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Abstract

This paper introduces SuperGlue, a neural network that

matches two sets of local features by jointly finding corre-

spondences and rejecting non-matchable points. Assign-

ments are estimated by solving a differentiable optimal

transport problem, whose costs are predicted by a graph

neural network. We introduce a flexible context aggregation

mechanism based on attention, enabling SuperGlue to rea-

son about the underlying 3D scene and feature assignments

jointly. Compared to traditional, hand-designed heuris-

tics, our technique learns priors over geometric transforma-

tions and regularities of the 3D world through end-to-end

training from image pairs. SuperGlue outperforms other

learned approaches and achieves state-of-the-art results on

the task of pose estimation in challenging real-world in-

door and outdoor environments. The proposed method per-

forms matching in real-time on a modern GPU and can

be readily integrated into modern SfM or SLAM systems.

The code and trained weights are publicly available at

github.com/magicleap/SuperGluePretrainedNetwork.

1. Introduction

Correspondences between points in images are essential

for estimating the 3D structure and camera poses in geo-

metric computer vision tasks such as Simultaneous Local-

ization and Mapping (SLAM) and Structure-from-Motion

(SfM). Such correspondences are generally estimated by

matching local features, a process known as data associa-

tion. Large viewpoint and lighting changes, occlusion, blur,

and lack of texture are factors that make 2D-to-2D data as-

sociation particularly challenging.

In this paper, we present a new way of thinking about the

feature matching problem. Instead of learning better task-

agnostic local features followed by simple matching heuris-

tics and tricks, we propose to learn the matching process

from pre-existing local features using a novel neural archi-

tecture called SuperGlue. In the context of SLAM, which

typically [7] decomposes the problem into the visual fea-

ture extraction front-end and the bundle adjustment or pose

estimation back-end, our network lies directly in the middle

– SuperGlue is a learnable middle-end (see Figure 1).
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Figure 1: Feature matching with SuperGlue. Our ap-

proach establishes pointwise correspondences from off-the-

shelf local features: it acts as a middle-end between hand-

crafted or learned front-end and back-end. SuperGlue uses a

graph neural network and attention to solve an assignment

optimization problem, and handles partial point visibility

and occlusion elegantly, producing a partial assignment.

In this work, learning feature matching is viewed as

finding the partial assignment between two sets of local

features. We revisit the classical graph-based strategy of

matching by solving a linear assignment problem, which,

when relaxed to an optimal transport problem, can be solved

differentiably. The cost function of this optimization is pre-

dicted by a Graph Neural Network (GNN). Inspired by the

success of the Transformer [55], it uses self- (intra-image)

and cross- (inter-image) attention to leverage both spatial

relationships of the keypoints and their visual appearance.

This formulation enforces the assignment structure of the

predictions while enabling the cost to learn complex pri-

ors, elegantly handling occlusion and non-repeatable key-

points. Our method is trained end-to-end from image pairs

– we learn priors for pose estimation from a large annotated

dataset, enabling SuperGlue to reason about the 3D scene

and the assignment. Our work can be applied to a variety of

multiple-view geometry problems that require high-quality

feature correspondences (see Figure 2).

∗Work done at Magic Leap, Inc. for a Master’s degree. The author thanks

his academic supervisors: Cesar Cadena, Marcin Dymczyk, Juan Nieto.
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Figure 2: SuperGlue correspondences. For these two

challenging indoor image pairs, matching with SuperGlue

results in accurate poses while other learned or handcrafted

methods fail (correspondences colored by epipolar error).

We show the superiority of SuperGlue compared to both

handcrafted matchers and learned inlier classifiers. When

combined with SuperPoint [16], a deep front-end, Super-

Glue advances the state-of-the-art on the tasks of indoor and

outdoor pose estimation and paves the way towards end-to-

end deep SLAM.

