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Figure 1: Using a handheld smartphone camera, we capture two images of a scene, one with the subject and one without. We employ a

deep network with an adversarial loss to recover alpha matte and foreground color. We composite the result onto a novel background.

Abstract

We propose a method for creating a matte – the per-pixel

foreground color and alpha – of a person by taking pho-

tos or videos in an everyday setting with a handheld cam-

era. Most existing matting methods require a green screen

background or a manually created trimap to produce a good

matte. Automatic, trimap-free methods are appearing, but

are not of comparable quality. In our trimap free approach,

we ask the user to take an additional photo of the back-

ground without the subject at the time of capture. This step

requires a small amount of foresight but is far less time-

consuming than creating a trimap. We train a deep network

with an adversarial loss to predict the matte. We first train a

matting network with supervised loss on ground truth data

with synthetic composites. To bridge the domain gap to

real imagery with no labeling, we train another matting net-

work guided by the first network and by a discriminator that

judges the quality of composites. We demonstrate results on

a wide variety of photos and videos and show significant

improvement over the state of the art.

1. Introduction

Imagine being able to easily create a matte — the

per-pixel color and alpha — of a person by taking pho-

tos or videos in an everyday setting with just a hand-

held smartphone. Today, the best methods for extract-

ing (“pulling”) a good quality matte require either a green

screen studio, or the manual creation of a trimap (fore-

ground/background/unknown segmentation), a painstaking

process that often requires careful painting around strands

of hair. Methods that require neither of these are beginning

to appear, but they are not of comparable quality. Instead,

we propose taking an additional photo of the (static) back-

ground just before or after the subject is in frame, and using

this photo to perform background matting. Taking one extra

photo in the moment requires a small amount of foresight,

but the effort is tiny compared to creating a trimap after the

fact. This advantage is even greater for video input. Now,

the world is your green screen.

We focus on a method that is tuned to human subjects.

Still, even in this setting — pulling the matte of a person

given a photo of the background — the problem is ill-posed

and requires novel solutions.

Consider the compositing equation for image I given

foreground F , background B, and mixing coefficient α:

I = αF + (1 − α)B. For color images and scalar α, and

given B, we have four unknowns (F and α), but only three

observations per pixel (I). Thus, the background matting

problem is underconstrained. Background/foreground dif-

ferences provide a signal, but the signal is poor when parts

of the person are similar in color to the background. Fur-

thermore, we do not generally have an image of the ideal

background: the subject can cast shadows and cause re-

flections not seen in the photo taken without the subject,

and exact, pixel-level alignment with no resampling arti-

facts between handheld capture of two photos is generally

not attainable. In effect, rather than the true B that produced
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I , we have some perturbed version of it, B′. Finally, we

can build on person segmentation algorithms to make the

problem more tractable to identify what is semantically the

foreground. However current methods, exhibit failures for

complex body poses and fine features like hair and fingers.

Given these challenges and recently published successes

in solving matting problems, a deep learning approach is

a natural solution. We propose a deep network that esti-

mates the foreground and alpha from input comprised of

the original image, the background photo, and an automat-

ically computed soft segmentation of the person in frame.

The network can also utilize several frames of video, useful

for bursts or performance capture, when available. How-

ever, the majority of our results, including all comparisons

to single-image methods, do not use any temporal cues.

We initially train our network on the Adobe Matting

dataset [35], comprised of ground truth mattes that can be

synthetically composited over a variety of backgrounds. In

practice, we found the domain gap between these synthetic

composites and real-world images did not lead to good re-

sults using standard networks. We partially close this gap

in two ways: by augmenting the dataset and by devising a

new network — a “Context Switching Block” — that more

effectively selects among the input cues. The resulting mat-

tes for real images can still have significant artifacts, partic-

ularly evident when compositing onto a new background.

We thus additionally train the network in a self-supervised

manner on real unlabelled input images using an adversar-

ial loss to judge newly created composites and ultimately

improve the matting process.

