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Abstract

Camera calibration is an essential first step in setting

up 3D Computer Vision systems. Commonly used paramet-

ric camera models are limited to a few degrees of freedom

and thus often do not optimally fit to complex real lens dis-

tortion. In contrast, generic camera models allow for very

accurate calibration due to their flexibility. Despite this,

they have seen little use in practice. In this paper, we argue

that this should change. We propose a calibration pipeline

for generic models that is fully automated, easy to use, and

can act as a drop-in replacement for parametric calibra-

tion, with a focus on accuracy. We compare our results to

parametric calibrations. Considering stereo depth estima-

tion and camera pose estimation as examples, we show that

the calibration error acts as a bias on the results. We thus

argue that in contrast to current common practice, generic

models should be preferred over parametric ones when-

ever possible. To facilitate this, we released our calibra-

tion pipeline at https://github.com/puzzlepaint/

camera_calibration, making both easy-to-use and ac-

curate camera calibration available to everyone.

1. Introduction

Geometric camera calibration is the process of determin-

ing where the light recorded by each pixel of a camera

comes from. It is an essential prerequisite for 3D Com-

puter Vision systems. Common parametric camera models

allow for only a few degrees of freedom and are thus un-

likely to optimally fit to complex real-world lens distortion

(cf . Fig. 1). This can for example be aggravated by placing

cameras behind windshields for autonomous driving [1].

However, accurate calibration is very important, since cali-

bration errors affect all further computations. Even though

the noise introduced by, for example, feature extraction in

the final application is likely much larger than the error in

the camera calibration, the latter can still be highly relevant

since it may act as a bias that cannot be averaged out.

Generic camera models [15] relate pixels and their 3D

observation lines resp. rays outside of the camera optics in a

purely mathematical way, without offering a physical inter-

Figure 1. Residual distortion patterns of fitting two parametric

camera models (left, center) and a generic model (right) to a mo-

bile phone camera. While the generic model shows mostly random

noise, parametric models show strong systematic modeling errors.

(a) (b) (c)

Figure 2. 2D sketch of the two generic camera models considered

in this paper. (a) In image space (black rectangle), a grid of control

points is defined that is aligned to the calibrated area (dashed pink

rectangle) and extends beyond it by one cell. A point (red) is un-

projected by B-Spline surface interpolation of the values stored for

its surrounding 4x4 points (blue). Interpolation happens among

directions (gray and blue arrows) starting from a projection center

(black dot) for the central model (b), and among arbitrary lines

(gray and blue arrows) for the non-central model (c).

pretation of the camera geometry. They densely associate

pixels with observation lines or rays; in the extreme case,

a separate line is stored for each pixel in the camera im-

age. Due to their many degrees of freedom, they may fit all

kinds of cameras, allowing to obtain accurate, bias-free cal-

ibrations. Fig. 2 shows the models considered in this paper.

Previous generic calibration approaches (cf . Sec. 2) have

seen limited use in practice. On the one hand, this might

be since there is no readily usable implementation for any

existing approach. On the other hand, the community at

large does not seem to be aware of the practical advantages

of generic calibration approaches over parametric models.

Our contributions are thus: 1) We propose improvements

to camera calibration, in particular to the calibration pattern

and feature extraction, to increase accuracy. 2) We show

the benefits of accurate generic calibration over parametric

models, in particular on the examples of stereo depth and

camera pose estimation. 3) We publish our easy-to-use cal-

ibration pipeline and generic camera models as open source.
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2. Related Work
In this section, we present related work on calibration

with generic camera models. We do not review calibration

initialization, since we adopt [26] which works well for this.

Pattern design and feature detection. Traditionally,

checkerboard [5, 6] and dot [19] patterns have been used

for camera calibration. Feature detection in dot patterns is

however susceptible to perspective and lens distortion [21].

Recent research includes more robust detectors for checker-

board patterns [11, 24], the use of ridge lines for higher ro-

bustness against defocus [10], and calibration with low-rank

textures [48]. Ha et al. [16] propose the use of triangular

patterns, which provide more gradient information for cor-

ner refinement than checkerboard patterns. Our proposed

calibration pattern similarly increases the available gradi-

ents, while however allowing to vary the black/white seg-

ment count, enabling us to design better features than [16].

Non-central generic models. Grossberg and Nayar [15]

first introduced a generic camera model that associates each

pixel with a 3D observation line, defined by a line direction

and a point on the line. This allows to model central cam-

eras, i.e., cameras with a single unique center of projection,

as well as non-central cameras. [26,39] proposed a geomet-

ric calibration approach for the generic model from [15] that

does not require known relative poses between images. [26]

focus on initialization rather than a full calibration pipeline.

