWMM PDM.
AU1 AU2 AU4 AU45 AU12 AU17 AU25 AU26

B
as

el
’1

7 F1 0.66 0.64 0.47 0.70 0.43 0.48 0.80 0.45

TPR 0.58 0.63 0.41 0.58 0.31 0.36 0.72 0.36

FPR 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.02

IT
W

M
M F1 0.62 0.42 0.4 0.68 0.34 0.36 0.8 0.08

TPR 0.49 0.31 0.28 0.56 0.24 0.24 0.71 0.05

FPR 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.01

Metrics. We measure the false positive rate (FPR)

for each AU. For brevity, we report average FPR over all

AUs. We have Nseq=600 sequences with yaw rotation (Sec-

tion 4.1). The average FPR over the 8 AUs under θ degrees

yaw rotation is denoted with FPRθ, which is defined as

FPRθ =
1

8Nseq
∑

i∈IAU

FP
AUi
θ (13)

where FP
AUi
θ is the number of false positives for AUi under

θ degrees yaw rotation and IAU is the set of the 8 AUs that

we use. The average FPR for AUs under pitch rotation of φ

degrees, FPRφ, is defined similarly.

Results. Fig. 8 shows the FPRs in AU detection on syn-

thesized sequences (Section 4.1). As expected from the

results of previous sections, FPRs increase with FOV and

are higher when the subject is closer to the camera. Never-

theless, FPRs are non-zero even when the FOV is as small

as 30° and the subject is as far from the camera as shown

in Fig. 1c (bottom), for pitch or yaw rotations of 25° or
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higher. For FOV of 60°, some false positive AUs exist even

when there is a rotation only slightly higher than 0°. In sum,

the standard approach to facial pose and expression separa-

tion leads to an unacceptable number of false positives.

Results with original ITWMM software. To verify this

section’s findings, we repeated experiments using the orig-

inal ITWMM [12] source code (with WP camera), which,

to our knowledge, is the only publicly available 2D-based

3D facial shape estimation method that contains a separate

PDM for expressions only and uses Gauss-Newton opti-

mization. The results similarly indicated a severe pose sen-

sitivity, and there were false positive AUs across all FOVs

even when the face was far from the camera (Supplementary

Appendix C). This experiment ensures that our findings are

not artifacts of our own implementation, further emphasiz-

ing the significance of spurious facial expressions induced

by the WP camera model.

Results with perspective camera. To verify that the

false positive AUs stem from the WP camera, and are not

due to changing data characteristics between the training

and testing sets (MMI vs. synthesized images), we re-run

this section’s experiments by replacing the WP model in (6)

with the true camera model—the perspective transformation

according to (2). There were no false positives of AUs for

any FOV or subject-to-camera distance in this case, which

is not surprising as we use noiseless 3D and 2D points.

5. Discussion

For nearly two decades, the WP camera has been a com-

mon component in virtually all methods that separate facial

pose and expression. While it continues to be the default

camera model in very recent studies published in top-tier

conferences and journals, the suitability of WP camera for

this task has never been thoroughly and systematically in-

vestigated (Section 1.1). Our study takes a first step in crit-

ically evaluating this issue, with two important findings.

First, pose and expression cannot be separated reliably

even when WP camera errors are indeed small. This is

a particularly striking finding as it contradicts the conven-

tional wisdom that WP camera is usable when the face is

not close to the camera (Section 1.1). The ambiguity in

these circumstances is caused by the interactions between

the estimated rotation and expression coefficients: The op-

timization algorithm can find a solution that explains the 2D

points well, but with incorrect pose and expression param-

eters (Section 4.4). Moreover, our results highlight that the

PDM used to model expressions has a significant impact on

the amount and characteristics of errors (i.e., spurious ex-

pressions). These observations naturally beg the question

(and future research direction): Can one find design criteria

for PDMs that minimize spurious expressions? As an ex-

treme example of a badly designed PDM, one can imagine

an “expression” PDM that contains components resembling

rotation. In such a case, clearly one cannot guarantee to cor-

rectly estimate pose and expression by minimizing (6), even

when no camera approximation errors exist.

Second, our experiments that quantify the approximation

errors of WP camera in terms of interocular distance diod

show that it is particularly unreliable for modeling facial ex-

pressions recorded from close distance cameras with large

FOV, such as smartphones or web-cams (Fig. 1). Given

the surge in videos of this kind of late, novel methods and

software likely need to re-consider the use of WP cam-

era. While use of the WP camera model may be justified

for applications that use images with completely unknown

sources, in many applications, it is used with no theoretical

or practical reasons. For example, in most clinical applica-

tions or personal social/entertainment/artistic applications,

the camera that is used is known. One can use the images’

metadata or the camera’s technical specifications (i.e., FOV

and image width/height), or add a simple camera calibration

step, to estimate the true perspective projection, thereby ob-

viating the need for WP camera. Facial expression analysis

software should warn users about the limitations of the de-

fault WP camera and instead encourage the use of the true

projection matrix, especially if the camera has large FOV

and/or the size of the face is small relative to the image.

6. Conclusion

We revisited a problem studied for more than 20 years,

namely separating facial pose and expression within 2D im-

ages, and showed that the use of the WP camera model

is a barrier to achieving reliable results. We theoretically

showed that WP camera generates spurious expressions.

Our systematic experiments demonstrated that, contrary

to conventional wisdom, pose-expression ambiguity exists

even when subjects are far from the camera (i.e., when WP

camera’s errors are small). We also showed that spurious

expressions led to false positives in facial AU detection. We

discussed the implications of our findings and suggested fu-

ture research directions to address the issues caused by WP

camera. Of note, WP camera is used in many computer vi-

sion applications (Section 1.1), suggesting that the findings

of this study may have implications beyond facial analysis.
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