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Abstract

The increasing number of vision-based tracking systems

deployed in production has necessitated fast, robust cam-

era calibration. In the domain of sport, the majority of cur-

rent work focuses on sports where lines and intersections

are easy to extract, and appearance is relatively consistent

across venues. However, for more challenging sports like

basketball, those techniques are not sufficient. In this paper,

we propose an end-to-end approach for single moving cam-

era calibration across challenging scenarios in sports. Our

method contains three key modules: 1) area-based court

segmentation, 2) camera pose estimation with embedded

templates, 3) homography prediction via a spatial trans-

form network (STN). All three modules are connected, en-

abling end-to-end training. We evaluate our method on a

new college basketball dataset and demonstrate the state of

the art performance in variable and dynamic environments.

We also validate our method on the World Cup 2014 dataset

to show its competitive performance against the state-of-

the-art methods. Lastly, we show that our method is two

orders of magnitude faster than the previous state of the art

on both datasets.

1. Introduction

Camera calibration is a fundamental task for computer

vision applications such as tracking systems, SLAM, and

augmented reality (AR). Recently, many professional sports

leagues have deployed some version of a vision-based

tracking system [26, 25]. Additionally, AR applications

(e.g., Virtual 3 in NBA [3], First Down Line in NFL [15])

used during video broadcasts to enhance audience’s engage-

ment have become commonplace. All of these applications

require high-quality camera calibration systems. Presently,

most of these applications rely on multiple pre-calibrated

fixed cameras or the real-time feed of pan-tilt-zoom (PTZ)

parameters directly from the camera. However, as the most

widely available data source in the sports domain is broad-

cast videos, the ability to calibrate from a single, mov-

ing camera with unknown and changing camera parameters

would greatly expand the reach of player tracking data and

(a) (b)

Figure 1. (a) Some of the critical challenges of camera calibration

in highly dynamic environments, like basketball, are the different

appearances from video to video, heavy occlusion on registration

features caused by players, and motion blur due to fast camera

movements (enlarge to see the blur). (b) In systems with moving

cameras, small camera movements generate large transformations.

Here the green lines are the projection caused by moving the cam-

era a small amount. The changes in pan, tilt, and focal length are

less than 3◦, 3◦, and 300 pixels, respectively. The change in cam-

era location is less than 3 feet in each axis.

fan-engagement solutions. Calibration of a single moving

camera remains a challenging task as the approach must be

accurate, fast, and generalizable to a variety of views and

appearances. Our solution enables us to determine the cam-

era homography of a single moving camera with only the

frame and the sport.

Current approaches mainly follow a framework based on

field registration, template matching (i.e., camera pose ini-

tialization), and homography refinement. Although existing

approaches based on this framework [5, 24, 6] have proven

effective for specific sports, there are still some limitations

that prevent them from being applied to more challenging

scenarios. First, most of these approaches [5, 24, 6, 8, 9, 4]

focus on sports where semantic information (i.e., key court
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markings) is easy to extract, the field appearance is consis-

tent across stadiums (i.e., green grass and white lines), and

motion of the camera is relatively slow and smooth. These

assumptions do not hold in more dynamic sports like bas-

ketball (Figure 1), where players occlude field markings,

the field appearance varies wildly from venue to venue, and

the camera moves quickly.

Furthermore, most existing works consist of separately

trained or tuned modules. As a result, they cannot achieve

the global optimal for such an optimization task. This is-

sue further limits the performance of those methods in more

challenging scenarios as error propagates through the sys-

tem, module to module.

In this paper, we address these issues with a brand new

end-to-end neural network (Figure 2). Our method follows

a similar framework (semantic segmentation, camera pose

initialization, homography refinement), but extends the ap-

proach to handle more challenging scenarios involving mo-

tion blur, occlusion, and large transformations. Our contri-

butions are:

1. A method to use area-based semantics rather than lines

for camera calibration, which is more robust for dy-

namic environments and those with highly variable ap-

pearance features.

2. Incorporation of a spatial transform network [16] for

large transform learning, which reduces the number of

required templates.

3. An end-to-end architecture for camera calibration,

which allows us to train everything jointly and infer-

ence homography much more efficiently.

4. A well-curated basketball dataset that allows the com-

munity to study the calibration problem in a more chal-

lenging environment.

The structure of the paper is as follows. In section 2, we

discuss the related work in the area, followed by section 3,

where we detail our method. In section 4, we describe two

experiments on both soccer and basketball datasets. Finally,

in section 5, we conclude and discuss future directions.

