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Abstract

We propose a novel formulation for joint recovery of

camera pose, object geometry and spatially-varying BRDF.

The input to our approach is a sequence of RGB-D images

captured by a mobile, hand-held scanner that actively il-

luminates the scene with point light sources. Compared to

previous works that jointly estimate geometry and materi-

als from a hand-held scanner, we formulate this problem

using a single objective function that can be minimized us-

ing off-the-shelf gradient-based solvers. By integrating ma-

terial clustering as a differentiable operation into the op-

timization process, we avoid pre-processing heuristics and

demonstrate that our model is able to determine the correct

number of specular materials independently. We provide a

study on the importance of each component in our formu-

lation and on the requirements of the initial geometry. We

show that optimizing over the poses is crucial for accurately

recovering fine details and that our approach naturally re-

sults in a semantically meaningful material segmentation.

1. Introduction

Reconstructing the shape and appearance of objects is

a long standing goal in computer vision and graphics with

numerous applications ranging from telepresence to train-

ing embodied agents in photo-realistic environments. While

novel depth sensing technology (e.g., Kinect) enabled large-

scale 3D reconstructions [12, 61, 87], the level of realism

provided is limited since physical light transport is not taken

into account. As a consequence, material properties are not

recovered and illumination effects such as specular reflec-

tions or shadows are merged into the texture component.

Material properties can be directly measured using ded-

icated light stages [26, 40, 49] or inferred from images by

assuming known [15, 36, 65] or flat [3, 4, 29, 76] object ge-

ometry. However, most setups are either restricted to lab

environments, planar geometries, or difficult to employ “in

the wild” as they assume aligned 3D models or scans.

∗ Joint first author with equal contribution.

Figure 1: Illustration. Based on images captured from a

handheld scanner with point light illumination, we jointly

optimize for the camera poses, the surface geometry and

spatially varying materials using a single objective function.

Ideally, object geometry and material properties are in-

ferred jointly: a good model of light transport allows for re-

covering geometric detail using shading cues. An accurate

shape model, in turn, facilitates the estimation of material

properties. This is particularly relevant for shiny surfaces

where small changes in the geometry greatly impact the ap-

pearance and location of specular reflections. Yet joint opti-

mization of these quantities (shown in Fig. 1) is challenging.

Several works have addressed this problem by assuming

multiple images from a static camera [16, 21, 23, 28, 105]

which is impractical for mobile scanning applications. Only

a few works consider the challenging problem of joint ge-

ometry and material estimation from a handheld device

[20, 24, 57]. However, existing approaches assume known

camera poses and leverage sophisticated pipelines, decom-

posing the problem into smaller problems using multiple

decoupled objectives and optimization algorithms that treat

geometry and materials separately. Furthermore the number

of base materials must be provided and/or pre-processing is

required to cluster the object surface accordingly.
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In this work, we provide a novel formulation for this

problem which does not rely on sophisticated pipelines or

decoupled objective functions. However, we assume that

the data was captured under known, non-static illumina-

tion with negligible ambient light. We make the following

contributions: (1) We demonstrate that joint optimization

of camera pose, object geometry and materials is possible

using a single objective function and off-the-shelf gradient-

based solvers. (2) We integrate material clustering as a dif-

ferentiable operation into the optimization process by for-

mulating non-local smoothness constraints. (3) Our ap-

proach automatically determines the number of specular

base materials during the optimization process, leading to

parsimonious and semantically meaningful material assign-

ments. (4) We provide a study on the importance of each

component in our formulation and a comparison to various

baselines. (5) We provide our source code, dataset and re-

constructed models publicly available at https://github.com/

autonomousvision/handheld svbrdf geometry.

2. Related work

We now discuss the most related work on geometry, ma-

terial as well as joint geometry and material estimation.

2.1. Geometry Estimation

Multi-View Stereo (MVS) reconstruction techniques

[18,38,39,77,80,84,85] recover the 3D geometry of an ob-

ject from multiple input images by matching feature corre-

spondences across views or optimizing photo-consistency.

