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Abstract

Among the major remaining challenges for generative

adversarial networks (GANs) is the capacity to synthesize

globally and locally coherent images with object shapes and

textures indistinguishable from real images. To target this

issue we propose an alternative U-Net based discrimina-

tor architecture, borrowing the insights from the segmenta-

tion literature. The proposed U-Net based architecture al-

lows to provide detailed per-pixel feedback to the generator

while maintaining the global coherence of synthesized im-

ages, by providing the global image feedback as well. Em-

powered by the per-pixel response of the discriminator, we

further propose a per-pixel consistency regularization tech-

nique based on the CutMix data augmentation, encourag-

ing the U-Net discriminator to focus more on semantic and

structural changes between real and fake images. This im-

proves the U-Net discriminator training, further enhancing

the quality of generated samples. The novel discriminator

improves over the state of the art in terms of the standard

distribution and image quality metrics, enabling the genera-

tor to synthesize images with varying structure, appearance

and levels of detail, maintaining global and local realism.

Compared to the BigGAN baseline, we achieve an average

improvement of 2.7 FID points across FFHQ, CelebA, and

the proposed COCO-Animals dataset.

1. Introduction

The quality of synthetic images produced by genera-

tive adversarial networks (GANs) has seen tremendous im-

provement recently [5, 20]. The progress is attributed

to large-scale training [32, 5], architectural modifications

[50, 19, 20, 27], and improved training stability via the use

of different regularization techniques [34, 51]. However,

despite the recent advances, learning to synthesize images

with global semantic coherence, long-range structure and

the exactness of detail remains challenging.

One source of the problem lies potentially in the discrim-

Progression during training

real

fake

Figure 1: Images produced throughout the training by our

U-Net GAN model (top row) and their corresponding per-

pixel feedback of the U-Net discriminator (bottom row).

The synthetic image samples are obtained from a fixed noise

vector at different training iterations. Brighter colors corre-

spond to the discriminator confidence of pixel being real

(and darker of being fake). Note that the U-Net discrimina-

tor provides very detailed and spatially coherent response

to the generator, enabling it to further improve the image

quality, e.g. the unnaturally large man’s forehead is recog-

nized as fake by the discriminator and is corrected by the

generator throughout the training.

inator network. The discriminator aims to model the data

distribution, acting as a loss function to provide the gener-

ator a learning signal to synthesize realistic image samples.

The stronger the discriminator is, the better the generator

has to become. In the current state-of-the-art GAN models,

the discriminator being a classification network learns only

a representation that allows to efficiently penalize the gen-

erator based on the most discriminative difference between

real and synthetic images. Thus, it often focuses either on

the global structure or local details. The problem amplifies

as the discriminator has to learn in a non-stationary envi-
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ronment: the distribution of synthetic samples shifts as the

generator constantly changes through training, and is prone

to forgetting previous tasks [7] (in the context of the dis-

criminator training, learning semantics, structures, and tex-

tures can be considered different tasks). This discriminator

is not incentivized to maintain a more powerful data repre-

sentation, learning both global and local image differences.

This often results in the generated images with discontinued

and mottled local structures [27] or images with incoherent

geometric and structural patterns (e.g. asymmetric faces or

animals with missing legs) [50].

To mitigate this problem, we propose an alternative dis-

criminator architecture, which outputs simultaneously both

global (over the whole image) and local (per-pixel) deci-

sion of the image belonging to either the real or fake class,

see Figure 1. Motivated by the ideas from the segmentation

literature, we re-design the discriminator to take a role of

both a classifier and segmenter. We change the architecture

of the discriminator network to a U-Net [39], where the en-

coder module performs per-image classification, as in the

standard GAN setting, and the decoder module outputs per-

pixel class decision, providing spatially coherent feedback

to the generator, see Figure 2. This architectural change

leads to a stronger discriminator, which is encouraged to

maintain a more powerful data representation, making the

generator task of fooling the discriminator more challeng-

ing and thus improving the quality of generated samples

(as also reflected in the generator and discriminator loss

behavior in Figure S1). Note that we do not modify the

generator in any way, and our work is orthogonal to the

ongoing research on architectural changes of the generator

[20, 27], divergence measures [25, 1, 37], and regulariza-

tions [40, 15, 34].