Our method has some limitations. First, we do require

two images. Trimap-based methods arguably require two

images as well for best results – the trimap itself is a hand-

made second image – though they can be applied to any

input photo. Second, we require a static background and

small camera motion; our method would not perform well

on backgrounds with people walking through or with a cam-

era that moves far from the background capture position. Fi-

nally, our approach is specialized to foregrounds of (one or

more) people. That said, person matting without big cam-

era movement in front of a static background is, we argue,

a very useful and not uncommon scenario, and we deliver

state-of-the-art results under these circumstances.

Our contributions include: • The first trimap-free auto-

matic matting algorithm that utilizes a casually captured

background. • A novel matting architecture (Context

Switching Block) to select among input cues. • A self-

supervised adversarial training to improve mattes on real

images. • Experimental comparisons to a variety of com-

peting methods on wide range of inputs (handheld, fixed-

camera, indoor, outdoor), demonstrating the relative suc-

cess of our approach. Our code and data is available at

http://github.com/senguptaumd/Background-Matting.

2. Related Work

Matting is a standard technique used in photo editing

and visual effects. In an uncontrolled setting, this is known

as the “natural image matting” problem; pulling the matte

requires solving for seven unknowns per pixel (F,B, α)

and is typically solved with the aid of a trimap. In a stu-

dio, the subject is photographed in front of a uniformly lit,

constant-colored background (e.g., a green screen); reason-

able results are attainable if the subject avoids wearing col-

ors that are similar to the background. We take a middle

ground in our work: we casually shoot the subject in a nat-

ural (non-studio) setting, but include an image of the back-

ground without the subject to make the matting problem

more tractable. In this section, we discuss related work on

natural image matting, captured without unusual hardware.

Traditional approaches. Traditional (non-learning

based) matting approaches generally require a trimap as in-

put. They can be roughly categorized into sampling-based

techniques and propagation-based techniques. Sampling-

based methods [11, 9, 14, 28, 32, 33, 2] use sampling to

build the color statistics of the known foreground and back-

ground, and then solve for the matte in the ‘unknown’ re-

gion. Propagation-based approaches [6, 17, 19, 20, 30, 13,

15] aim to propagate the alpha matte from the foreground

and the background region into the ‘unknown’ region to

solve the matting equation. Wang and Cohen [34] presents

a nice survey of many different matting techniques.

Learning-based approaches. Deep learning ap-

proaches showed renewed success in natural image matting,

especially in presence of user-generated trimaps. Some

methods combine learning-based approaches with tradi-

tional techniques, e.g., KNN-matting [29, 7]. Xu et al. [35]

created a matting dataset with real mattes and composited

over a variety of backgrounds and trained a deep network

to predict the alpha matte; these results were further im-

proved by Lutz et al. [22] using an adversarial loss. Re-

cently Tang et al. [31] proposed a hybrid of a sampling-

based approach and learning to predict the alpha matte.

Lu et.al [21] proposed a new index-guided upsampling and

unpooling operation that helps the network predict better

alpha mattes. Cai et al. [3] showed robustness to faulty

user-defined trimaps. All of these methods only predict the

alpha matte and not the foreground, leaving open the (non-

trivial) problem of recovering foreground color needed for

composites. Recently Hou et al. [16] introduced Context-

Aware Matting (CAM) which simultaneously predicts the

alpha and the foreground, thus solving the complete mat-

ting problem, but is not robust to faulty trimaps. In contrast

to these methods (and the traditional approaches), our work

jointly predicts alpha and foreground using an image of the

background instead of a trimap.

Recently, researchers have developed algorithms that

perform matting without a trimap, focusing mostly on hu-
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Figure 2: Overview of our approach. Given an input image I and background image B
′, we jointly estimate the alpha matte α and

the foreground F using soft segmentation S and motion prior M (for video only). We propose a Context Switching Block that efficiently

combines all different cues. We also introduce self-supervised training on unlabelled real data by compositing into novel backgrounds.

mans (as we do). Aksoy et.al. [1] introduced fully automatic

semantic soft segmentation for natural images. In [37, 29]

the authors perform portrait matting without trimap, utiliz-

ing segmentation cues. Trimap-free matting has also been

extended to handle whole bodies in [36, 5]. These methods

aim to perform trimap prediction, followed by alpha pre-

diction. Our work is also human-focused; we compare our

approach with the recent state-of-the-art automatic human

matting algorithm [36] and obtain significantly better per-

formance with the aid of the background image.