As they ignore physical light transport, they cannot recover

material properties. Furthermore, they are only able to re-

cover geometry for surfaces which are sufficiently textured.

Shape from Shading (SfS) techniques exploit shading

cues for reconstructing [27,30,72,73,99] or for refining 3D

geometry [22, 48, 89, 104] from one or multiple images by

relating surface normals to image intensities through Lam-

bert’s law. While early SfS approaches were restricted to

objects made of a single Lambertian material, modern rein-

carnations of these models [6, 45, 62] are also able to in-

fer non-Lambertian materials and lighting. Unfortunately,

reconstructing geometry from a single image is a highly

ill-posed problem, requiring strong assumptions about the

surface geometry. Moreover, textured objects often cause

ambiguities as intensity changes can be caused by changes

in either surface orientation or surface albedo.

Photometric Stereo (PS) approaches [25, 63, 70, 71, 83,

88,102] assume three or more images captured with a static

camera while varying illumination or object pose [41,82] to

resolve the aforementioned ambiguities. In contrast to early

PS approaches which often assumed orthographic cameras

and distant light sources, newer works have considered the

more practical setup of near light sources [42, 43, 74, 94]

and perspective projection [53, 54, 68]. To handle non-

Lambertian surfaces, robust error functions have been sug-

gested [69, 75] and the problem has been formulated using

specularity-invariant image ratios [10, 50–52]. The advan-

tages of PS (accurate normals) and MVS (global geometry)

have also been combined by integrating normals from PS

and geometry from MVS [17, 33, 44, 47, 58, 64, 81, 96] into

a single consistent reconstruction. However, many classical

PS approaches are not capable of estimating material prop-

erties other than albedo and most PS approaches require a

fixed camera which restricts their applicability to lab envi-

ronments. In contrast, here we are interested in recovering

shape and surface materials using a handheld device.

2.2. Material Estimation

Intrinsic Image Decomposition [6,7,11,19] is the prob-

lem of decomposing an image into its material-dependent

and light-dependent properties. However, only a small por-

tion of the 3D physical process is captured by these models

and strong regularizers must be exploited to solve the task.

A more accurate description of the reflective properties of

materials is provided by the Bidirectional Reflectance Dis-

tribution Function (BRDF) [59].

For known 3D geometry, the BRDF can be measured

using specialized light stages or gantries [26,40,49,60,78].

While this setup leads to accurate reflectance estimates, it is

typically expensive, stationary and only works for objects

of limited size. In contrast, recent works have demonstrated

that reflectance properties of flat surfaces can be acquired

using an ordinary mobile phone [3, 4, 29, 76, 95]. While

data collection is easy and practical, these techniques are

designed for capturing flat texture surfaces and do not gen-

eralize to objects with more complex geometries.

More closely aligned with our goals are approaches that

estimate parametric BRDF models for objects with known

geometry based on sparse measurements of the BRDF space

[15,36,55,56,65,90–92,97,101]. While we also estimate a

parametric BRDF model and assume only sparse measure-

ments of the BRDF domain, we jointly optimize for camera

pose, object geometry and material parameters. As our ex-

periments show, joint optimization allows us to recover fine

geometric structures (not present in the initial reconstruc-

tion) while at the same time improving material estimates

compared to a sequential treatment of both tasks.

2.3. Joint Geometry and Material Estimation

Several works have addressed the problem of jointly in-

ferring geometry and material. By integrating shading cues

with multi-view constraints and an accurate model of ma-

terials and light transport, this approach has the potential to

deliver the most accurate results. However, joint optimiza-

tion of all relevant quantities is a challenging task.

Several works have considered extensions of the classic

PS setting [1,5,8,16,21,23,28,67,93,103,105]. While some
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of these approaches consider multiple viewpoints and/or es-

timate spatially varying BRDFs, all of them require multiple

images from the same viewpoint as input, i.e., they assume

that the camera is on a tripod. While this would simplify

matters, here we are interested in jointly estimating geome-

try and materials from a handheld device which can be used

for scanning a wide range of objects outside the laboratory

and which allows for obtaining more complete reconstruc-

tions by scanning objects from multiple viewpoints.