The proposed U-Net based discriminator allows to em-

ploy the recently introduced CutMix [47] augmentation,

which is shown to be effective for classification networks,

for consistency regularization in the two-dimensional out-

put space of the decoder. Inspired by [47], we cut and mix

the patches from real and synthetic images together, where

the ground truth label maps are spatially combined with

respect to the real and fake patch class for the segmenter

(U-Net decoder) and the class labels are set to fake for the

classifier (U-Net encoder), as globally the CutMix image

should be recognized as fake, see Figure 3. Empowered

by per-pixel feedback of the U-Net discriminator, we fur-

ther employ these CutMix images for consistency regular-

ization, penalizing per-pixel inconsistent predictions of the

discriminator under the CutMix transformations. This fos-

ters the discriminator to focus more on semantic and struc-

tural changes between real and fake images and to attend

less to domain-preserving perturbations. Moreover, it also

helps to improve the localization ability of the decoder. Em-

ploying the proposed consistency regularization leads to a

stronger generator, which pays more attention to local and

global image realism. We call our model U-Net GAN.

We evaluate the proposed U-Net GAN model across sev-

eral datasets using the state-of-the-art BigGAN model [5]

as a baseline and observe an improved quality of the gen-

erated samples in terms of the FID and IS metrics. For

unconditional image synthesis on FFHQ [20] at resolu-

tion 256 × 256, our U-Net GAN model improves 4 FID

points over the BigGAN model, synthesizing high quality

human faces (see Figure 4). On CelebA [29] at resolution

128×128 we achieve 1.6 point FID gain, yielding to the best

of our knowledge the lowest known FID score of 2.95. For

class-conditional image synthesis on the introduced COCO-

Animals dataset [28, 24] at resolution 128×128 we observe

an improvement in FID from 16.37 to 13.73, synthesizing

diverse images of different animal classes (see Figure 5).

2. Related work

Generative adversarial networks. GAN [14] and its con-

ditional variant [33] have recently demonstrated impres-

sive results on different computer vision tasks, including

image synthesis [38, 50, 19, 5, 20, 27, 10]. Plenty of

efforts have been made to improve the training and per-

formance of GANs, from reformulation of the objective

function [31, 1, 26, 37], integration of different regulariza-

tion techniques [51, 34, 40, 48] and architectural changes

[38, 19, 13, 27]. To enhance the quality of generated sam-

ples, [38] introduced the DCGAN architecture that employs

strided and transposed convolutions. In SAGAN [50] the

self-attention block was added to improve the network abil-

ity to model global structure. PG-GAN [19] proposed to

grow both the generator and discriminator networks to in-

crease the resolution of generated images. Other lines of

work focused mainly on improving the discriminator by ex-

ploiting multiple [36, 13, 11] and multi-resolution [45, 42]

discriminators, using spatial feedback of the discriminator

[17], an auto-encoder architecture with the reconstruction-

based feedback to the generator [52] or self-supervision to

avoid catastrophic forgetting [7]. Most recently, the atten-

tion has been switched back to the generator network. Style-

GAN [20] proposed to alter the generator architecture by

injecting latent codes to each convolution layer, thus allow-

ing more control over the image synthesis process. COCO-

GAN [27] integrated the conditional coordination mecha-

nism into the generator, making image synthesis highly par-

allelizable. In this paper, we propose to alter the discrimina-

tor network to a U-Net based architecture, empowering the

discriminator to capture better both global and local struc-

tures, enabled by per-pixel discriminator feedback. Local

discriminator feedback is also commonly applied through

PatchGAN discriminators [18]. Our U-Net GAN extends

this idea to dense prediction over the whole image plane,

with visual information being integrated over up- and down-
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sampling pathways and through the encoder-decoder skip

connections, without trading off local over global realism.