2. Related work

Local feature matching is generally performed by i) de-

tecting interest points, ii) computing visual descriptors,

iii) matching these with a Nearest Neighbor (NN) search,

iv) filtering incorrect matches, and finally v) estimating a

geometric transformation. The classical pipeline developed

in the 2000s is often based on SIFT [28], filters matches

with Lowe’s ratio test [28], the mutual check, and heuristics

such as neighborhood consensus [53, 9, 5, 45], and finds a

transformation with a robust solver like RANSAC [19, 40].

Recent works on deep learning for matching often fo-

cus on learning better sparse detectors and local descrip-

tors [16, 17, 34, 42, 61] from data using Convolutional Neu-

ral Networks (CNNs). To improve their discriminativeness,

some works explicitly look at a wider context using regional

features [29] or log-polar patches [18]. Other approaches

learn to filter matches by classifying them into inliers and

outliers [30, 41, 6, 63]. These operate on sets of matches,

still estimated by NN search, and thus ignore the assignment

structure and discard visual information. Works that learn

to perform matching have so far focused on dense match-

ing [43] or 3D point clouds [59], and still exhibit the same

limitations. In contrast, our learnable middle-end simulta-

neously performs context aggregation, matching, and filter-

ing in a single end-to-end architecture.

Graph matching problems are usually formulated as

quadratic assignment problems, which are NP-hard, requir-

ing expensive, complex, and thus impractical solvers [27].

For local features, the computer vision literature of the

2000s [4, 24, 51] uses handcrafted costs with many heuris-

tics, making it complex and brittle. Caetano et al. [8] learn

the cost of the optimization for a simpler linear assignment,

but only use a shallow model, while our SuperGlue learns a

flexible cost using a deep neural network. Related to graph

matching is the problem of optimal transport [57] – it is a

generalized linear assignment with an efficient yet simple

approximate solution, the Sinkhorn algorithm [49, 11, 36].

Deep learning for sets such as point clouds aims at de-

signing permutation equi- or invariant functions by aggre-

gating information across elements. Some works treat all

elements equally, through global pooling [62, 37, 13] or in-

stance normalization [54, 30, 29], while others focus on a

local neighborhood in coordinate or feature space [38, 60].

Attention [55, 58, 56, 23] can perform both global and data-

dependent local aggregation by focusing on specific ele-

ments and attributes, and is thus more flexible. By observ-

ing that self-attention can be seen as an instance of a Mes-

sage Passing Graph Neural Network [21, 3] on a complete

graph, we apply attention to graphs with multiple types of

edges, similar to [25, 64], and enable SuperGlue to learn

complex reasoning about the two sets of local features.

3. The SuperGlue Architecture

Motivation: In the image matching problem, some regu-

larities of the world could be leveraged: the 3D world is

largely smooth and sometimes planar, all correspondences

for a given image pair derive from a single epipolar trans-

form if the scene is static, and some poses are more likely

than others. In addition, 2D keypoints are usually projec-

tions of salient 3D points, like corners or blobs, thus corre-

spondences across images must adhere to certain physical

constraints: i) a keypoint can have at most a single corre-

spondence in the other image; and ii) some keypoints will

be unmatched due to occlusion and failure of the detector.

An effective model for feature matching should aim at find-

ing all correspondences between reprojections of the same

3D points and identifying keypoints that have no matches.

We formulate SuperGlue (see Figure 3) as solving an opti-

mization problem, whose cost is predicted by a deep neural

network. This alleviates the need for domain expertise and

heuristics – we learn relevant priors directly from the data.

Formulation: Consider two images A and B, each with a

set of keypoint positions p and associated visual descriptors

d – we refer to them jointly (p,d) as the local features.