There exist only few works that consider the problem

of joint geometry and material estimation from an active

handheld device. Higo et al. [24] present a plane-sweeping

approach combined with graph cuts for estimating albedo,

normals and depth, followed by a post-processing step

to integrate normal information into the depth and to re-

move outliers [58]. Georgoulis et al. [20] optimize an ini-

tial mesh computed via structure-from-motion and a data-

driven BRDF model in an alternating fashion. They use

k-means for clustering initial BRDF estimates into base ma-

terials and iteratively recompute the 3D geometry using the

method of [58]. In similar spirit, Nam et al. [57] split the

optimization problem into separate parts. They first cluster

the material estimates using k-means, followed by an alter-

nating optimization procedure which interleaves material,

normal and geometry updates. The latter is updated using

screened Poisson surface reconstruction [35] while materi-

als are recovered using a separate objective.

The main contribution of our work is a simple and clean

formulation of this problem: we demonstrate that geometry

and materials can be inferred jointly using a single objec-

tive function optimized using standard gradient-based tech-

niques. Our approach naturally allows for optimizing ad-

ditional relevant quantities such as camera poses and inte-

grates material clustering as a differentiable operation into

the optimization process. Moreover, we demonstrate auto-

matic model selection by determining the number of distinct

material components as illustrated in Fig. 2.

3. Method

Let us assume a set of color images Ii : R
2 → R

3 cap-

tured from N different views i ∈ {1, . . . , N}. Without loss

of generality, let us select i = 1 as the reference view based

on which we will parameterize the surface geometry and

materials as detailed below. Note that in our visualizations

all observations are represented in this reference view.

Our goal is to jointly recover the camera poses, the ge-

ometry of the scene as well as the material properties in

terms of a spatially varying Bidirectional Reflectance Dis-

tribution Function (svBRDF).

More formally, we wish to estimate the locations xp =
(xp, yp, zp)

T , surface normals np = (nx
p , n

y
p, n

z
p)

T , and

svBRDF fp(·) of a set of P surface points p, as well as

the projective mappings πi : R
3 → R

2 that map a 3D point

xp ∈ R
3 into camera image i. We assume that each image

is illuminated by exactly one point light source. Similar to

prior works, we assume that global and ambient illumina-

tion effects are negligible.

3.1. Preliminaries

This section describes the parameterizations of our model.

Camera Representation: We use a perspective pinhole

camera model and assume constant intrinsic camera param-

eters that can be estimated using established calibration pro-

cedures [100]. We also assume that all images have been

undistorted and the vignetting has been removed. We there-

fore only optimize for the extrinsic parameters (i.e., rotation

and translation) of each projective mapping πi : R
3 → R

2.

Geometry Representation: We define the surface points

in terms of the depth map in the reference view Z1 = {zp},

using p as the pixel/point index. Assuming a pinhole pro-

jection, the 3D location of surface point p is given by

xp = π−1

1
(up, vp, zp)

=

(

up − cx
f

,
vp − cy
f

, 1

)

zp (1)

where [up, vp]
T

denotes the location of pixel p in the refer-

ence image Ic, zp is the depth at pixel p, π−1

1
is the inverse

projection function and f, cx, cy denote its parameters.

Normal Representation: We represent normals np as unit

vectors. In every iteration of the gradient-based optimiza-

tion, we estimate an angular change for this vector so that

we avoid both the unit normal constraint and the gimbal

lock problem.

svBRDF Representation: The svBRDF fp(np,ω
in,ωout)

models the fraction of light that is reflected from incoming

light direction ω
in to outgoing light direction ω

out given the

surface normal np at point p. We use a modified version of

the Cook-Torrance microfacet BRDF model [13]

fp(np,ω
in,ωout) = dp + sp

D(rp) G(np,ω
in,ωout, rp)

π(np · ωin)(np · ωout)
(2)

whereD(·) describes the microfacet slope distribution,G(·)
is the geometric attenuation factor, and dp ∈ R

3, sp ∈ R
3

and rp ∈ R denote diffuse albedo, specular albedo and sur-

face roughness, respectively. We use Smith’s function as

implemented in Mitsuba [31] for G(·) and the GTR model

of the Disney BRDF [9] for D(·). Following [57], we ig-

nore the Fresnel effect which cannot be observed using a

handheld setup.