Mix&Cut regularizations. Recently, a few simple yet

effective regularization techniques have been proposed,

which are based on augmenting the training data by cre-

ating synthetic images via mixing or/and cutting samples

from different classes. In MixUp [49] the input images and

their target labels are interpolated using the same randomly

chosen factor. [43] extends [49] by performing interpola-

tion not only in the input layer but also in the intermedi-

ate layers. CutOut [9] augments an image by masking a

rectangular region to zero. Differently, CutMix [47] aug-

ments training data by creating synthetic images via cut-

ting and pasting patches from image samples of different

classes, marrying the best aspects of MixUp and CutOut.

Other works employ the Mix&Cut approaches for consis-

tency regularization [44, 4, 51], i.e. penalizing the classifi-

cation network sensitivity to samples generated via MixUp

or CutOut [49, 9]. In our work, we propose the consistency

regularization under the CutMix transformation in the pixel

output space of our U-Net discriminator. This helps to im-

prove its localization quality and induce it to attend to non-

discriminative differences between real and fake regions.

3. U-Net GAN Model

A ”vanilla” GAN consists of two networks: a generator

G and a discriminator D, trained by minimizing the follow-

ing competing objectives in an alternating manner:

LD = −Ex[logD(x)]− Ez[log(1−D(G(z)))],
LG = −Ez[logD(G(z))]1.

(1)

G aims to map a latent variable z ∼ p(z) sampled from

a prior distribution to a realistic-looking image, while D

aims to distinguish between real x and generated G(z) im-

ages. Ordinarily, G and D are modeled as a decoder and an

encoder convolutional network, respectively.

While there are many variations of the GAN objective

function and its network architectures [23, 30], in this paper

we focus on improving the discriminator network. In Sec-

tion 3.1, we propose to alter the D architecture from a stan-

dard classification network to an encoder-decoder network

– U-Net [39], leaving the underlying basic architecture of D

– the encoder part – untouched. The proposed discriminator

allows to maintain both global and local data representation,

providing more informative feedback to the generator. Em-

powered by local per-pixel feedback of the U-Net decoder

module, in Section 3.2 we further propose a consistency

regularization technique, penalizing per-pixel inconsistent

predictions of the discriminator under the CutMix transfor-

mations [47] of real and fake images. This helps to improve

1This formulation is originally proposed as non-saturating (NS) GAN

in [14].

G

G(z)

z

x

real/fake

real/fake

D
U
enc D

U
dec

Figure 2: U-Net GAN. The proposed U-Net discriminator

classifies the input images on a global and local per-pixel

level. Due to the skip-connections between the encoder and

the decoder (dashed line), the channels in the output layer

contain both high- and low-level information. Brighter col-

ors in the decoder output correspond to the discriminator

confidence of pixel being real (and darker of being fake).

the localization quality of the U-Net discriminator and in-

duce it to attend more to semantic and structural changes

between real and fake samples. We call our model U-Net

GAN. Note that our method is compatible with most GAN

models as it does not modify the generator in any way and

leaves the original GAN objective intact.

3.1. U­Net Based Discriminator

Encoder-decoder networks [2, 39] constitute a power-

ful method for dense prediction. U-Nets [39] in particular

have demonstrated state-of-art performance in many com-

plex image segmentation tasks. In these methods, similarly

to image classification networks, the encoder progressively

downsamples the input, capturing the global image context.

The decoder performs progressive upsampling, matching

the output resolution to the input one and thus enabling pre-

cise localization. Skip connections route data between the

matching resolutions of the two modules, improving further

the ability of the network to accurately segment fine details.

Analogously, in this work, we propose to extend a dis-

criminator to form a U-Net, by reusing building blocks of

the original discriminator classification network as an en-

coder part and building blocks of the generator network as

the decoder part. In other words, the discriminator now con-

sists of the original downsampling network and a new up-

sampling network. The two modules are connected via a

bottleneck, as well as skip-connections that copy and con-

catenate feature maps from the encoder and the decoder

modules, following [39]. We will refer to this discriminator

as DU . While the original D(x) classifies the input image

x into being real and fake, the U-Net discriminator DU (x)
additionally performs this classification on a per-pixel ba-

sis, segmenting image x into real and fake regions, along

with the original image classification of x from the encoder,
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see Figure 2. This enables the discriminator to learn both

global and local differences between real and fake images.