Our approach extends [26] with an improved calibration

pattern / detector and adds full bundle adjustment.

Central generic models. Non-central cameras may com-

plicate applications, e.g., undistortion to a pinhole image is

not possible without knowing the pixel depths [41]. Thus,

models which constrain the calibration to be central were

also proposed [1, 3, 13, 23]. For a central camera, all obser-

vation lines intersect in the center of projection, simplifying

observation lines to observation rays / directions.

Per-pixel models vs. interpolation. Using a observation

line / ray for each pixel [13, 15] provides maximum flexi-

bility. However, this introduces an extreme number of pa-

rameters, making calibration harder. In particular, classi-

cal sparse calibration patterns do not provide enough mea-

surements. Works using these models thus obtain dense

matches using displays that can encode their pixel positions

[2, 3, 13, 15], or interpolate between sparse features [26].

Since using printed patterns can sometimes be more

practical than displays, and interpolating features causes

inaccuracy [13], models with lower calibration data re-

quirements have been proposed. These interpolate between

sparsely stored observation lines resp. rays. E.g., [22] pro-

pose to interpolate arbitrarily placed control points with ra-

dial basis functions. Other works use regular grids for more

convenient interpolation. [1] map from pixels to observation

directions with a B-Spline surface. [32, 33] use two spline

surfaces to similarly also define a non-central model. In this

work, we follow these approaches.

The above works are the most similar ones to ours re-

garding the camera models and calibration. Apart from

our evaluation in real-world application contexts, we aim

to achieve even more accurate results. Thus, our calibra-

tion process differs as follows: 1) We specifically design

our calibration pattern and feature detection for accuracy

(cf . Sec. 3.1, 3.2). 2) [1, 33] approximate the reprojection

error in bundle adjustment. We avoid this approximation

since, given Gaussian noise on the features, this will lead

to better solutions. 3) [1, 33] assume planar calibration pat-

terns which will be problematic for imperfect patterns. We

optimize for the pattern geometries in bundle adjustment,

accounting for real-world imperfections [37]. 4) We use

denser control point grids than [1, 33], allowing us to ob-

serve and model interesting fine details (cf . Fig. 7).

Photogrammetry. The rational polynomial coefficient

(RPC) model [20] maps 3D points to pixels via ratios of

polynomials of their 3D coordinates. With 80 parameters,

it is commonly used for generic camera modeling in aerial

photogrammetry. In contrast to the above models, its pa-

rameters globally affect the calibration, making it harder to

use more parameters. Further, this model works best only if

all observed 3D points are in a known bounded region.

Evaluation and comparison. Dunne et al. [12] com-

pare an early variant [38] of Ramalingam and Sturm’s se-

ries of works [25–28, 38, 39] with classical parametric cal-

ibration [40, 47]. They conclude that the generic approach

works better for high-distortion cameras, but worse for low-

to medium-distortion cameras. In contrast, Bergamasco et

al. [2] conclude for their approach that even quasi-pinhole

cameras benefit from non-central generic models. Our re-

sults also show that generic models generally perform bet-

ter than typical parametric ones, and we in addition evaluate

how this leads to practical advantages in applications.

3. Accurate Generic Camera Calibration

The first step in our pipeline is to record many photos

or a video of one or multiple calibration patterns to obtain

enough data for dense calibration (Sec. 3.1). We propose

a pattern that enables very accurate feature detection. The

next step is to detect the features in the images (Sec. 3.2).

After deciding for the central or non-central camera model

(Sec. 3.3), the camera is calibrated: First, a dense per-pixel

initialization is obtained using [26]. Then, the final model is

fitted to this and refined with bundle adjustment (Sec. 3.4).

All components build relatively closely on previous

work, as indicated below; our contributions are the focus on

accuracy in the whole pipeline, and using it to show the lim-

itations of parametric models in detailed experiments. Note

that our approach assumes that observation rays / lines vary

smoothly among neighbor pixels, without discontinuities.
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Figure 3. Left: Our (downsized) calibration pattern, allowing for

unique localization using the AprilTag, and for very accurate fea-

ture detection using star-shaped feature points. Note that one

should ideally adapt the density of the star squares to the reso-

lution of the camera to be calibrated. Right: Repeating pattern

elements for different star segment counts. Top to bottom and left

to right: 4 (checkerboard), 8, 12, 16, 24, 32 segments.