As illustrated in Fig. 2, many objects can be modeled

well with few specular material components [46] while the

object texture is more complex. We thus allow the diffuse
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Figure 2: Reconstructions and Estimated Material Assignments for Real Objects. The teapot and the globe are very

smooth and reflective objects whereas the girl and rabbit are near-Lambertian objects with rich geometry and a rough surface.

The duck, the gnome and the hydrant are composed of both shiny and rough parts. While the duck, the gnome, the green vase

and the sheep comprise mostly homogeneous colours, both the globe and the teapot have very detailed textures. The teapot

is painted, which creates surface irregularities, while the globe is printed and therefore smooth. We show renderings (top)

and specular base material segmentations (bottom) from our method; the number of bases T is automatically determined by

model selection within our framework. We visualize the more specular materials in red.

albedo dp to vary freely per pixel p, and model specular

reflectance as a combination of T specular base materials

(

sp

rp

)

=
T
∑

t=1

αt
p ( strt ) (3)

with per-pixel BRDF weights αt
p ∈ [0, 1] and specular base

materials {(st, rt)}
T
t=1

. Note that this is in contrast to other

representations [21,40] which linearly combine also the dif-

fuse part, hence requiring more base materials to reach the

same fidelity. We found that T ≤ 3 specular bases are suf-

ficient for almost all objects. In summary, our svBRDF is

fully determined by {(st, rt)}
T
t=1

and {dp,αp}
P
p=1

.

3.2. Model

This section describes our objective function. Let X =
{{(zp,np, fp)}

P
p=1

, {πi}
N
i=2

} denote the depth, normal and

material for every pixel p in the reference view, as well as

the projective mapping for each adjacent view. We formu-

late the following objective function

X ∗ = argmin
X

ψP + ψG + ψD + ψN + ψM (4)

omitting the dependency on X and the relative weights be-

tween the individual terms. Our objective function is com-

posed of five terms which encourage photoconsistency ψP ,

geometric consistency ψG , depth compatibility ψD, normal

smoothness ψN and material smoothness ψM.

Photoconsistency: The photoconsistency term ensures

that the prediction of our model matches the observation

Ii for every image i and pixel p:

ψP(X ) = (5)

1

N

∑

i

∑

p

‖ϕi
p [Ii(πi(xp))−Ri(xp,np, fp)] ‖

1

Here, Ri denotes the rendering operator for image i which

applies the rendering equation [34] to every pixel p. As-

suming a single point light source, we obtain

Ri(xp,np, fp) = (6)

fp
(

np,ω
in
i (xp),ω

out
i (xp)

) ai(xp)n
T
p ω

in
i (xp)

di(xp)2
L

where ωin
i (xp) denotes the direction of the ray from the sur-

face point xp to the light source and ω
out
i (xp) denotes the

direction from xp to the camera center. ai(xp) is the angle-

dependent light attenuation which is determined through

photometric calibration, di(xp) is the distance between xp

and the light source and L denotes the radiant intensity of

the light. Note that all terms depend on the image index i,
as the location of the camera and the light source vary from

frame to frame when recording with a handheld lightstage.

The visibility term ϕi
p in (5) disables occluded or shad-

owed observations i.e., we do not optimize for these regions.