Hereafter, we refer to the original encoder module of the

discriminator as DU
enc and to the introduced decoder mod-

ule as DU
dec. The new discriminator loss is now can be com-

puted by taking the decisions from both DU
enc and DU

dec:

LDU = LDU
enc

+ LDU

dec

, (2)

where similarly to Eq. 1 the loss for the encoder LDU
enc

is

computed from the scalar output of DU
enc:

LDU
enc

=−Ex[logD
U
enc(x)]−Ez[log(1−DU

enc(G(z)))], (3)

and the loss for the decoder LDU
enc

is computed as the mean

decision over all pixels:

LDU

dec

= −Ex

[

∑

i,j

log[DU
dec(x)]i,j

]

− Ez

[

∑

i,j

log(1− [DU
dec(G(z))]i,j)

]

. (4)

Here, [DU
dec(x)]i,j and [DU

dec(G(z))]i,j refer to the discrim-

inator decision at pixel (i, j). These per-pixel outputs of

DU
dec are derived based on global information from high-

level features, enabled through the process of upsampling

from the bottleneck, as well as more local information from

low-level features, mediated by the skip connections from

the intermediate layers of the encoder network.

Correspondingly, the generator objective becomes:

LG = −Ez

[

logDU
enc(G(z))

+
∑

i,j

log[DU
dec(G(z))]i,j

]

, (5)

encouraging the generator to focus on both global structures

and local details while synthesizing images in order to fool

the more powerful discriminator DU .

3.2. Consistency Regularization

Here we present the consistency regularization technique

for the U-Net based discriminator introduced in the previous

section. The per-pixel decision of the well-trained DU dis-

criminator should be equivariant under any class-domain-

altering transformations of images. However, this property

is not explicitly guaranteed. To enable it, the discrimina-

tor should be regularized to focus more on semantic and

structural changes between real and fake samples and to pay

less attention to arbitrary class-domain-preserving perturba-

tions. Therefore, we propose the consistency regularization

of the DU discriminator, explicitly encouraging the decoder

module DU
dec to output equivariant predictions under the

CutMix transformations [47] of real and fake samples. The

Real Fake

Original
images

Real/fake
ratio r

0.28 0.68 0.31 0.51

Mask
M

CutMix
images

D
U

dec
segm.

map

D
U
enc class.
score

0.31 0.60 0.36 0.43

Figure 3: Visualization of the CutMix augmentation and

the predictions of the U-Net discriminator on CutMix im-

ages. 1st row: real and fake samples. 2nd&3rd rows:

sampled real/fake CutMix ratio r and corresponding binary

masks M (color code: white for real, black for fake). 4th

row: generated CutMix images from real and fake sam-

ples. 5th&6th row: the corresponding real/fake segmen-

tation maps of DU with its predicted classification scores.

CutMix augmentation creates synthetic images via cutting

and pasting patches from images of different classes. We

choose CutMix among other Mix&Cut strategies (cf. Sec-

tion 2) as it does not alter the real and fake image patches

used for mixing, in contrast to [49], preserving their original

class domain, and provides a large variety of possible out-

puts. We visualize the CutMix augmentation strategy and

the DU predictions in Figure 3.

Following [47], we synthesize a new training sample

x̃ for the discriminator DU by mixing x and G(z) ∈
R

W×H×C with the mask M:

x̃ = mix(x,G(z),M),
mix(x,G(z),M) = M⊙ x+ (1−M)⊙G(z),

(6)

where M ∈ {0, 1}W×H is the binary mask indicating if

the pixel (i, j) comes from the real (Mi,j = 1) or fake

(Mi,j = 0) image, 1 is a binary mask filled with ones, and

⊙ is an element-wise multiplication. In contrast to [47],

the class label c ∈ {0, 1} for the new CutMix image x̃ is

set to be fake, i.e. c = 0. Globally the mixed synthetic

image should be recognized as fake by the encoder DU
enc,

otherwise the generator can learn to introduce the CutMix

augmentation into generated samples, causing undesirable

artifacts. Note that for the synthetic sample x̃, c = 0 and M
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are the ground truth for the encoder and decoder modules of

the discriminator DU , respectively.