Positions consist of x and y image coordinates as well as a

detection confidence c, pi := (x, y, c)i. Visual descriptors

di ∈ R
D can be those extracted by a CNN like SuperPoint
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Figure 3: The SuperGlue architecture. SuperGlue is made up of two major components: the attentional graph neural

network (Section 3.1), and the optimal matching layer (Section 3.2). The first component uses a keypoint encoder to map

keypoint positions p and their visual descriptors d into a single vector, and then uses alternating self- and cross-attention

layers (repeated L times) to create more powerful representations f . The optimal matching layer creates an M by N score

matrix, augments it with dustbins, then finds the optimal partial assignment using the Sinkhorn algorithm (for T iterations).

or traditional descriptors like SIFT. Images A and B have

M and N local features, indexed by A := {1, ...,M} and

B := {1, ..., N}, respectively.

Partial Assignment: Constraints i) and ii) mean that cor-

respondences derive from a partial assignment between the

two sets of keypoints. For the integration into downstream

tasks and better interpretability, each possible correspon-

dence should have a confidence value. We consequently

define a partial soft assignment matrix P ∈ [0, 1]M×N as:

P1N ≤ 1M and P⊤1M ≤ 1N . (1)

Our goal is to design a neural network that predicts the as-

signment P from two sets of local features.

3.1. Attentional Graph Neural Network

Besides the position of a keypoint and its visual appear-

ance, integrating other contextual cues can intuitively in-

crease its distinctiveness. We can for example consider its

spatial and visual relationship with other co-visible key-

points, such as ones that are salient [29], self-similar [48],

statistically co-occurring [65], or adjacent [52]. On the

other hand, knowledge of keypoints in the second image

can help to resolve ambiguities by comparing candidate

matches or estimating the relative photometric or geomet-

ric transformation from global and unambiguous cues.

When asked to match a given ambiguous keypoint, hu-

mans look back-and-forth at both images: they sift through

tentative matching keypoints, examine each, and look for

contextual cues that help disambiguate the true match from

other self-similarities [10]. This hints at an iterative process

that can focus its attention on specific locations.

We consequently design the first major block of Super-

Glue as an Attentional Graph Neural Network (see Fig-

ure 3). Given initial local features, it computes matching

descriptors fi ∈ R
D by letting the features communicate

with each other. As we will show, long-range feature aggre-

gation within and across images is vital for robust matching.

Keypoint Encoder: The initial representation (0)xi for

each keypoint i combines its visual appearance and lo-

cation. We embed the keypoint position into a high-

dimensional vector with a Multilayer Perceptron (MLP) as:

(0)xi = di + MLPenc (pi) . (2)

This encoder enables the graph network to later reason

about both appearance and position jointly, especially when

combined with attention, and is an instance of the “posi-

tional encoder” popular in language processing [20, 55].

Multiplex Graph Neural Network: We consider a single

complete graph whose nodes are the keypoints of both im-

ages. The graph has two types of undirected edges – it is a

multiplex graph [31, 33]. Intra-image edges, or self edges,

Eself, connect keypoints i to all other keypoints within the

same image. Inter-image edges, or cross edges, Ecross, con-

nect keypoints i to all keypoints in the other image. We use

the message passing formulation [21, 3] to propagate infor-

mation along both types of edges. The resulting multiplex

Graph Neural Network starts with a high-dimensional state

for each node and computes at each layer an updated rep-

resentation by simultaneously aggregating messages across

all given edges for all nodes.

Let (ℓ)xA
i be the intermediate representation for element

i in image A at layer ℓ. The message mE→i is the result of

the aggregation from all keypoints {j : (i, j) ∈ E}, where

E ∈ {Eself, Ecross}. The residual message passing update for

all i in A is:

(ℓ+1)xA
i = (ℓ)xA

i + MLP
([

(ℓ)xA
i ||mE→i

])

, (3)

where [· || ·] denotes concatenation. A similar update can

be simultaneously performed for all keypoints in image B.

A fixed number of layers L with different parameters are

chained and alternatively aggregate along the self and cross

edges. As such, starting from ℓ = 1, E = Eself if ℓ is odd

and E = Ecross if ℓ is even.
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Figure 4: Visualizing self- and cross-attention. Atten-

tional aggregation builds a dynamic graph between key-

points. Weights αij are shown as rays. Self-attention (top)

can attend anywhere in the same image, e.g. distinctive lo-

cations, and is thus not restricted to nearby locations. Cross-

attention (bottom) attends to locations in the other image,

such as potential matches that have a similar appearance.