3.1. Calibration Pattern & Data Collection

For data collection, we record images of a known cal-

ibration pattern. This allows for virtually outlier-free and

accurate localization of feature points on the pattern. Thus,

compared to using natural features, less data is required to

average out errors. Furthermore, the known (near-planar)

geometry of the pattern is helpful for initialization.

As mentioned in Sec. 2, dot patterns make it difficult

for feature detection to be robust against distortion [21].

We thus use patterns based on intersecting lines, such as

checkerboards. Checkerboards have several disadvantages

however. First, there is little image information around

each corner to locate it: Only the gradients of the two lines

that intersect at the feature provide information. As shown

in [16], using 3 instead of 2 lines improves accuracy. This

raises the question whether the number of lines should be

increased further. Second, checkerboard corners change

their appearance strongly when viewed under different rota-

tions. This may make feature detectors susceptible to yield

differently biased results depending on the orientation of a

feature, e.g., in the presence of chromatic aberration.

To address these shortcomings, we propose to use star-

based patterns (cf . Siemens stars, e.g., [31]) as a general-

ization of checkerboards. Each feature in this type of pat-

tern is the center of a star with a given number s of alter-

nating black and white segments. For s = 4, the pattern

corresponds to a checkerboard. For s = 6, the features

resemble those of the deltille pattern [16] (while the fea-

ture arrangement differs from [16], however). We constrain

the area of each star to a square and align these squares

next to each other in a repeating pattern. Additional corner

features arise at the boundaries of these squares, which we

however ignore, since their segment counts are in general

lower than that of the feature in the center. We also include

an AprilTag [45] in the center of the pattern to facilitate its

unambiguous localization (cf . [1, 16]). See Fig. 3 for an

image of the pattern, and squares with different numbers of

segments. The number of segments needs to balance the

amount of gradient information provided and the ability for

the pattern to be resolved by the display or printing device

and the camera; as justified in Sec. 4.1, we use 16 segments.

The pattern can be simply printed onto a sheet of paper

or displayed on a computer monitor. If desired, multiple

patterns can be used simultaneously, making it very easy

to produce larger calibration geometries. Strict planarity is

not required, since we later perform full bundle adjustment

including the calibration patterns’ geometries. However, we

assume approximate planarity for initialization, and rigidity.

During data collection, we detect the features in real-

time (cf . Sec. 3.2) and visualize the pixels at which features

have been detected. This helps to provide detections in the

whole image area. Image areas without detections either

require regularization to fill in an estimated calibration, or

need to be excluded from use. For global-shutter cameras,

we record videos instead of images for faster recording.

3.2. Feature Extraction

Given an image of our ’star’ calibration pattern (Fig. 3),

we must accurately localize the star center features in the

image. We first detect them approximately and then refine

the results. For detection, we establish approximate local

homographies between the image and the pattern, starting

from the detected AprilTag corners. Detected features add

additional matched points and thus allow to expand the de-

tection area. For details, see the supplemental material. In

the following, we only detail the refinement, which deter-

mines the final accuracy, as this is the focus of this paper.

The refinement step receives an approximate feature lo-

cation as input and needs to determine the feature’s exact

subpixel location. To do so, we define a cost function based

on symmetry (similar to the supplemental material of [35]),

cf . Fig. 4: In pattern space, mirroring any point at a feature

point must yield the same image intensity as the original

point. This is generally applicable to symmetrical patterns.

We define a local window for feature refinement which

must include sufficient gradients, but should not include too

much lens distortion. The optimum size depends on factors

such as the blur from out-of-focus imaging, internal image

processing in the camera, and clarity of the calibration pat-

tern. It should thus be suitably chosen for each situation; in

this paper, we usually use 21×21 pixels. It is not an issue if

the window covers multiple ’stars’ since the pattern is sym-

metric beyond a single star. Within this window, we sample

eight times as many random points as there are pixels in the

window, in order to keep the variance due to random sam-

pling low. The initial feature detection (cf . supp. PDF) pro-

vides a homography that locally maps between the pattern

and image. With this, we transform all n random samples

into pattern space, assuming the local window to be cen-

tered on the feature location. A cost function Csym is then

defined to compare points that are mirrored in pattern space:
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Figure 4. Symmetry-based feature refinement: Both a sample and

its mirrored position (orange circles) are transformed from pattern

to image space with homography H. H is optimized to minimize

the differences between sampling both resulting positions.