Given the CutMix operation in Eq. 6, we train the dis-

criminator to provide consistent per-pixel predictions, i.e.

DU
dec

(

mix(x,G(z),M)
)

≈mix
(

DU
dec(x), D

U
dec(G(z)),M

)

,

by introducing the consistency regularization loss term in

the discriminator objective:

Lcons
DU

dec

=
∥

∥

∥
DU

dec

(

mix(x,G(z),M)
)

−mix
(

DU
dec(x), D

U
dec(G(z)),M

)∥

∥

∥

2

, (7)

where denotes ‖ · ‖ the L2 norm. This consistency loss is

then taken between the per-pixel output of DU
dec on the Cut-

Mix image and the CutMix between outputs of the DU
dec on

real and fake images, penalizing the discriminator for in-

consistent predictions.

We add the loss term in Eq. 7 to the discriminator objec-

tive in Eq. 2 with a weighting hyper-parameter λ:

LDU = LDU
enc

+ LDU

dec

+ λLcons
DU

dec

.. (8)

The generator objective LG remains unchanged, see Eq. 5.

In addition to the proposed consistency regularization,

we also use CutMix samples for training both the encoder

and decoder modules of DU . Note that for the U-Net GAN

we use the non-saturating GAN objective formulation [14].

However, the introduced consistency regularization as well

as the U-Net architecture of the discriminator can be com-

bined with any other adversarial losses [1, 26, 37].

3.3. Implementation

Here we discuss implementation details of the U-Net

GAN model proposed in Section 3.1 and 3.2.

U-Net based discriminator. We build upon the recent

state-of-the-art BigGAN model [5], and extend its discrim-

inator with our proposed changes. We adopt the BigGAN

generator and discriminator architectures for the 256× 256
(and 128 × 128) resolution with a channel multiplier ch =
64, as described in detail in [5]. The original BigGAN dis-

criminator downsamples the input image to a feature map

of dimensions 16ch × 4 × 4, on which global sum pool-

ing is applied to derive a 16ch dimensional feature vector

that is classified into real or fake. In order to turn the dis-

criminator into a U-Net, we copy the generator architec-

ture and append it to the 4 × 4 output of the discrimina-

tor. In effect, the features are successively upsampled via

ResNet blocks until the original image resolution (H ×W )

is reached. To complete the U-Net, the input to every de-

coder ResNet block is concatenated to the output features

of the encoder blocks that share the same intermediate reso-

lution. In this way, high-level and low-level information are

effectively integrated on the way to the output feature map.

Hereby, the decoder architecture is almost identical to the

generator, with the exception of that we change the number

of channels of the final output from 3 to ch, append a final

block of 1×1 convolutions to produce the 1×H×W output

map, and do not use class-conditional BatchNorm [8, 12]

in the decoder, nor the encoder. Similarly to [5], we pro-

vide class information to DU with projection [35] to the

ch-dimensional channel features of the U-Net encoder and

decoder output. In contrast to [5] and in alignment with [6],

we find it beneficial not to use a hierarchical latent space,

but to directly feed the same input vector z to BatchNorm

at every layer in the generator. Lastly, we also remove the

self-attention layer in both encoder and decoder, as in our

experiments they did not contribute to the performance but

led to memory overhead. While the original BigGAN is a

class-conditional model, we additionally devise an uncon-

ditional version for our experiments. For the unconditional

model, we replace class-conditional BatchNorm with self-

modulation [6], where the BatchNorm parameters are con-

ditioned only on the latent vector z, and do not use the class

projection of [35] in the discriminator.

All these modifications leave us with a two-headed dis-

criminator. We compute the GAN loss at both heads with

equal weight. Analogously to BigGAN, we keep the hinge

loss [50] in all basic U-Net models, while the models that

also employ the consistency regularization in the decoder

output space benefit from using the non-saturating loss [14].

Our implementation builds on top of the original BigGAN

PyTorch implementation2.