Matting with known natural background. Difference

matting proposed by Qian and Sezan [25] attempts to solve

matting with a natural background by simple background

subtraction and thresholding but is very sensitive to the

threshold and produces binary mattes. Similarly, change de-

tection via background subtraction [24, 10] generally does

not produce alpha mattes with foreground and considers

shadows to be part of the foreground. Some traditional

approaches like Bayesian matting [9] and Poisson mat-

ting [30, 12] can handle known background in their frame-

work, but additionally require trimaps.

Video Matting. Researchers have also focused on

video-specific methods. Chuang et.al. [8] extended

Bayesian Matting to videos by utilizing the known back-

ground and optical flow, requiring trimaps for keyframes.

Flow-based temporal smoothing can be used [18, 27] (again

with trimaps) to encourage temporal coherence.

3. Our Approach

The input to our system is an image or video of a per-

son in front of a static, natural background, plus an image

of just the background. The imaging process is easy, just

requiring the user to step out of the frame after the shot to

capture the background, and works with any camera with a

setting to lock the exposure and focus (e.g., a smartphone

camera). For handheld capture, we assume camera motion

is small and align the background to a given input image

with a homography. From the input, we also extract a soft

segmentation of the subject. For video input, we can addi-

tionally utilize nearby frames to aid in matting.

At the core of our approach is a deep matting network

G that extracts foreground color and alpha for a given input

frame, augmented with background, soft segmentation, and

(optionally nearby video frames), and a discriminator net-

work D that guides the training to generate realistic results.

In Section 3.1, we describe the matting network, which con-

tains a novel architecture – a “Context-switching block” –

that can combine different input cues selectively. We first

train a copy of this network GAdobe with supervision using

the Adobe Matting Dataset [35]. We use known foreground

and alpha mattes of non-transparent objects, which are then

composited over a variety of backgrounds (i.e., real source

images, but synthetic composites). Our matting network,

along with some data augmentation, help overcome some of

the domain gap between the synthetically composited im-

agery and real data that we later capture with a consumer

camera (e.g., a smartphone).

In Section 3.2, we describe a self-supervised scheme to

bridge the domain gap further and to generally improve the

matting quality. The method employs an adversarial net-

work comprised of a separate copy of the deep matting net-

work, GReal, that tries to produce a matte similar to the out-

put of GAdobe and a discriminator network D that scores

the result of compositing onto a novel background as real

or fake. We train GReal and D jointly on real inputs, with

supervision provided by (the now fixed) GAdobe network

applied to the same data.
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3.1. Supervised Training on the Adobe Dataset

Here we describe our deep matting network, which we

first train on the Adobe Matting Dataset, restricted to the

subset of non-transparent objects. The network takes as

input an image I with a person in the foreground, an im-

age of the background B′ registered to I (as noted earlier,

B′ is not the same as the true B with subject present),

a soft segmentation of the person S, and (optionally for

video) a stack of temporally nearby frames M , and pro-

duces as output a foreground image F and alpha matte α.

To generate S, we apply person segmentation [4] and then

erode (5 steps), dilate (10 steps), and apply a Gaussian blur

(σ = 5). When video is available, we set M to be the

concatenation of the two frames before and after I , i.e.,

{I−2T , I−T , I+T , I+2T } for frame interval T ; these images

are converted to grayscale to ignore color cues and focus

more on motion cues. In the absence of video, we simply

set M to {I, I, I, I}, also converted to grayscale. We de-

note the input set as X ≡ {I, B′, S,M}. The network with

weight parameters θ thus computes:

(F, α) = G(X; θ). (1)

In designing and training the network, the domain gap

between the Adobe dataset and our real data has proven to

be a significant driver in our choices as we describe below.