We set ϕi
p = 1 if surface point xp is both visible in view i

(i.e., no occluder between xp and the i’th camera) and illu-

minated (e.g., no occluder between xp and the point light),

and ϕi
p = 0 otherwise. Note that for the reference view

every pixel is visible, but not necessarily illuminated.
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Geometric Consistency: We enforce consistency between

depth {zp} and normals {np} by ensuring that the normal

field integrates to the estimated depth map. We formulate

this constraint by maximizing the inner product between the

estimated normals {np} and the cross product of the surface

tangents at {xp}:

ψG(X ) = −
∑

p

~nTp

(

∂zp
∂x

×
∂zp
∂y

‖
∂zp
∂x

×
∂zp
∂y

‖
2

)

(7)

The surface tangent
∂zp
∂x

is given by

∂zp
∂x

∝
[

1, 0, ~∇Z1(π1(~xp))
T [f/zp, 0]

T
]T

(8)

where ~∇Z1(π1(~xp)) denotes the gradient of the depth map,

which we estimate using finite differences. We obtain a sim-

ilar equation for
∂zp
∂y

. See the supplement for details.

A valid question to raise is whether a separate treatment

of depth and normals is necessary. An alternative formula-

tion would consider consistency between depth and normals

as a hard constraint, i.e., enforcing Equation (7) strictly,

and optimizing only for depth. While reducing the number

of parameters to be estimated, we found that such a repre-

sentation is prone to local minima during optimization due

to the complementary nature of the constraints (depth vs.

normals/shading). Instead, using auxiliary normal variables

and optimizing for both depth and normals using a soft cou-

pling between them allows us to overcome these problems.

Depth Compatibility: The optional depth term allows for

incorporating depth measurements Z1 in the reference view

i = 1 by regularizing our estimates zp against it:

ψD(X ) =
∑

p

‖zp −Z1(up, vp)‖
2

2
(9)

Note that our model is able to significantly improve upon

the initial coarse geometry provided by the structured light

sensor by exploiting shading cues. However, as these cues

are related to depth variations (i.e., normals) rather than ab-

solute depth, they do not fully constrain the 3D shape of the

object. Our experiments demonstrate that combining com-

plementary depth and shading cues yields reconstructions

which are both locally detailed and globally consistent.

Normal Smoothness: We apply a standard smoothness

regularizer to the normals of adjacent pixels p ∼ q

ψG(X ) =
∑

p∼q

‖np − nq‖
2

2
(10)

in order to encourage smooth surfaces.

Material Smoothness: We only observe specular BRDF

components for a minority of pixels that actually observe a

specular highlight in at least one of their measurements. We

therefore introduce a non-local material regularizer which

propagates specular behavior across image regions of sim-

ilar appearance. Assuming that nearby pixels with similar

diffuse behavior also exhibit similar specular behavior, we

formulate this term by penalizing deviation of the material

weights wrt. a bilaterally smoothed version of themselves

ψM(X ) =
∑

p

∥

∥

∥

∥

∥

αp −

∑

q αq wqkp,q
∑

q wqkp,q

∥

∥

∥

∥

∥

1

−
∑

p

∥

∥

∥

∥

∥

αp −
1

P

∑

q

αq

∥

∥

∥

∥

∥

1

(11)

using a Gaussian kernel kp,q(dp,dq) with 3D location x

and diffuse albedo d at pixels p and q as features:

kp,q = exp

(

−
(xp − xq)

2

2

2σ2

1

−
(dp − dq)

2

2

2σ2

2

)

(12)

As the only informative regions are those that potentially

observe a highlight, the weightswq = maxi acos−1(nq ·h
i
q)

indicate whether pixel q was ever observed close to perfect

mirror reflection. This is determined by the normal nq and

the half-vector hi
p (i.e., the bisector between ω

in and ω
out)

for each view i. We use the permutohedral lattice [2] to

efficiently evaluate the bilateral filter.

The second term in (11) encourages material sparsity

by maximizing the distance to the average BRDF weights

where P denotes the total number of surface points/pixels.

3.3. Optimization

We now discuss the parameter initialization and how we

minimize our objective function (4) with respect to X .

Initial Poses: The camera poses can be either initialized

using classical SfM pipelines such as COLMAP [77, 79] or

using a set of fiducial markers. As SfM approaches fail in

the presence of textureless surfaces, we use a small set of

AprilTags [86] attached to the table supporting the object

of interest. As evidenced by our experiments, the poses es-

timated using fiducial markers are not accurate enough to

model pixel-accurate light transport. We demonstrate that

geometry and materials can be significantly improved by

jointly refining the initial camera poses.