Csym(H) =
n
∑

i=1

(

I(H(si))− I(H(−si))
)2

. (1)

Here, H is the local homography estimate that brings

pattern-space points into image space by homogeneous

multiplication. For each feature, we define it such that the

origin in pattern space corresponds to the feature location.

si denotes the pattern-space location of sample i, and with

the above origin definition, −si mirrors the sample at the

feature. I is the image, accessed with bilinear interpolation.

We optimize H with the Levenberg-Marquardt method

to minimize Csym. We fix the coefficient H2,2 to 1 to obtain

8 remaining parameters to optimize, corresponding to the 8
degrees of freedom of the homography. After convergence,

we obtain the estimated feature location as (H0,2,H1,2)
T .

The sample randomization reduces issues with bilinear

interpolation: For this type of interpolation, extrema of the

interpolated values almost always appear at integer pixel lo-

cations. This also makes cost functions defined on a regu-

lar grid of bilinearly-interpolated pixel values likely to have

extrema there, which would introduce an unjustified prior

on the probable subpixel feature locations. Further, note

that bilinear interpolation does not account for possible non-

linearities in the camera’s response function; however, these

would be expected to only cause noise, not bias.

3.3. Camera Model

Accurate camera calibration requires a flexible model

that avoids restricting the representable distortions. Storing

a separate observation ray for each pixel, indicating where

the observed light comes from, would be the most general

model (assuming that a ray sufficiently approximates the

origin directions). Such a model requires multiple feature

observations for each pixel, or regularization, to be suffi-

ciently constrained. Obtaining fully dense observations is

very tedious with point features. It would be more feasible

with dense approaches [17,29,30], which we consider out of

scope of this paper, and it would be possible with displayed

patterns [2, 3, 13, 15], which we do not want to require. We

thus reduce the parameter count by storing observation rays

in a regular grid in image space and interpolating between

them (like [1, 32, 33]). This is appropriate for all cameras

with smoothly varying observation directions.

A non-central model, while potentially more accurate,

may complicate the final application; images in general can-

not be undistorted to the pinhole model, and algorithms de-

signed for central cameras may need adaptation. We con-

sider both a central and a non-central model (cf . Fig. 2).

Central camera model. For the central model, we store a

unit-length observation direction at each grid point. For un-

projecting a given image pixel, these directions are interpo-

lated as 3D points using a cubic B-Spline [9] surface. The

interpolated point is then re-normalized to obtain the obser-

vation direction. We also considered bicubic interpolation

using Catmull-Rom splines [8], however, the resulting sur-

faces tend to contain small wiggles as artifacts.

Non-central camera model. When using the non-central

model, each grid point stores both a unit-length direction

and a 3D point p on the observation line. In un-projection,

both points are interpolated with a cubic B-Spline surface,

and the direction is re-normalized afterwards. The result is

a line passing through the interpolated 3D point with the

computed direction. Note that the interpolated lines may

change if p is moved along the line. Since, in contrast to

the directions, there is no obvious normalization possibility

for points p, we keep this additional degree of freedom.

Projection. The presented camera models define how to

un-project pixels from the image to directions respectively

lines in closed form. For many applications and the later

bundle adjustment step (cf . Sec. 3.4), the inverse is also re-

quired, i.e., projecting 3D points to pixels, which we find

using an optimization process. Note that this is different

from many parametric models, which instead define projec-

tion in closed form and may require an optimization process

for un-projection if they are not directly invertible.

To project a 3D point, we initialize the projected posi-

tion in the center of the calibrated image area. Then, sim-

ilar to [33], we optimize it using the Levenberg-Marquardt

method such that its un-projection matches the input point

as closely as possible. Pixel positions are constrained to the

calibrated area, and we accept the converged result only if

the final cost is below a very small threshold. For speedup,

if the same point was projected before with similar pose and

intrinsics, the previous result can be used for initialization.

This approach worked for all tested cameras, as long as

enough calibration data was recorded to constrain all grid

parameters. For cameras where the procedure might run

into local minima, one could search over all observation di-

rections / lines of the camera for those which match the in-

put point best [33]. This also helps if one needs to know all

projections in cases where points may project to multiple

pixels, which is possible with both of our camera models.

Performance. Tasks such as point (un)projection are low-

level operations that may be performed very often in appli-

cations, thus their performance may be critical. We thus

shortly discuss the performance of our camera models.