A natural choice for G would be a residual-block-based

encoder-decoder [38] operating on a concatenation of the

inputs {I,B′, S,M}. Though we would expect such a net-

work to learn which cues to trust at each pixel when recover-

ing the matte, we found that such a network did not perform

well. When training on the Adobe synthetic-composite data

and then testing on real data, the resulting network tended

to make errors like trusting the background B′ too much

and generating holes whenever F was too close in color;

the network was not able to bridge the domain gap.

Instead, we propose a new Context Switching block (CS

block) network (Figure 2) to combine features more effec-

tively from all cues, conditioned on the input image. When,

e.g., a portion of the person matches the background, the

network should focus more on segmentation cue in that re-

gion. The network has four different encoders for I , B′,

S, and M that separately produce 256 channels of feature

maps for each. It then combines the image features from

I with each of B′, S and M separately by applying 1x1

convolution, BatchNorm, and ReLU (‘Selector’ block in

Fig. 2), producing 64-channel features for each of the three

pairs. Finally, these three 64-channel features are combined

with the original 256-channel image features with 1x1 con-

volution, BatchNorm, and ReLU (the ‘Combinator’ block

in Fig. 2) to produce encoded features which are passed on

to the rest of the network, consisting of residual blocks and

decoders. We observe that the CS Block architecture helps

to generalize from the synthetic-composite Adobe dataset

to real data (Figure 4). More network architecture details

are provided in the supplementary material.

We train the network with the Adobe Matting

dataset [35] which provides 450 ground truth foreground

image F ∗ and alpha matte α∗ (manually extracted from

natural images). We select the subset of 280 images cor-

responding to non-transparent objects (omitting, e.g., ob-

jects made of glass). As in [35], we can compose these

foregrounds over known backgrounds drawn from the MS-

COCO dataset, augmented with random crops of varying

resolutions, re-scalings, and horizontal flips. These known

backgrounds B would not be the same as captured back-

grounds B′ in a real setting. Rather than carefully simulate

how B and B′ might differ, we simply perturbed B to avoid

training the network to rely too much on its exact values.

In particular, we generated each B′ by randomly applying

either a small gamma correction γ ∼ N (1, 0.12) to B or

adding gaussian noise η ∼ N (µ ∈ [−7, 7], σ ∈ [2, 6])
around the foreground region. Further, to simulate imper-

fect segmentation guidance S we threshold the alpha matte

and then erode (10-20 steps), dilate (15-30 steps) and blur

(σ ∈ [3, 5, 7]) the result. For the motion cue M , we applied

random affine transformations to foreground+alpha before

compositing onto the background, followed by conversion

to grayscale. To compute I and M we used the compositing

equation with B as the background, but we provided B′ as

the input background to the network.

Finally, we train our network GAdobe ≡ G(·; θAdobe) on

the Adobe dataset with supervised loss:

min
θAdobe

EX∼pX
[‖α− α∗‖1 + ‖∇(α)−∇(α∗)‖1

+ 2‖F − F ∗‖1 + ‖I − αF − (1− α)B‖1],
(2)

where (F, α) = G(X; θAdobe), and the gradient term on α
encourages sharper alpha mattes [36].

3.2. Adversarial Training on Unlabelled Real data

Although our proposed Context Switch block (CS block)

combined with data augmentation significantly helps in

bridging the gap between real images and synthetic com-

posites created with the Adobe dataset, it still fails to han-

dle all difficulties present in real data. Theses difficulties

include (1) traces of background around fingers, arms, and

hairs being copied into the matte; (2) segmentation failing;

(3) significant parts of the foreground color matching the

background color; (4) misalignment between the image and

the background (we assume only small misalignment). To

handle these cases, we aim to learn from unlabelled, real

data (real images + backgrounds) with self-supervision.

The key insight is that significant errors in the estimated

matte typically result in unrealistic composites over novel

backgrounds. For example, a bad matte might contain a

chunk of the source background, which, when composited

over a new background, will have a piece of the original
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background copied over the new background, a major visual

artifact. Thus, we can train an adversarial discriminator to

distinguish between fake composites and (already captured)

real images to improve the matting network.