Consistency regularization. For each training iteration a

mini-batch of CutMix images (x̃, c = 0,M) is created with

probability pmix. This probability is increased linearly from

0 to 0.5 between the first n epochs in order to give the gen-

erator time to learn how to synthesize more real looking

samples and not to give the discriminator too much power

from the start. CutMix images are created from the existing

real and fake images in the mini-batch using binary masks

M. For sampling M, we use the original CutMix imple-

mentation3: first sampling the combination ratio r between

the real and generated images from the uniform distribution

(0, 1) and then uniformly sample the bounding box coordi-

nates for the cropping regions of x and G(z) to preserve the

r ratio, i.e. r = |M|
W∗H (see Figure 3). Binary masks M also

denote the target for the decoder DU
dec, while we use fake,

i.e c = 0, as the target for the encoder DU
enc. We set λ = 1.0

as it showed empirically to be a good choice. Note that the

consistency regularization does not impose much overhead

during training. Extra computational cost comes only from

feeding additional CutMix images through the discrimina-

tor while updating its parameters.

2https://github.com/ajbrock/BigGAN-PyTorch
3https://github.com/clovaai/CutMix-PyTorch
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Figure 4: Images generated with U-Net GAN on FFHQ with resolution 256×256 when interpolating in the latent space (left

to right). Note the high quality of synthetic samples and very smooth interpolations, maintaining global and local realism.

4. Experiments

4.1. Experimental Setup

Datasets. We consider three datasets: FFHQ [20],

CelebA [29] and the subset of the COCO [28] and Open-

Images [24] images containing animal classes, which we

will further on refer to as COCO-Animals. We use FFHQ

and CelebA for unconditional image synthesis and COCO-

Animals for class-conditional image synthesis, where the

class label is used. We experiment with 256×256 resolution

for FFHQ and 128× 128 for CelebA and COCO-Animals.

CelebA is a human face dataset of 200k images, featur-

ing ∼ 10k different celebrities with a variety of facial poses

and expressions. Similarly, FFHQ is a more recent dataset

of human faces, consisting of 70k high-quality images with

higher variation in terms of age, ethnicity, accessories, and

viewpoints. The proposed COCO-Animals dataset consists

of ∼ 38k training images belonging to 10 animal classes,

where we choose COCO and OpenImages (using the hu-

man verified subset with mask annotations) samples in the

categories bird, cat, dog, horse, cow, sheep, giraffe, zebra,

elephant, and monkey. With its relatively small size and im-

balanced number of images per class as well as due to its

variation in poses, shapes, number of objects, and back-

grounds, COCO-Animals presents a challenging task for

class-conditional image synthesis. We choose to compose

this dataset in order to perform conditional image genera-

tion in the mid- to high-resolution regime, with a reason-

able computational budget and feasible training time. Other

datasets in this order of size either have too few examples

per class (e.g. AwA [46]) or too little inter- and intra-class

variability. In contrast, the intra-class variability of COCO-

Animals is very high for certain classes, e.g. bird and mon-

key, which span many subspecies. For more details we refer

to Section D and E in the supplementary material.

Evaluation metrics. For quantitative evaluation we use the

Fréchet Inception distance (FID) [16] as the main metric,

and additionally consider the Inception score (IS) [41]. Be-

tween the two, FID is a more comprehensive metric, which

has been shown to be more consistent with human evalua-

tion in assessing the realism and variation of the generated

images [16], while IS is limited by what the Inception clas-

sifier can recognise, which is directly linked to its training

data [3]. If one learns to generate something not present in

the classifier’s training data (e.g. human faces) then IS can

still be low despite generating high quality images since that

image does not get classified as a distinct class.

In all our experiments, FID and IS are computed using

50k synthetic images, following [19]. By default all re-

ported numbers correspond to the best or median FID of five

independent runs achieved with 400k training iterations for

FFHQ and COCO-Animals, and 800k training iterations for

CelebA. For evaluation, we employ moving averages of the

generator weights following [5, 19], with a decay of 0.9999.
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Figure 5: Images generated with U-Net GAN trained on COCO-Animals with resolution 128× 128.

Note that we do not use any truncation tricks or rejection

sampling for image generation.