Attentional Aggregation: An attention mechanism per-

forms the aggregation and computes the message mE→i.

Self edges are based on self-attention [55] and cross edges

are based on cross-attention. Akin to database retrieval, a

representation of i, the query qi, retrieves the values vj of

some elements based on their attributes, the keys kj . The

message is computed as a weighted average of the values:

mE→i =
∑

j:(i,j)∈E

αijvj , (4)

where the attention weight αij is the Softmax over the key-

query similarities: αij = Softmaxj
(

q⊤
i kj

)

.

The key, query, and value are computed as linear projec-

tions of deep features of the graph neural network. Consid-

ering that query keypoint i is in the image Q and all source

keypoints are in image S, (Q,S) ∈ {A,B}2, we can write:

qi = W1
(ℓ)x

Q
i + b1

[

kj

vj

]

=

[

W2

W3

]

(ℓ)xS
j +

[

b2

b3

]

.
(5)

Each layer ℓ has its own projection parameters, learned and

shared for all keypoints of both images. In practice, we

improve the expressivity with multi-head attention [55].

Our formulation provides maximum flexibility as the

network can learn to focus on a subset of keypoints based

on specific attributes (see Figure 4). SuperGlue can retrieve

or attend based on both appearance and keypoint location

as they are encoded in the representation xi. This includes

attending to a nearby keypoint and retrieving the relative

positions of similar or salient keypoints. This enables rep-

resentations of the geometric transformation and the assign-

ment. The final matching descriptors are linear projections:

fAi = W · (L)xA
i + b, ∀i ∈ A, (6)

and similarly for keypoints in B.

3.2. Optimal matching layer

The second major block of SuperGlue (see Figure 3) is

the optimal matching layer, which produces a partial assign-

ment matrix. As in the standard graph matching formu-

lation, the assignment P can be obtained by computing a

score matrix S ∈ R
M×N for all possible matches and max-

imizing the total score
∑

i,j Si,jPi,j under the constraints

in Equation 1. This is equivalent to solving a linear assign-

ment problem.

Score Prediction: Building a separate representation for

all M ×N potential matches would be prohibitive. We in-

stead express the pairwise score as the similarity of match-

ing descriptors:

Si,j =< fAi , fBj >, ∀(i, j) ∈ A× B, (7)

where < ·, · > is the inner product. As opposed to learned

visual descriptors, the matching descriptors are not normal-

ized, and their magnitude can change per feature and during

training to reflect the prediction confidence.

Occlusion and Visibility: To let the network suppress

some keypoints, we augment each set with a dustbin so that

unmatched keypoints are explicitly assigned to it. This tech-

nique is common in graph matching, and dustbins have also

been used by SuperPoint [16] to account for image cells that

might not have a detection. We augment the scores S to S̄

by appending a new row and column, the point-to-bin and

bin-to-bin scores, filled with a single learnable parameter:

S̄i,N+1 = S̄M+1,j = S̄M+1,N+1 = z ∈ R. (8)

While keypoints in A will be assigned to a single keypoint

in B or the dustbin, each dustbin has as many matches as

there are keypoints in the other set: N , M for dustbins

in A, B respectively. We denote as a =
[

1⊤
M N

]⊤
and

b =
[

1⊤
N M

]⊤
the number of expected matches for each

keypoint and dustbin in A and B. The augmented assign-

ment P̄ now has the constraints:

P̄1N+1 = a and P̄⊤1M+1 = b. (9)

Sinkhorn Algorithm: The solution of the above optimiza-

tion problem corresponds to the optimal transport [36] be-

tween discrete distributions a and b with scores S̄. Its

entropy-regularized formulation naturally results in the de-

sired soft assignment, and can be efficiently solved on GPU
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with the Sinkhorn algorithm [49, 11]. It is a differentiable

version of the Hungarian algorithm [32], classically used

for bipartite matching, that consists in iteratively normal-

izing exp(S̄) along rows and columns, similar to row and

column Softmax. After T iterations, we drop the dustbins

and recover P = P̄1:M,1:N .