Initial Depth: The initial depth map Z = {zp} can be

obtained using active or passive stereo, or the visual hull

of the object. As we do not assume textured objects and

silhouettes can be difficult to extract in the presence of dark

materials, we use active stereo with a Kinect-like dot pattern

projector for estimating Z . More specifically, we estimate

a depth map for each of the N views, integrate them using

volumetric fusion [14] and project the resulting mesh back

to the reference view.

3497



Observation Crop Reconstruction

Figure 3: Super-Resolution and Denoising. Blurred and

noisy input images (Observation and Crop) get denoised

and sharpened by our method (Reconstruction).

Initial Normals and Albedo: Assuming a Lambertian

scene, normals and albedo can be recovered in closed

form. We follow the approach of Higo et al. [24] and use

RANSAC to reject outliers due to specularities.

Initial Specular BRDF Parameters and Weights: We

initialize each pixel in the scene as a uniform mix of all

base materials. To diversify the initial base materials, we

initialize the specular base components st differently, and

set each base roughness rt to 0.1.

Model Selection: We perform model selection by op-

timizing for multiple numbers of specular base materials

T ∈ {1, 2, 3}, choosing that with the smallest photometric

error while adding a small MDL penalty (linear in T ).

Implementation: We jointly optimize over X , using

ADAM [37] and PyTorch [66], see supplement for details.

4. Experimental Evaluation

In order to evaluate our method quantitatively and quali-

tatively, we capture several real objects using a custom-built

rig with active illumination. Reconstructions of these ob-

jects are shown in Fig. 2. We scanned the objects with an

Artec Spider1 to obtain ground truth geometry.

We first briefly describe our hardware and data capture

procedure. After introducing the metrics, both geometric

and photometric, we provide an ablation study in terms of

the individual components of our model. Finally, we com-

pare our approach with several competitive baselines.

4.1. Evaluation Protocol

Hardware: Our custom-built handheld sensor rig is shown

in Fig. 4. While we use multiple light sources for a dense

sampling of the BRDF, our framework and code is directly

applicable to any number of lights. We calibrate the camera

and depth sensor regarding their intrinsics and extrinsics as

well as vignetting effects. We also calibrate the location

of the light sources relative to the camera as well as their

angular attenuation behavior and radiant intensities. Due to

1https://www.artec3d.com/portable-3d-scanners/artec-spider

Depth Sensor
RGB

Camera

Light Source

Figure 4: Sensor Rig. Our

setup comprises a Kinect-like

active depth sensor, a global

shutter RGB camera and 12
point light sources (high-

power LEDs) surrounding the

camera in two circles (with

radii 10 cm and 25 cm).

space limitations, we provide more details about our system

in the supplement.

Data Capture: The objects are placed on a table with

AprilTags [86] for tracking the sensor position. We assume

that the ambient light is negligible and capture videos of

each object by moving the handheld sensor around the ob-

ject. Given each reference view, we select 45 views within

a viewing cone of 30 degrees by maximizing the minimum

pairwise distance; no two views are ever close together.

These views are then split into 40 training and 5 held-out

test views. While a handheld setup is challenging due to

the trade-off between motion blur and image noise, our ex-

periments demonstrate that our method is capable to super-

resolve and denoise fine textures while simultaneously re-

jecting blurry observations, see Fig. 3.

Evaluation Metrics: We evaluate the estimated structure

{xp} wrt. the Artec Spider scan. The ground truth scan is

first roughly aligned by hand and subsequently finetuned

using dense image-based alignment wrt. depth and normal

errors. We evaluate geometric accuracy by using the aver-

age point-to-mesh distance for all reconstructed points as

in [32]. To evaluate surface normals, we calculate the aver-

age angular error (AAE) between the predicted normal np

and the normal of the closest point in the ground truth scan.

To quantify photometric reconstruction quality, we calcu-

late the photoconsistency term in Eq. (5) for the test views.