Training details. We adopt the original training parame-

ters of [5]. In particular, we use a uniformly distributed

noise vector z ∈ [−1, 1]140 as input to the generator, and

the Adam optimizer [22] with learning rates of 1e-4 and

5e-4 for G and DU . The number of warmup epochs n for

consistency regularization is set to 200 for COCO-Animals

and 20 for FFHQ and CelebA. In contrast to [5], we operate

with considerably smaller mini-batch sizes: 20 for FFHQ,

50 for CelebA and 80 for COCO-Animals. See Section F

and B in the supplementary material for more details.

4.2. Results

We first test our proposed U-Net discriminator in two

settings: unconditional image synthesis on FFHQ and class-

conditional image synthesis on COCO-Animals, using the

BigGAN model [5] as a baseline for comparison. We report

our key results in Table 1 and Figure 6.

In the unconditional case, our model achieves the FID

score of 7.48, which is an improvement of 4.0 FID points

over the canonical BigGAN discriminator (see Table 1). In

addition, the new U-Net discriminator also improves over

the baseline in terms of the IS metric (3.97 vs. 4.46). The

same effect is observed for the conditional image generation

setting. Here, our U-Net GAN achieves an FID of 13.73,

improving 2.64 points over BigGAN, as well as increases

the IS score from 11.77 to 12.29. Figure 6 visualizes the

mean FID behaviour over the training across 5 independent

runs. From Figure 6 it is evident that the FID score drops

for both models at the similar rate, with a constant offset for

the U-Net GAN model, as well as the smaller standard de-

viation of FID. These results showcase the high potential of

the new U-Net based discriminator. For a detailed compari-

son of the FID mean, median and standard deviation across

5 runs we refer to Table S2 in the supplementary material.

Qualitative results on FFHQ and COCO-Animals are

shown in Figure 4 and Figure 5. Figure 4 displays human

faces generated by U-Net GAN through linear interpola-

tion in the latent space between two synthetic samples. We

Method

FFHQ COCO-Animals

Best Median Best Median

FID↓ IS↑ FID↓ IS↑ FID↓ IS↑ FID↓ IS↑

BigGAN [5] 11.48 3.97 12.42 4.02 16.37 11.77 16.55 11.78

U-Net GAN 7.48 4.46 7.63 4.47 13.73 12.29 13.87 12.31

Table 1: Evaluation results on FFHQ and COCO-Animals.

We report the best and median FID score across 5 runs and

its corresponding IS, see Section 4.2 for discussion.

FFHQ COCO-Animals

100k 200k 300k 400k
training iterations

10

20

30

F
ID

BigGAN

U-Net GAN

100k 200k 300k 400k
training iterations

15

20

25

F
ID

BigGAN

U-Net GAN

Figure 6: FID curves over iterations of the BigGAN model

(blue) and the proposed U-Net GAN (red). Depicted are the

FID mean and standard deviation across 5 runs per setting.

observe that the interpolations are semantically smooth be-

tween faces, i.e. an open mouth gradually becomes a closed

mouth, hair progressively grows in length, beards smoothly

fade or appear, and hair color changes seamlessly. Fur-

thermore, we notice that on several occasions men appear

with pink beards. As FFHQ contains a fair share of peo-

ple with pink hair, we suspect that our generator extrapo-

lates hair color to beards, enabled by the global and local

DU feedback during the training. Figure 5 shows generated

samples on COCO-Animals. We observe diverse images

of high quality. We further notice that employing the class-

conditional projection (as used in BigGAN) in the pixel out-

put space of the decoder does not introduce class leakage or

influence the class separation in any other way. These ob-

servations confirm that our U-Net GAN is effective in both

unconditional and class-conditional image generation.

Ablation Study. In Table 2 we next analyze the individ-

ual effect of each of the proposed components of the U-Net
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Method COCO-Animals FFHQ

BigGAN [5] 16.55 12.42

U-Net based discriminator 15.86 10.86

+ CutMix augmentation 14.95 10.30

+ Consistency regularization 13.87 7.63

Table 2: Ablation study of U-Net GAN on FFHQ and

COCO-Animals. Shown are the median FID scores. The

proposed components lead to better performance, on aver-

age improving the median FID by 3.7 points over BigGAN.