3.3. Loss

By design, both the graph neural network and the opti-

mal matching layer are differentiable – this enables back-

propagation from matches to visual descriptors. SuperGlue

is trained in a supervised manner from ground truth matches

M = {(i, j)} ⊂ A × B. These are estimated from ground

truth relative transformations – using poses and depth maps

or homographies. This also lets us label some keypoints

I ⊆ A and J ⊆ B as unmatched if they do not have any re-

projection in their vicinity. Given these labels, we minimize

the negative log-likelihood of the assignment P̄:

Loss =−
∑

(i,j)∈M

log P̄i,j

−
∑

i∈I

log P̄i,N+1 −
∑

j∈J

log P̄M+1,j .
(10)

This supervision aims at simultaneously maximizing the

precision and the recall of the matching.

3.4. Comparisons to related work

The SuperGlue architecture is equivariant to permutation

of the keypoints within an image. Unlike other handcrafted

or learned approaches, it is also equivariant to permutation

of the images, which better reflects the symmetry of the

problem and provides a beneficial inductive bias. Addition-

ally, the optimal transport formulation enforces reciprocity

of the matches, like the mutual check, but in a soft manner,

similar to [43], thus embedding it into the training process.

SuperGlue vs. Instance Normalization [54]: Attention,

as used by SuperGlue, is a more flexible and powerful con-

text aggregation mechanism than instance normalization,

which treats all keypoints equally, as used by previous work

on feature matching [30, 63, 29, 41, 6].

SuperGlue vs. ContextDesc [29]: SuperGlue can jointly

reason about appearance and position while ContextDesc

processes them separately. Moreover, ContextDesc is a

front-end that additionally requires a larger regional extrac-

tor, and a loss for keypoints scoring. SuperGlue only needs

local features, learned or handcrafted, and can thus be a sim-

ple drop-in replacement for existing matchers.

SuperGlue vs. Transformer [55]: SuperGlue borrows the

self-attention from the Transformer, but embeds it into a

graph neural network, and additionally introduces the cross-

attention, which is symmetric. This simplifies the architec-

ture and results in better feature reuse across layers.

4. Implementation details

SuperGlue can be combined with any local feature detec-

tor and descriptor but works particularly well with Super-

Point [16], which produces repeatable and sparse keypoints

– enabling very efficient matching. Visual descriptors are

bilinearly sampled from the semi-dense feature map. For

a fair comparison to other matchers, unless explicitly men-

tioned, we do not train the visual descriptor network when

training SuperGlue. At test time, one can use a confidence

threshold (we choose 0.2) to retain some matches from the

soft assignment, or use all of them and their confidence in a

subsequent step, such as weighted pose estimation.

Architecture details: All intermediate representations

(key, query value, descriptors) have the same dimension

D = 256 as the SuperPoint descriptors. We use L = 9 lay-

ers of alternating multi-head self- and cross-attention with

4 heads each, and perform T = 100 Sinkhorn iterations.

The model is implemented in PyTorch [35], contains 12M

parameters, and runs in real-time on an NVIDIA GTX 1080

GPU: a forward pass takes on average 69 ms (15 FPS) for

an indoor image pair (see Appendix C).

Training details: To allow for data augmentation, Super-

Point detect and describe steps are performed on-the-fly as

batches during training. A number of random keypoints are

further added for efficient batching and increased robust-

ness. More details are provided in Appendix E.

5. Experiments

5.1. Homography estimation

We perform a large-scale homography estimation exper-

iment using real images and synthetic homographies with

both robust (RANSAC) and non-robust (DLT) estimators.

Dataset: We generate image pairs by sampling random ho-

mographies and applying random photometric distortions to

real images, following a recipe similar to [14, 16, 42, 41].