The matting network (GReal ≡ G(·; θReal)) and discrim-

inator network D can be trained end-to-end based on just a

standard discriminator loss. However, GReal could settle on

setting α = 1 everywhere, which would result in simply

copying the entire input image into the composite passed

to D. This solution is “optimal” for GReal, since the input

image is indeed real and should fool D. Initializing with

GAdobe and fine-tuning with a low learning rate (was nec-

essary for stable training with a discriminator) is not very

effective. It does not allow significant changes to network

weights needed to generate good mattes on real data.

Instead, we use GAdobe for teacher-student learning. In

particular, for a real training image I and associated inputs

comprising X , we obtain (F̃ , α̃) = G(X; θAdobe) to serve

as “pseudo ground-truth”. We can now train with an adver-

sarial loss and a loss on the output of the matting network

G(X; θReal) when compared to “pseudo ground-truth”, fol-

lowing [26]; this second loss is given small weight which

is reduced between epochs during training. Though we ini-

tialize θReal in the standard randomized way, the network is

still encouraged to stay similar to the behavior of GAdobe

while having the flexibility to make significant changes that

improve the quality of the mattes. We hypothesize that this

formulation helps the network to avoid getting stuck in the

local minimum of GAdobe, instead finding a better mini-

mum nearby for real data.

We use the LS-GAN [23] framework to train our genera-

tor GReal and discriminator D. For the generator update we

minimize:

min
θReal

EX,B̄∼pX,B̄
[(D(αF + (1− α)B̄)− 1)2

+ λ{2‖α− α̃‖1 + 4‖∇(α)−∇(α̃)‖1

+ ‖F − F̃‖1 + ‖I − αF − (1− α)B′‖1}],

(3)

where (F, α) = G(X; θReal), B̄ is a given background for

generating a composite seen by D, and we set λ to 0.05

and reduce by 1/2 every two epochs during training to al-

low the discriminator to play a significant role. We use a

higher weight on the alpha losses (relative to Equation 2),

especially the gradient term to encourage sharpness.

For the discriminator, we minimize:

min
θDisc

EX,B̄∼pX,B̄
[(D(αF + (1− α)B̄))2]

+ EI∈pdata
[(D(I)− 1)2],

(4)

where θDisc represents the weights of the discriminator net-

work and again (F, α) = G(X; θReal).
As a post-process, we threshold the matte at α > 0.05,

extract the largest N connected components, and set α = 0

Algorithm Additional Inputs SAD MSE(10−2)

BM Trimap-10, B 2.53 1.33

BM Trimap-20, B 2.86 1.13

BM Trimap-20, B′ 4.02 2.26

CAM Trimap-10 3.67 4.50

CAM Trimap-20 4.72 4.49

IM Trimap-10 1.92 1.16

IM Trimap-20 2.36 1.10

Ours-Adobe B 1.72 0.97

Ours-Adobe B
′ 1.73 0.99

Table 1: Alpha matte error on Adobe Dataset (lower is better).

for pixels not in those components, where N is the number

of disjoint person segmentations in the image.

4. Experimental Evaluation

We compared our approach with a variety of alternative

methods, esp. recent deep matting algorithms that have per-

formed well on benchmarks: BM: Bayesian Matting [9] -

traditional, trimap-based method that can accept a known

background [8]. (An alternative, Poisson Matting [30, 12]

with known background, performed much worse.). CAM:

Context-Aware Matting [16] - trimap-based deep matting

technique that predicts both alpha and foreground. IM:

Index Matting [21] - trimap-based deep matting technique

that predicts only alpha. LFM: Late Fusion Matting [36] -

trimap-free deep matting algorithm that predicts only alpha.

4.1. Results on Synthetic­Composite Adobe Dataset

We train GAdobe on 26.9k exemplars: 269 objects com-

posited over 100 random backgrounds, plus perturbed ver-

sions of the backgrounds as input to the network. We train

with batch-size 4, learning rate 1e−4 with Adam optimizer.