Method FID ↓ IS ↑

PG-GAN [19] 7.30 –

COCO-GAN [27] 5.74 –

BigGAN [5] 4.54 3.23

U-Net GAN 2.95 3.43

Table 3: Comparison with the state-of-the-art models on

CelebA (128× 128). See Section 4.2 for discussion.

GAN model (see Section 3 for details) to the baseline ar-

chitecture of BigGAN on the FFHQ and COCO-Animals

datasets, comparing the median FID scores. Note that each

of these individual components builds on each other. As

shown in Table 2, employing the U-Net architecture for the

discriminator alone improves the median FID score from

12.42 to 10.86 for FFHQ and 16.55 to 15.86 for COCO-

Animals. Adding the CutMix augmentation improves upon

these scores even further, achieving FID of 10.30 for FFHQ

and 14.95 for COCO-Animals. Employing the proposed

consistency regularization in the segmenter DU
dec output

space on the CutMix images enables us to get the most out

of the CutMix augmentation and to leverage better the per-

pixel feedback of the U-Net discriminator, without impos-

ing much computational or memory costs. In effect, the me-

dian FID drops to 7.63 for FFHQ and to 13.87 for COCO-

Animals. Overall, we observe that the proposed compo-

nents of U-Net GAN improve performance in terms of FID.

Comparison with the state of the art. Table 3 shows

that U-Net GAN compares favourably with the state of the

art on CelebA. The BigGAN baseline already outperforms

COCO-GAN, the best result reported in the literature to the

best of our knowledge, lowering FID from 5.74 to 4.54,

whereas U-Net GAN further improves FID to 2.954. Note

that BigGAN belongs to just one of the two state-of-the-art

GAN families, led by BigGAN and StyleGAN, and their

respective further improvements [51, 53, 21]. While in this

paper we base our model on BigGAN, it would be interest-

ing to also apply the U-Net discriminator to StyleGAN.

Discriminator response visualization. Experimentally

we observe that DU
enc and DU

dec often assign different real/-

4FID scores for CelebA were computed with the standard TensorFlow

Inception network for comparability. The PyTorch and TensorFlow FIDs

for all datasets are presented in the supplementary material in Table S1.

D
U
dec

Figure 7: Predictions of the encoder DU
enc and decoder

DU
dec during training, in a batch of 50 generated samples.

For visualization, the DU
dec score is averaged over all pixels.

Note that quite often decisions of DU
enc and DU

dec are not

coherent. As judged by the U-Net discriminator, samples

in the upper left are locally plausible but not globally co-

herent (in orange), whereas samples in the lower right look

globally coherent but have local inconsistencies (example in

purple: giraffe with too many legs and vague background).

fake scores per sample. Figure 7 visualizes the per-sample

predictions for a complete training batch. Here, the decoder

score is computed as the average per-pixel prediction. The

scores correlate with each other but have a high variance.

Points in the upper left quadrant correspond to samples that

are assigned a high probability of being real by the decoder,

but a low probability by the encoder. This implies realism

on a local level, but not necessarily on a global one. Sim-

ilarly, the lower right quadrant represents samples that are

identified as realistic by the encoder, but contain unrealistic

patches which cause a low decoder score. The fact that the

encoder and decoder predictions are not tightly coupled fur-

ther implies that these two components are complementary.

In other words, the generator receives more pronounced

feedback by the proposed U-Net discriminator than it would

get from a standard GAN discriminator.

5. Conclusion

In this paper, we propose an alternative U-Net based ar-

chitecture for the discriminator, which allows to provide

both global and local feedback to the generator. In addition,

we introduce a consistency regularization technique for the

U-Net discriminator based on the CutMix data augmenta-

tion. The proposed changes result in a stronger discrimina-

tor, enabling the generator to synthesize images with vary-

ing levels of detail, maintaining global and local realism.

We demonstrate the improvement in FID over the state-of-

the-art BigGAN model [5] on three different datasets.
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