The underlying images come from the set of 1M distrac-

tor images in the Oxford and Paris dataset [39], split into

training, validation, and test sets.

Local

features
Matcher

Homography estimation AUC
P R

RANSAC DLT

SuperPoint

NN 39.47 0.00 21.7 65.4

NN + mutual 42.45 0.24 43.8 56.5

NN + PointCN 43.02 45.40 76.2 64.2

NN + OANet 44.55 52.29 82.8 64.7

SuperGlue 53.67 65.85 90.7 98.3

Table 1: Homography estimation. SuperGlue recovers al-

most all possible matches while suppressing most outliers.

Because SuperGlue correspondences are high-quality, the

Direct Linear Transform (DLT), a least-squares based solu-

tion with no robustness mechanism, outperforms RANSAC.
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Baselines: We compare SuperGlue against several match-

ers applied to SuperPoint local features – the Nearest Neigh-

bor (NN) matcher and various outlier rejectors: the mutual

NN constraint, PointCN [30], and Order-Aware Network

(OANet) [63]. All learned methods, including SuperGlue,

are trained on ground truth correspondences, found by pro-

jecting keypoints from one image to the other. We generate

homographies and photometric distortions on-the-fly – an

image pair is never seen twice during training.

Metrics: Match precision (P) and recall (R) are computed

from the ground truth correspondences. Homography es-

timation is performed with both RANSAC and the Direct

Linear Transformation [22] (DLT), which has a direct least-

squares solution. We compute the mean reprojection error

of the four corners of the image and report the area under

the cumulative error curve (AUC) up to a value of 10 pixels.

Results: SuperGlue is sufficiently expressive to master ho-

mographies, achieving 98% recall and high precision (see

Table 1). The estimated correspondences are so good that

a robust estimator is not required – SuperGlue works even

better with DLT than RANSAC. Outlier rejection meth-

ods like PointCN and OANet cannot predict more correct

matches than the NN matcher itself, overly relying on the

initial descriptors (see Figure 6 and Appendix A).

5.2. Indoor pose estimation

Indoor image matching is very challenging due to the

lack of texture, the abundance of self-similarities, the com-

plex 3D geometry of scenes, and large viewpoint changes.

As we show in the following, SuperGlue can effectively

learn priors to overcome these challenges.

Dataset: We use ScanNet [12], a large-scale indoor dataset

composed of monocular sequences with ground truth poses

and depth images, and well-defined training, validation, and

test splits corresponding to different scenes. Previous works

select training and evaluation pairs based on time differ-

ence [34, 15] or SfM covisibility [30, 63, 6], usually com-

puted using SIFT. We argue that this limits the difficulty of

the pairs, and instead select these based on an overlap score

computed for all possible image pairs in a given sequence

using only ground truth poses and depth. This results in

significantly wider-baseline pairs, which corresponds to the

current frontier for real-world indoor image matching. Dis-

carding pairs with too small or too large overlap, we select

230M training and 1500 test pairs.

Metrics: As in previous work [30, 63, 6], we report

the AUC of the pose error at the thresholds (5◦, 10◦, 20◦),

where the pose error is the maximum of the angular errors

in rotation and translation. Relative poses are obtained from

essential matrix estimation with RANSAC. We also report

the match precision and the matching score [16, 61], where

a match is deemed correct based on its epipolar distance.