For central cameras, images may be ’undistorted’ to a

different camera model, usually the pinhole model. This
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transformation can be cached for calibrated cameras; once

a lookup table for performing it is computed, the choice

of the original camera model has no influence on the run-

time anymore. For high-field-of-view cameras, e.g., fisheye

cameras, where undistortion to a pinhole model is impracti-

cal, one may use lookup tables from pixels to directions and

vice versa. Thus, with an optimized implementation, there

should be either zero or very little performance overhead

when using generic models for central cameras.

For non-central cameras, image undistortion is not possi-

ble in general. Un-projection can be computed directly (and

cached in a lookup table for the whole image). It should

thus not be a performance concern. However, projection

may be slow; ideally, one would first use a fast approxi-

mate method (such as an approximate parametric model or

lookup table) and then perform a few iterations of optimiza-

tion to get an accurate result. The performance of this may

highly depend on the ability to quickly obtain good initial

projection estimates for the concrete camera.

We think that given appropriate choice of grid resolution,

the initial calibration should not take longer than 30 minutes

up to sufficient accuracy on current consumer hardware.

Parameter choice. The grid resolution is the only param-

eter that must be set by the user. The smallest interesting

cell size is similar to the size of the feature refinement win-

dow (cf . Sec. 3.2), since this window will generally ’blur’

details with a kernel of this size. Since we use 21×21 px

or larger windows for feature extraction, we use grid reso-

lutions down to 10 px/cell, which we expect to leave almost

no grid-based modeling error. If there is not enough data,

the resolution should be limited to avoid overfitting.

3.4. Calibration

Given images with extracted features, and the chosen

central or non-central camera model, the model must be cal-

ibrated. Our approach is to first initialize a per-pixel model

on interpolated pattern matches using [26]. Then we fit the

final model to this, discard the interpolated matches, and

obtain the final result with bundle adjustment. See [26] and

the supp. material for details. In the following, we focus on

the refinement step that is responsible for the final accuracy.

Bundle Adjustment. Bundle adjustment jointly refines the

camera model parameters, image poses (potentially within a

fixed multi-camera rig), and the 3D locations of the pattern

features. We optimize for the reprojection error, which is

the standard cost function in bundle adjustment [43]:

C(π,M,T,p) =
∑

c∈C

∑

i∈Ic

∑

o∈Oi

ρ(rTc,i,orc,i,o) (2)

rc,i,o = πc(McTipo)− di,o

Here, C denotes the set of all cameras, Ic the set of all im-

ages taken by camera c, and Oi the feature observations in

image i. po is the 3D pattern point corresponding to obser-

vation o, and di,o the 2D detection of this point in image i.

Ti is the pose of image i which transforms global 3D points

into the local rig frame, and Mc transforms points within

the local rig frame into camera c’s frame. πc then projects

the local point to camera c’s image using the current esti-

mate of its calibration. ρ is a loss function on the squared

residual; we use the robust Huber loss with parameter 1.

As is common, we optimize cost C with the Levenberg-

Marquardt method, and use local updates for orientations.

We also use local updates (x1, x2) for the directions within

the camera model grids: We compute two arbitrary, per-

pendicular tangents t1, t2 to each direction g and update

it by adding a multiple of each tangent vector and then re-

normalizing: g+x1t1+x2t2
‖g+x1t1+x2t2‖

. Each grid point thus has a 2D

update in the central model and a 5D update in the non-

central one (two for the direction, and three for a 3D point

on the line, cf . Sec. 3.3). The projection π involves an op-

timization process and the Inverse Function Theorem is not

directly applicable. Thus, we use finite differences to com-

pute the corresponding parts of the Jacobian.

The optimization process in our setting has more dimen-

sions of Gauge freedom than for typical Bundle Adjustment

problems, which we discuss in the supplemental material.

We experimented with Gauge fixing, but did not notice an

advantage to explicitly fixing the Gauge directions; the ad-

dition of the Levenberg-Marquardt diagonal should already

make the Hessian approximation invertible.

The Levenberg-Marquardt method compares the costs of

different states to judge whether it makes progress. How-

ever, we cannot always compute all residuals for each state.

During optimization, the projections of 3D points may en-

ter and leave the calibrated image area, and since the camera

model is only defined within this area, residuals cannot be

computed for points that do not project into it. If a resid-

ual is defined in one state but not in another, how should the

states be compared in a fair way? A naive solution would be

to assign a constant value (e.g., zero) to a residual if it is in-

valid. This causes state updates that make residuals turn in-

valid to be overrated, while updates that make residuals turn

valid will be underrated. As a result, the optimization could

stall. Instead, we propose to compare states by summing

the costs only for residuals which are valid in both states.