2. Related Work

Field Registration Field registration is a critical com-

ponent of camera calibration in sport. It enables the gen-

eration of reliable real-world or “top-down” tracking data,

which is widely used in sports analytics [23, 30, 13]. Math-

ematically, the task is to find the homography that can

map the 2D field from the observed camera perspective to

a known overhead perspective. Many classical methods

exist to find correspondence between points or line seg-

ments [20, 8, 9, 4, 10]. Others [21, 9, 8, 4, 10] followed

a frame-to-frame scheme where they calibrated each se-

quence using the initial homography and frame to frame

matching. These approaches often required human inter-

vention and venue specific priors.

Methods based on court segmentation fully-automated

this process by applying court segmentation on a synthe-

sized panoramic image [28, 29]. Based on the work in [21],

Hess et al. [12] eliminated the need for manual initialization

by pre-defining a venue-specific overhead (i.e., top-down)

field model so that every frame could be matched to the

field model directly. Recently [22], convolutional neural

networks (CNN) have been introduced for better semantic

extraction. Homayounfar et al. [14] extended the works

of [10, 11] with CNN-based semantic detection to more

precisely estimate vanishing points of a field in the image

plane. Chen et al. [5] extended this work by using two gen-

erative adversarial networks (GANs) to extract the edges on

a field, producing better reference image matching.

Pan-Tilt-Zoom Formulation Recently an increasing

number of approaches exploit a pan-tilt-zoom (PTZ) camera

configuration to constrain the registration problem in broad-

cast video. Chen et al. [6] leveraged the methods of [27]

and [18] to estimate the base parameters and focal length

for the camera. Sharma et al. [24] and Chen et al. [5] esti-

mated the ranges of pan, tilt, and zoom from training data

and uniformly sampled a large number (100k) of potential

camera poses. Using an overhead field model and the sam-

pled camera poses, they generate semantic images from a

camera perspective to act as templates. By constructing a

dictionary of templates, they reduced the problem of field

registration to the nearest neighbor search task, followed by

fine-tuning and refinement.

Homography Refinement Previous approaches use

methods like the Lucas-Kanade algorithm [1] or Inexact

Augmented Lagrangian Method (IALM) to refine the ho-

mography after its initialization from a matched template

or reference frame. A fundamental assumption of these ap-

proaches is that the transformation is small and local. To

satisfy these assumptions, Sharma et al. [24] and Chen et

al. [5] used 100k templates, ensuring the transform between

the input image and the matched template was very small,

whereas Carr et al. [4] and Ghanem et al. [8] formulated

this problem as a non-linear optimization task, optimizing

the homography through the loss of image warping.

Jaderberg et al. [16] proposed a spatial transformer net-

work (STN) that learned the affine transform for handwrit-

ten digit patches and improved recognition accuracy. Bha-

gavatula et al. [2] and Lin et al. [19] also showed that the

STN could handle some perspective transforms on faces and

rigid objects. We incorporate these methods to address the

need to handle large perspective transforms during refine-

ment, and create a fully neural network solution.
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Figure 2. Given a single input image, we calculate the homography H. First, we find the court features Y using semantic segmentation

(blue box). Then we use the semantic map to select an appropriate template Tk̄ from a set of templates. We concatenate Tk̄ and Ȳ and

predict the relative homography H̄ between the template and the semantic map. Next H = H̄H
∗

k̄
is used to generate the real-world to

image and the image to real-world warping. The gray blocks are neural network layers, and the blocks with the same name share the same

weights. This network architecture has four distinct loss functions Lce (Eq. 3), which comes from the semantic segmentation module,

Lcon (Eq. 6), which comes from the camera pose initialization module, and two warping losses Lwarp(camera) and Lwarp(top) which come

from the homography refinement module (Eq. 8). Since all the losses are fully differentiable with respect to the network parameters, this

network can be trained end-to-end.

3. Method

The goal of our method is to find a homography H that

can register the target ground-plane surface of any frame

I from a broadcast video with a top view field model M .

The standard objective function for computing homography

with point correspondences is

H = argmin
H

1

|X |

∑

(x′

i
,xi)∈X

|Hx′
i − xi|2, (1)

where xi is the (x, y) location of pixel i in the (broadcast)

image I and x′
i is the corresponding pixel location on the

model “image” M . X is a set of point correspondences

between the two images I and M .

Our method leverages three major techniques; semantic

segmentation, camera pose initialization and homography

refinement. Because each task can be accomplished with

neural networks, all three can be integrated into a single

network architecture (Figure 2) and trained end-to-end.