Local

features
Matcher

Pose estimation AUC
P MS

@5◦ @10◦ @20◦

ORB NN + GMS 5.21 13.65 25.36 72.0 5.7

D2-Net NN + mutual 5.25 14.53 27.96 46.7 12.0

ContextDesc NN + ratio test 6.64 15.01 25.75 51.2 9.2

SIFT

NN + ratio test 5.83 13.06 22.47 40.3 1.0

NN + NG-RANSAC 6.19 13.80 23.73 61.9 0.7

NN + OANet 6.00 14.33 25.90 38.6 4.2

SuperGlue 6.71 15.70 28.67 74.2 9.8

SuperPoint

NN + mutual 9.43 21.53 36.40 50.4 18.8

NN + distance + mutual 9.82 22.42 36.83 63.9 14.6

NN + GMS 8.39 18.96 31.56 50.3 19.0

NN + PointCN 11.40 25.47 41.41 71.8 25.5

NN + OANet 11.76 26.90 43.85 74.0 25.7

SuperGlue 16.16 33.81 51.84 84.4 31.5

Table 2: Wide-baseline indoor pose estimation. We re-

port the AUC of the pose error, the matching score (MS)

and precision (P), all in percents %. SuperGlue outperforms

all handcrafted and learned matchers when applied to both

SIFT and SuperPoint.
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Figure 5: Indoor and outdoor pose estimation. Super-

Glue works with SIFT or SuperPoint local features and con-

sistently improves by a large margin the pose accuracy over

OANet, a state-of-the-art outlier rejection neural network.

Baselines: We evaluate SuperGlue and various baseline

matchers using both root-normalized SIFT [28, 2] and Su-

perPoint [16] features. SuperGlue is trained with correspon-

dences and unmatched keypoints derived from ground truth

poses and depth. All baselines are based on the Nearest

Neighbor (NN) matcher and potentially an outlier rejec-

tion method. In the “Handcrafted” category, we consider

the mutual check, the ratio test [28], thresholding by de-

scriptor distance, and the more complex GMS [5]. Meth-

ods in the “Learned” category are PointCN [30], and its

follow-ups OANet [63] and NG-RANSAC [6]. We retrain

PointCN and OANet on ScanNet for both SuperPoint and

SIFT with the classification loss using the above-defined

correctness criterion and their respective regression losses.

For NG-RANSAC, we use the original trained model. We

do not include any graph matching methods as they are or-

ders of magnitude too slow for the number of keypoints that

we consider (>500). Other local features are evaluated as

reference: ORB [44] with GMS, D2-Net [17], and Con-

textDesc [29] using the publicly available trained models.
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Results: SuperGlue enables significantly higher pose ac-

curacy compared to both handcrafted and learned matchers

(see Table 2 and Figure 5), and works well with both SIFT

and SuperPoint. It has a significantly higher precision than

other learned matchers, demonstrating its higher represen-

tation power. It also produces a larger number of correct

matches – up to 10 times more than the ratio test when ap-

plied to SIFT, because it operates on the full set of possible

matches, rather than the limited set of nearest neighbors.

SuperGlue with SuperPoint achieves state-of-the-art results

on indoor pose estimation. They complement each other

well since repeatable keypoints make it possible to estimate

a larger number of correct matches even in very challenging

situations (see Figure 2, Figure 6, and Appendix A).

5.3. Outdoor pose estimation

As outdoor image sequences present their own set of

challenges (e.g., lighting changes and occlusion), we train

and evaluate SuperGlue for pose estimation in an outdoor

setting. We use the same evaluation metrics and baseline

methods as in the indoor pose estimation task.

Dataset: We evaluate on the PhotoTourism dataset, which

is part of the CVPR’19 Image Matching Challenge [1]. It

is a subset of the YFCC100M dataset [50] and has ground

truth poses and sparse 3D models obtained from an off-the-

shelf SfM tool [34, 46, 47]. All learned methods are trained

on the larger MegaDepth dataset [26], which also has depth

maps computed with multi-view stereo. Scenes that are in

the PhotoTourism test set are removed from the training set.

Similarly as in the indoor case, we select challenging im-

age pairs for training and evaluation using an overlap score

computed from the SfM covisibility as in [17, 34].

Results: As shown in Table 3, SuperGlue outperforms all

baselines, at all relative pose thresholds, when applied to

both SuperPoint and SIFT. Most notably, the precision of

the resulting matching is very high (84.9%), reinforcing the

analogy that SuperGlue “glues” together local features.