This way, cost comparisons are always fair; however, some

residuals may not be taken into account. Theoretically, this

may lead to oscillation. We however did not observe this in

practice, and we believe that if it happens it will most likely

be very close to the optimum, since otherwise the remaining

residuals likely outweigh the few which change validity. In

such a case, it then seems safe to stop the optimization.

4. Evaluation

Tab. 1 lists the cameras used for evaluation. The camera

labels from this table will be used throughout the evaluation.
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Label Resolution Field-of-view (FOV) Description

D435-C 1920 × 1080 ca. 70◦ × 42
◦ Color camera of an Intel D435

D435-I 1280 × 800 ca. 90◦ × 64
◦ Infrared camera of an Intel D435

SC-C 640 × 480 ca. 71◦ × 56
◦ Color camera of a Structure Core

SC-I 1216 × 928 ca. 57◦ × 45
◦ Infrared camera of a Structure Core

Table 1. Specifications of the cameras used in the evaluation

(more cameras are evaluated in the supplemental material). FOV

is measured horizontally and vertically at the center of the image.
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Figure 5. Median reprojection errors (y-axis) for calibrating cam-

eras D435-C and D435-I with patterns having different numbers of

star segments (x-axis). The feature refinement window was 31×31

pixels for D435-C and 21×21 pixels for D435-I. The Deltille re-

sults were obtained with the feature refinement from [16].

We evaluate the generic models against two parametric

ones, both having 12 parameters, which is a high number

for parametric models. The first is the model implemented

in OpenCV [6] using all distortion terms. The second is

the Thin-Prism Fisheye model [46] with 3 radial distortion

terms, which was used in a stereo benchmark [36]. We also

consider a ”Central Radial” model (similar to [7, 18, 42])

based on the OpenCV model, adding the two thin-prism pa-

rameters from the Thin-Prism Fisheye model and replac-

ing the radial term with a spline with many control points.

With this, we evaluate how much improvement is obtained

by better radial distortion modeling only. Note that unfor-

tunately, no implementations of complete generic calibra-

tion pipelines seemed to be available at the time of writ-

ing. This makes it hard to compare to other generic calibra-

tion pipelines; we released our approach as open source to

change this. In addition, since we aim to obtain the most ac-

curate results possible, and since we avoid synthetic experi-

ments as they often do not reflect realistic conditions, there

is no ground truth to evaluate against. However, our main

interest is in comparing to the commonly used parametric

models to show why they should (if possible) be avoided.

4.1. Calibration Pattern Evaluation

We validate our choice of pattern (cf . Sec. 3.1) by vary-

ing the number of star segments from 4 to 32 (cf . Fig. 3).

For the 4-segment checkerboard and 6-segment ’deltille’

[16] patterns, we also compare against the feature refine-

ment from [16]. For each pattern variant, we record calibra-

tion images with the same camera from the same poses. We

do this by putting the camera on a tripod and showing the

pattern on a monitor. For each tripod pose that we use, we

cycle through all evaluated patterns on the monitor to record

a set of images with equal pose. Since not all features are

detected in all patterns, for fairness we only keep those fea-

ture detections which succeed for all pattern variants.

Since there is no ground truth for feature detections, we

compare different patterns via the achieved reprojection er-
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Figure 6. Median reproj. error (y-axis) for calibrating the cameras

on the x-axis with different feature refinement schemes (colors).

For SC-C, cornerSubPix() results were too inconsistent.

rors. We calibrate each set of images of a single pattern

separately and compute its median reprojection error. These

results are plotted in Fig. 5. Increasing the number of seg-

ments starting from 4, the accuracy is expected to improve

first (since more gradients become available for feature re-

finement) and then worsen (since the monitor and camera

cannot resolve the pattern anymore). Both plots follow this

expectation, with the best number of segments being 12

resp. 20. The experiment shows that neither the commonly

used checkerboard pattern nor the ’deltille’ pattern [16] is

optimal for either camera (given our feature refinement).

For this paper, we thus default to 16 segments as a good

mean value. The results of [16] have higher error than ours

for both the checkerboard and ’deltille’ pattern.