3.1. Semantic Segmentation

Semantic segmentation is usually used to extract key fea-

tures and remove irrelevant information from the image,

providing a venue agnostic appearance Ȳ that can be used

to determine the point correspondences. Thus the objective

function (Equation 1) can be rewritten as

θH = argmin
θH

L(Ȳ ,W(M ; θH)), (2)

where θH is a vector of the 8 homography parameters,

W(; θ) is the warping function with transform parameter θ,

and L() is any loss function that measures the difference be-

tween two images, in this case the predicted semantic map

Ȳ and the warped overhead model M .

We conduct area-based segmentation on the field to ad-

dress the challenges shown in Figure 1. The field is divided

into four regions, making the overhead field model M a 4-

channel image as seen in Figure 3; the goal of this module

is to classify each pixel in I into one of the four classes. To

generate the area-based semantic labels of each image, we

warp the overhead model with the associated ground truth

homography, thus providing ground truth semantic labels

for training.

For the segmentation task we use a Unet [22] style auto-

encoder (see detailed architecture in the Appendix Section

A) which takes an image I and outputs a semantic map Ȳ

as needed by the final objective function (Equation 2). To

train the Unet, we use the cross-entropy loss

Lce = −
1

|Ȳ ||C|

∑

ȳc
i
∈Ȳ

∑

c∈C

yci log(ȳ
c
i ), (3)

where C is the set of classes, and yci is the ground truth
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Figure 3. The top row shows our top-down view field model for

basketball (left) and soccer (right). The middle row shows our

semantic labels for one image by using the field models. These

images are generated by warping the field model M using the

ground truth homography. These images are then used to train the

semantic segmentation module. The bottom row shows the polyg-

onal area of the middle row from top-down perspective, showing

the fraction of the field model in the camera view. The top-down

views of basketball and soccer are resized here to the same dimen-

sions for display purpose only.

label and ȳci is the likelihood of pixel i belonging to class c.

3.2. Camera Pose Initialization

Since we assume a PTZ camera we can generate a cam-

era pose dictionary (i.e. set of templates) based on the range

of possible pan, tilt and focal length parameters. We use a

siamese network to determine the best template for each in-

put semantic image.

3.2.1 Camera Pose Dictionary Generation

For a PTZ camera, the projective matrix P can be expressed

as

P = KR[I|−C] = KQS[I|−C], (4)

where Q and S are decomposed from rotation matrix R,

K are the intrinsic parameters of the camera, I is the 3X3
identity matrix and C is the camera translation. The matrix

S describes the rotation from the world coordinate to the

PTZ camera base, and Q represents the camera rotation due

to pan and tilt. In our case, we define S to rotate around

world x-axis by −90◦ so that the camera looks along the y-

axis in the world plane; this means the camera is level and

its projection is parallel to the ground.

For each image, we assume a center principle point,

square pixels, and no lens distortion. Camera rolling is ig-

nored in our work since the rolling angle is observed to be

very small (less than 1◦), leaving 6 parameters in total: the

focal length, 3D camera location, pan and tilt angles.

Algorithm 1 GMM-based clustering algorithm

1: Pre-define covariance Σ
2: for K = [100, 110, 120, ..., N ] do

3: Initialize µk for K GMM components

4: while µ not converge do

5: Compute γk(λn) =
πkN (λn;µk,Σ)∑
j
πkN (λn;µk,Σ)

6: Update µk =
∑

n
γk(λn)λn∑
n
γk(λn)

7: end while

8: if 1
N

∑
n maxk

N (λn;µk,Σ)
N (µk;µk,Σ) > threshold then

9: break

10: end if

11: end for

12: Return GMM

We use Zhang’s method [31] and the ground truth ho-

mography to initialize the intrinsic camera matrix K, cam-

era location C, and rotation matrix R. With this initial-

ization, we use the Levenberg–Marquardt algorithm [17] to

find the optimal focal length, 3D camera location, and ro-

tation angles. Once K, C, R and S are determined, Q is

computed. The Rodrigues formula [7] is applied to Q to

compute the pan and tilt angles. Thus, the 6-dimensional

camera configuration (pan, tilt, zoom, and 3D camera loca-

tion) λ is determined. Although the estimation of the cam-

era parameters from a single image is not very precise, it is

sufficient for camera pose dictionary generation.

After the camera configuration λ is estimated for each

training image, we generate a dictionary of possible camera

poses Λ in one of two ways. The first method entails uni-

form sampling from the range of possible camera poses. We

determine the ranges of pan, tilt, focal length, and camera

location from training data and uniformly sample the poses

from a 6-dimensional grid. The advantage of this method

is that it covers all camera poses even if the training set

is small. Additionally, using a small grid simplifies the ho-

mography refinement since the maximum scale of the trans-

formation required is on the scale of the grid size. However,

this also creates many templates that are not realistic.