We compare results across 220 synthetic composites

from the Adobe Dataset [35]: 11 held-out mattes of hu-

man subjects composed over 20 random backgrounds, in

Table 1. We computed a trimap for each matte through

a process of alpha matte thresholding and dilation as de-

scribed in [35]. We dilated by 10 and 20 steps to generate

two different trimaps (more steps gives wider unknown re-

gion). We additionally computed a perturbed background

B′ by applying small random affine transformation (trans-

late ∈ N (0, 3), rotate ∈ N (0, 1.3◦) and small scaling and

shear) followed by gamma correction γ ∼ N (1, 0.12) and

gaussian noise η ∼ N (µ ∈ [−5, 5], σ ∈ [2, 4]). For our ap-

proach, we only evaluated the result of applying the GAdobe

network (‘Ours-Adobe’), since it was trained only on the

Adobe data, as were the other learning-based approaches

we compare to. We rescaled all images to 512 × 512 and

measure the SAD and MSE error between the estimated and

ground truth (GT) alpha mattes, supplying algorithms with

the two different trimaps and with backgrounds B and B′
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Figure 3: (a-e) Resulted alphas and foregrounds for photos taken with handheld camera against natural backgrounds; (e) is an example

failure case with dynamic background (fountain). See video results in the supplementary.

as needed. We omitted LFM from this comparison, as the

released model was trained on all of the Adobe data, includ-

ing the test data used here (confirmed by the authors). That

said, it produces a SAD and MSE of 2.00, 1.08e−2, resp.,

while our method achieves (true test) error of 1.72, 0.97e−2.

We observe that our approach is more robust to back-

ground perturbation when compared to BM, and it improves

on all other trimap-based matting algorithms (BM, CAM,

IM). As trimaps get tighter, the trimap-based matting algo-

rithms get better, but tight trimaps are time-consuming to

create in practice. The goal of our work is to fully eliminate

the need for manually created trimaps.

4.2. Results on Real Data

We captured a mix of handheld and fixed-camera videos,

taken indoors and outside using a smartphone (iPhone 8).

The fixed-camera setup consisted of an inexpensive selfie

stick tripod. In each case, we took a video with the subject

moving around, plus a shot of the background (single video

frame) with no subject. All frames were captured in HD

(1920×1080), after which they were cropped to 512×512

(input resolution to our network) around the segmentation

mask for one person or multiple. We retrain GAdobe on

280k composites consisting of 280 objects from Adobe

Dataset [35]. We then train separate copies of GReal, one

each on handheld videos and fixed camera videos, to allow

the networks to focus better on the input style. For hand-

held videos we account for small camera shake by aligning

the captured background to individuals frames through ho-

mography. In total, we trained on 18k frames for hand-held

camera and 19k frames for fixed camera. We captured 3390

additional background frames for B̄. We use a batch-size of

8, learning rate of 1e−4 for GReal and 1e−5 for D and up-

date D with Adam optimizer. We also update the weights

of D after 5 successive updates of GReal.

Ours vs. much better better similar worse much worse

BM 52.9% 41.4% 5.7% 0% 0%

CAM 30.8% 42.5% 22.5% 4.2% 0%

IM 26.7% 55.0% 15.0% 2.5% 0.8%

LFM 72.0% 20.0% 4.0% 3.0% 1%

Table 2: User study on 10 real world videos (fixed camera).

Ours vs. much better better similar worse much worse

BM 61.0% 31.0% 3.0% 4.0% 1.0%

CAM 43.3% 37.5% 5.0% 4.2% 10.0%

IM 33.3% 47.5% 5.9% 7.5% 5.8%

LFM 65.7% 27.1% 4.3% 0% 2.9%

Table 3: User study on 10 real world videos (handheld).

To compare algorithms on real data, we used 10 hand-

held videos and 10 fixed-camera videos as our (held-out)

test data. The BM, CAM, and IM methods each require

trimaps. We did not manually create trimaps (esp. for video

sequences which is infeasible). Instead, we applied segmen-

tation [4], and labeled each pixel with person-class proba-

bility > 0.95 as foreground, < 0.05 as background, and the

rest as unknown. We tried alternative methods, including

background subtraction, but they did not work as well.

To evaluate results, we could not compare numerically

to ground truth mattes, as none were available for our data.