4.2. Feature Refinement Evaluation

We compare several variants of our feature refinement

(cf . Sec. 3.2): i) The original version of Eq. (1), and ver-

sions where we replace the raw intensity values by ii) gra-

dient magnitudes, or iii) gradients (2-vectors). In addition,

we evaluate OpenCV’s [6] cornerSubPix() function,

which implements [14]. In all cases, the initial feature po-

sitions for refinement are given by our feature detection

scheme. For each camera, we take one calibration dataset,

apply every feature refinement scheme on it, and compare

the achieved median reprojection errors. Similarly to the

previous experiment, we only use features that are found by

all methods. The results are plotted in Fig. 6. Intensities

and X/Y gradients give the best results, with X/Y gradients

performing slightly better for the monochrome cameras and

intensities performing slightly better for the color cameras.

4.3. Validation of the Generic Model

We validate that the generic models we use (cf . Sec. 3.3)

can calibrate cameras very accurately by verifying that they

achieve bias-free calibrations: The directions of the final

reprojection errors should be random rather than having the

same direction in parts of the image, which would indicate

an inability of the model to fit the actual distortion in these

areas. Fig. 7 shows these directions for different cameras,

calibrated with each tested model. We also list the median

reprojection errors, both on the calibration data and on a

test set that was not used for calibration. The latter is used

to confirm that the models do not overfit. As a metric of bi-

asedness, we compute the KL-Divergence between the 2D
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Errors1 0.083 / 0.085 / 0.217 0.083 / 0.084 / 0.215 0.082 / 0.084 / 0.200 0.069 / 0.072 / 0.055 0.069 / 0.072 / 0.054 0.068 / 0.072 / 0.053 0.065 / 0.069 / 0.040
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Figure 7. Directions (see legend on the left) of all reprojection errors for calibrating the camera given by the row with the

model given by the column. Each pixel shows the direction of the closest reprojection error from all images. Ideally, the result

is free from any systematic pattern. Patterns indicate biased results arising from inability to model the true camera geometry.

Parameter counts for generic models are given in the images. 1Median training error [px] / test error [px] / biasedness.

normal distribution, and the empirical distribution of repro-

jection error vectors (scaled to have the same mean error

norm), in each cell of a regular 50 × 50 grid placed on the

image. We report the median value over these cells in Fig. 7.

The generic models achieve lower errors than the para-

metric ones throughout, while showing hardly any signs of

overfitting. This is expected, since – given enough calibra-

tion images – the whole image domain can be covered with

training data, thus there will be no ’unknown’ samples dur-

ing test time. Interestingly, the non-central model consis-

tently performs best for all cameras in every metric, despite

all of the cameras being standard near-pinhole cameras.

All parametric models show strong bias patterns in the

error directions. For some cameras, the generic models also

show high-frequency patterns with lower grid resolutions

that disappear with higher resolution. These would be very

hard to fit with any parametric model. The central radial

model only improves over the two parametric models for

one camera, showing that improved radial distortion model-

ing alone is often not sufficient for significant improvement.

4.4. Comparison of Different Models

We now take a closer look at the differences between

accurate calibrations and calibrations obtained with typical

parametric models. We fit the Thin-Prism Fisheye model to

our calibrations, optimizing the model parameters to min-

imize the two models’ deviations in the observation direc-

tions per-pixel. At the same time, we optimize for a 3D

rotation applied to the observation directions of one model,

since consistent rotation of all image poses for a camera can

D435-C D435-I SC-C SC-I

Figure 8. Differences between calibrations with the central-generic

model and fitted Thin-Prism Fisheye calibrations, measured as re-

projection errors. Top: Medium gray corresponds to zero error,

while saturated colors as in Fig. 7 correspond to 0.2 pixels differ-

ence. Bottom: Alternative visualization showing the error magni-

tude only, with black for zero error and white for 0.2 pixels error.

be viewed as part of the intrinsic calibration. After conver-

gence, we visualize the remaining differences in the obser-

vation directions. While these visualizations will naturally

be similar to those of Fig. 7 given our model is very accu-

rate, we can avoid showing the feature detection noise here.

Here, we visualize both direction and magnitude of the dif-

ferences, while Fig. 7 only visualizes directions. The results

are shown in Fig. 8, and confirm that the models differ in

ways that would be difficult to model with standard para-

metric models. Depending on the camera and image area,

the reprojection differences are commonly up to 0.2 pixels,

or even higher for the high-resolution camera D435-C.

4.5. Example Application: Stereo Depth Estimation

So far, we showed that generic models yield better cal-

ibrations than common parametric ones. However, the dif-

ferences might appear small, and it might thus be unclear
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D435 Structure Core

Figure 9. Distances (black: 0cm, white: 1cm) between corre-

sponding points estimated by dense stereo with a generic and a

parametric calibration, at roughly 2 meters depth.

how valuable they are in practice. Thus, we now look at the

role of small calibration errors in example applications.