4.2. Ablation Study

In this section we demonstrate the need to optimize over

the camera poses and discuss the effect of specifically the

geometric consistency and the material smoothness terms.

Finally, we investigate the impact of the number of views

on the photometric and geometric error. Additional results

are provided in the supplement.

Pose Optimization: Disambiguating geometric properties

from material is a major challenge. We found that optimiz-

ing the poses jointly with the other parameters is crucial for

this, in particular when working with a handheld scanner.

Fig. 5 shows that inaccurate poses cause a significant con-

tamination of the geometry with texture information. This is

even more crucial when estimating specularities: misalign-

ment causes highlights to be inconsistent with the geometry

and therefore difficult to recover.
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Photometric Test Error Overall Specular Non-Specular

Fixed Poses 1.210 3.349 1.151

Full Model 1.138 3.243 1.081

Estimation Crop Error Structure Normals

Figure 5: Pose Optimization. Compared to using the input

poses (top), optimizing the poses (bottom) improves recon-

structions, both quantitatively and qualitatively. The photo-

metric error is reported for regions with and without specu-

lar highlights. See the supplement for more details.

Segmentations Test Reconstructions

(a) Materials (b) Geometry

Figure 6: Loss Regularizers. Without the regularization

(top), the appearance is inconsistent within homogeneous

areas of the object. Using the regularization losses (bottom),

we are able to propagate the information and successfully

generalize to new illumination conditions on the test set.

Material Segmentation: Decomposing the appearance of

the object into its individual materials is an integral element

of our approach. Our material smoothness term Eq. (11)

propagates material information over large areas of the im-

age. This is essential as we otherwise only obtain sparse

measurements of the BRDF at each pixel. It leads to seman-

tically meaningfull segmentations, as illustrated in Fig. 2, as

well as more successfull generalization, as shown in Fig. 6a.

Geometric Consistency: Splitting up the depth and nor-

mals into separate optimization variables yields a better be-

haved optimization problem, but coupling depth and nor-

mals proves crucial for consistent results. Even though the

photometric term provides some constraints for the depth at

each pixel, Fig. 6b shows that omitting the geometric con-

sistency term results in high-frequency structure artifacts.

Number of Input Views: Our goal is to estimate the spa-

tially varying BRDF but we only observe a very sparse set

Figure 7: Number of Input Views. The photometric test

error (blue) degrades gracefully with decreasing number of

observations. As expected, the quality of the highlights is

most affected by a small number of views.

Init. from 5 depth maps Init. from 40 depth maps

Figure 8: Geometry Refinement. The final geometry esti-

mate (right) is largely unaffected by the initialization (left).

Details are recovered, even from a very coarse initialization.

of samples for each surface point p. Reducing the number

of images exacerbates this problem, as shown in Fig. 7. We

see that our method degrades gracefully, with reasonable

results even for using only 10 input images.

We also evaluate the robustness of our method wrt. the

initial geometry by reducing the number of depth maps

fused for initialization. As Fig. 8 shows, our method is able

to recover from inaccurate depth initialization and achieves

similar quality reconstructions even when initializing from

only 5 depth maps. By construction, our model does not

recover geometry that is absent in the initial estimate.

4.3. Comparison to Existing Approaches

Similar to us, Higo et al. [24] use a handheld scanner

for estimating depth, normals and material using a 2.5D

representation. Unlike us, they treat specular highlights,

shadows and occlusions as outliers using RANSAC. Geor-

goulis et al. [20] and Nam et al. [57] also estimate struc-

ture and normals, explicitly modeling non-Lambertian ma-

terials. But due to the nature of their pipelines, they are

restricted to a disjoint optimization procedure and update

geometry and materials in alternation. It is important to

note that the baselines expect the camera positions to be

known accurately. So for the baselines we first refine the

poses using SfM [77]. Unfortunately, none of the existing

works provide code. We have re-implemented the approach

of Higo et al. [24] as baseline. To investigate the benefits

of joint optimization, we implemented a disjoint variant of

our method that alternates between geometry and material
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