Local

features
Matcher

Pose estimation AUC
P MS

@5◦ @10◦ @20◦

ContextDesc NN + ratio test 20.16 31.65 44.05 56.2 3.3

SIFT

NN + ratio test 15.19 24.72 35.30 43.4 1.7

NN + NG-RANSAC 15.61 25.28 35.87 64.4 1.9

NN + OANet 18.02 28.76 40.31 55.0 3.7

SuperGlue 23.68 36.44 49.44 74.1 7.2

SuperPoint

NN + mutual 9.80 18.99 30.88 22.5 4.9

NN + GMS 13.96 24.58 36.53 47.1 4.7

NN + OANet 21.03 34.08 46.88 52.4 8.4

SuperGlue 34.18 50.32 64.16 84.9 11.1

Table 3: Outdoor pose estimation. Matching SuperPoint

and SIFT features with SuperGlue results in significantly

higher pose accuracy (AUC), precision (P), and matching

score (MS) than with handcrafted or other learned methods.

Matcher
Pose

AUC@20◦
Match

precision

Matching

score

NN + mutual 36.40 50.4 18.8

SuperGlue

No Graph Neural Net 38.56 66.0 17.2

No cross-attention 42.57 74.0 25.3

No positional encoding 47.12 75.8 26.6

Smaller (3 layers) 46.93 79.9 30.0

Full (9 layers) 51.84 84.4 31.5

Table 4: Ablation of SuperGlue. While the optimal match-

ing layer alone improves over the baseline Nearest Neigh-

bor matcher, the Graph Neural Network explains the major-

ity of the gains brought by SuperGlue. Both cross-attention

and positional encoding are critical for strong gluing, and a

deeper network further improves the precision.

5.4. Understanding SuperGlue

Ablation study: To evaluate our design decisions, we re-

peat the indoor experiments with SuperPoint features, but

this time focusing on different SuperGlue variants. This ab-

lation study, presented in Table 4, shows that all SuperGlue

blocks are useful and bring substantial performance gains.

When we additionally backpropagate through the Super-

Point descriptor network while training SuperGlue, we ob-

serve an improvement in AUC@20◦from 51.84 to 53.38.

This confirms that SuperGlue is suitable for end-to-end

learning beyond matching.

Visualizing Attention: The extensive diversity of self- and

cross-attention patterns is shown in Figure 7 and reflects the

complexity of the learned behavior. A detailed analysis of

the trends and inner-workings is performed in Appendix D.

6. Conclusion

This paper demonstrates the power of attention-based

graph neural networks for local feature matching. Super-

Glue’s architecture uses two kinds of attention: (i) self-at-

tention, which boosts the receptive field of local descriptors,

and (ii) cross-attention, which enables cross-image com-

munication and is inspired by the way humans look back-

-and-forth when matching images. Our method elegantly

handles partial assignments and occluded points by solving

an optimal transport problem. Our experiments show that

SuperGlue achieves significant improvement over existing

approaches, enabling highly accurate relative pose estima-

tion on extreme wide-baseline indoor and outdoor image

pairs. In addition, SuperGlue runs in real-time and works

well with both classical and learned features.

In summary, our learnable middle-end replaces hand-

crafted heuristics with a powerful neural model that simul-

taneously performs context aggregation, matching, and fil-

tering in a single unified architecture. We believe that, when

combined with a deep front-end, SuperGlue is a major mile-

stone towards end-to-end deep SLAM.
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Figure 6: Qualitative image matches. We compare SuperGlue to the Nearest Neighbor (NN) matcher with two outlier

rejectors, handcrafted and learned, in three environments. SuperGlue consistently estimates more correct matches (green

lines) and fewer mismatches (red lines), successfully coping with repeated texture, large viewpoint, and illumination changes.
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Figure 7: Visualizing attention. We show self- and cross-attention weights αij at various layers and heads. SuperGlue ex-

hibits a diversity of patterns: it can focus on global or local context, self-similarities, distinctive features, or match candidates.
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