Concretely, we consider dense depth estimation for the

Intel D435 and Occipital Structure Core active stereo cam-

eras. These devices contain infrared camera pairs with a rel-

atively small baseline, as well as an infrared projector that

provides texture for stereo matching. The projector behaves

like an external light and thus does not need to be calibrated;

only the calibration of the stereo cameras is relevant.

Based on the previous experiments, we make the conser-

vative assumption that the calibration error for parametric

models will be at least 0.05 pixels in many parts of the im-

age. Errors in both stereo images may add up or cancel

each other out depending on their directions. A reasonable

assumption is that the calibration error will lead to a dispar-

ity error of similar magnitude. Note that for typical stereo

systems, the stereo matching error for easy-to-match sur-

faces may be assumed to be as low as 0.1 pixels [35]; in this

case, the calibration error may even come close to the level

of noise. The well-known relation between disparity x and

depth d is: d = bf
x

, with baseline b and focal length f . Let

us consider b = 5cm and f = 650px (roughly matching

the D435). For d = 2m for example, a disparity error of
±0.05px results in a depth error of about 0.6cm. This error

grows quadratically with depth, and since it stays constant

over time, it acts as a bias that will not easily average out.

For empirical validation, we calibrate the stereo pairs of

a D435 and a Structure Core device with both the central-

generic and the Thin-Prism Fisheye model (which fits the

D435-I and SC-I cameras better than the OpenCV model,

see Fig. 7). With each device, we recorded a stereo image of

a roughly planar wall in approx. 2m distance and estimated

a depth image for the left camera with both calibrations.

Standard PatchMatch Stereo [4] with Zero-Mean Normal-

ized Cross Correlation costs works well given the actively

projected texture. The resulting point clouds were aligned

with a similarity transform with the Umeyama method [44],

since the different calibrations may introduce scale and ori-

entation differences. Fig. 9 shows the distances of corre-

sponding points in the aligned clouds. Depending on the

image area, the error is often about half a centimeter, and

goes up to more than 1 cm for both cameras. This matches

the theoretical result from above well and shows that one

should avoid such a bias for accurate results.

4.6. Example Application: Camera Pose Estimation

To provide a broader picture, we also consider camera

pose estimation as an application. For this experiment,

we treat the central-generic calibration as ground truth and

sample 15 random pixel locations in the image. We un-

project each pixel to a random distance to the camera from

1.5 to 2.5 meters. Then we change to the Thin-Prism Fish-

eye model and localize the camera with the 2D-3D corre-

spondences defined above. The median error in the esti-

mated camera centers is 2.15 mm for D435-C, 0.25 mm for

D435-I, 1.80 mm for SC-C, and 0.76 mm for SC-I.

Such errors may accumulate during visual odometry or

SLAM. To test this, we use Colmap [34] on several videos

and bundle-adjust the resulting sparse reconstructions both

with our Thin-Prism-Fisheye and non-central generic cali-

brations. For each reconstruction pair, we align the scale

and the initial camera poses of the video, and compute the

resulting relative translation error at the final image com-

pared to the trajectory length. For camera D435-I, we obtain

1.3% ± 0.3% error, while for SC-C, we get 5.6% ± 2.2%.

These errors strongly depend on the camera, reconstruction

system, scene, and trajectory, so our results only represent

examples. However, they clearly show that even small cali-

bration improvements can be significant in practice.

5. Conclusion

We proposed a generic camera calibration pipeline

which focuses on accuracy while being easy to use. It

achieves virtually bias-free results in contrast to using

parametric models; for all tested cameras, the non-central

generic model performs best. We also showed that even

small calibration improvements can be valuable in practice,

since they avoid biases that may be hard to average out.

Thus, we believe that generic models should replace
parametric ones as the default solution for camera calibra-
tion. If a central model is used, this might not even intro-
duce a performance penalty, since the runtime performance
of image undistortion via lookup does not depend on the
original model. We facilitate the use of generic models
by releasing our calibration pipeline as open source. How-
ever, generic models might not be suitable for all use cases,
in particular if the performance of projection to distorted
images is crucial, if self-calibration is required, or if not
enough data for dense calibration is available.
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[35] Thomas Schöps, Torsten Sattler, and Marc Pollefeys. BAD

SLAM: Bundle adjusted direct RGB-D SLAM. In CVPR,

2019. 3, 8

2543
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