Instead, we composited the mattes over a green background

and performed a user study on the resulting videos. Since

62296



IM and LFM do not estimate F (needed for compositing),

we set F = I for these methods. We also tried estimating

F directly from the matting equation (given α and B′), but

the results were worse (see supplementary material). We do

not use any temporal information and set M = {I, I, I, I}
for all comparisons to prior methods.

Figure 4: Role of Context Switching Block (CS Block).

Figure 5: Role of motion cues.

In the user study, we compared the composite videos

produced by GReal network (‘Ours-Real’) head-to-head

with each of the competing algorithms. Each user was pre-

sented with a web page showing the original video, our

composite, and a competing composite; the order of the last

two was random. The user was then asked to rate composite

A relative to B on a scale of 1-5 (1 being ‘much worse’, 5

‘much better’). Each video pair was rated ∼ 10 users.

The results of the user study, with scores aggregated

over all test videos, are shown in Tables 2 and 3. Overall,

our method significantly outperformed the alternatives. The

gains of our method are somewhat higher for fixed-camera

results; with handheld results, registration errors can still

lead to matting errors due to, e.g., parallax in non-planar

background scenes (see Fig 6(f)).

Single image results are shown in Figure 6, again demon-

strating improvement of our method over alternatives. We

note that LFM in particular has difficulty zeroing in on the

person. More results generated by our approach with hand-

held camera in natural backgrounds are shown in Figure 3.

In (c), (d) we show examples of multiple people interacting

in a single image, and in (e) we show a failure case with a

dynamic background, the fountain. Please see supplemen-

tary material for video results and more image results.

5. Ablation Studies

Role of motion cues. As shown in Figure 5, video mo-

tion cues M can help in predicting a cleaner matte when

foreground color matches the background. (Note: we did

not use motion cues when comparing to other methods, re-

gardless of input source.)

much better better similar worse much worse

handheld 16.4% 35.5% 42.7% 5.4% 0%

fixed-camera 17.3% 15.5% 51.8% 10% 5.4%

Table 4: User Study: Ours-Real vs Ours-Adobe.

‘Ours-Real’ vs ‘Ours-Adobe’. As expected, ‘Ours-

Adobe’ outperformed ‘Ours-Real’ on the synthetic-

composite Adobe dataset on which ‘Ours-Adobe’ was

trained. ‘Ours-Real’ achieved a SAD score of 3.50 in com-

parison to 1.73 of ‘Ours-Adobe’. However ‘Ours-Real’

significantly outperformed ‘Ours-Adobe’ on real data as

shown by qualitative examples in Figure 6 and by an ad-

ditional user study (Table 4). The gain of ‘Ours-Real’ in

the user study (∼ 10 users per pair-wise comparison) was

larger for handheld captures; we suspect this is because it

was trained with examples having alignment errors. (We

did try training ‘Ours-Adobe’ with alignment errors intro-

duced into B′ but found the results degraded overall.)

Role of Context Switching Block (CS Block). We

compare our CS Block architecture to a standard residual-

block-based encoder-decoder [38] scheme that was run on

a naive concatenation of I , B′, S, and M . We find that

the concatenation-based network learns to focus too much

on color difference between I and B′ and generates holes

when their colors are similar. The CS Block architecture

effectively utilizes both segmentation and color difference

cues, along with motion cues when present, to produce bet-

ter matte, as shown in Figure 4 (more in supplementary).

Empirically, we observe that the CS block helps signifi-

cantly in 9 out of 50 real videos, especially when foreground

color is similar to the background.

6. Conclusion

We have proposed a background matting technique that

enables casual capture of high quality foreground+alpha

mattes in natural settings. Our method requires the photog-

rapher to take a shot with a (human) subject and without,
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Figure 6: Comparison of matting methods with camera fixed (a,b,c) and handheld (d,e,f). Our method fails in (f) due to misregistration.

not moving much between shots. This approach avoids us-

ing a green screen or painstakingly constructing a detailed

trimap as typically needed for high matting quality. A key

challenge is the absence of real ground truth data for the

background matting problem. We have developed a deep

learning framework trained on synthetic-composite data and

then adapted to real data using an adversarial network.
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