Alternatively, when the training set has sufficient diver-

sity, Λ can be learned directly from training data via cluster-

ing. We chose to treat Λ as a multi-variant normal distribu-

tion and apply a Gaussian mixture model (GMM) to build

our camera pose set. We fix the mixing weights π as equal

for each component and fix the covariance matrix Σ for each

distribution. Here the characteristic scale of Σ sets the scale

of the transformations that handled by the homography re-

finement module. In contrast with traditional GMM’s, in-

stead of setting the number of components K, the GMM

learning algorithm finds the number of components K and

the mean µk of each distribution given the mixing weights

π and covariance matrix Σ. The identical Σ and π for each

component ensures the GMM components are sampled uni-

formly from the manifold of the training data.
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Algorithm 1 shows the GMM clustering procedure. Be-

cause we fix Σ, we only update µ during the maximization

step (M-step). We gradually increase K until the stopping

criteria are satisfied. The stopping criteria (line 8) aims to

generate enough components so that every training exam-

ple is close to the mean of one component in the mixture.

The camera pose dictionary Λ is formed utilizing all com-

ponents [µ1, ..., µK ].
Given the dictionary of camera poses Λ, the homography

for each pose can be computed and used to warp the over-

head field model M . Therefore, a set of image templates

T = [T1, ..., TK ] and their corresponding homography ma-

trices H∗ = [H∗
1, ...,H

∗
K ] are determined and used in the

camera pose initialization module.

3.2.2 Camera Pose Search

Given the semantic segmentation image Ȳ and a set of tem-

plate images T , a siamese network is used to compute the

distance between each input and template pair (Ȳ , Tk). The

target/label for each pair is similar or dissimilar. For the

grid sampled camera pose dictionary, a template Tk is simi-

lar to the image if its pose parameters are the nearest neigh-

bor in the grid. For the GMM-based camera pose dictio-

nary, a template Tk is labeled as similar to an image if the

corresponding distribution of the template N (;µk,Σ) gives

the highest likelihood to the pose parameters λ of the input

image. This procedure generates a template similarity label

for every image in the training set.

The red box in Figure 2 shows the steps of the cam-

era pose search process. Once the input semantic image

Ȳ and the template images T are encoded (after FC1), the

latent representations are used to compute the L2 distance

between the input image and each template. A selection

module finds the target camera pose index k̄ and retrieves

its template image Tk̄ and homography H∗
k̄

as output, ac-

cording to

k̄ = argmin
k

|f(Ȳ )− f(Tk)|2, (5)

where f() is the encoding function of siamese network.

As is standard practice, contrastive loss is used to train

the siamese network:

(6)Lcon = a|f(Ȳ )− f(Tk)|
2
2

+ (1− a)max(0,m− |f(Ȳ )− f(Tk)|
2
2),

where a is the binary similarity label for the image pair

(Ȳ , Tk) and m is the margin for contrastive loss.

3.3. Homography Refinement

After determining the target template and camera pose,

the last step is to refine the homography by finding the rel-

ative transform between the selected template and the input

image. We introduce the spatial transformer network (STN)

Figure 4. Here, the green field lines are the projection with the ini-

tialized camera pose parameters (before refinement), and the blue

field lines come after refinement of the homography. We can see

that the STN can handle relatively large transforms, which enables

the network to use far fewer templates for camera pose initializa-

tion.

for this task so that we can handle large non-affine transfor-

mation and use a smaller camera pose dictionary.

The green box in Figure 2 shows the process of homogra-

phy refinement. To compute the relative transform between

the input semantic image Ȳ and the selected template im-

age Tk̄, we stack them into an 8-channel image, forming

the input to the localization layers of an STN. The output

of the localization layers is the 8 parameters of the relative

homography H̄ that maps the semantic image Ȳ to the tem-

plate Tk.

Importantly, we initialize the last of the localization lay-

ers (FC3 in Figure 2) such that all elements in the kernel

are zero, and the bias is to the first 8 values of a flattened

identity matrix. Therefore, at the start of training, the input

image is assumed to be identical to the template, providing

a good initialization for the STN optimization. Therefore,

the final homography is H = H∗
k̄
H̄.

Once H is computed, the transformer can warp the over-

head model M to the camera perspective or vice versa,

which allows us to compute the loss function in Equation

2. We use the Dice coefficient loss:

Dice(U, V ) =
1

|C|

∑

c∈C

2||U c ◦ V c||

||U c||+||V c||
, (7)

where U , V are semantic images, C is the number of chan-

nels, ◦ is the element-wise multiplication, and ||·|| is the

sum of pixel intensity in an image. Here, the intensity in

each channel is the likelihood that the pixel belongs to a

channel c. One of the major advantages of using area-based

segmentation, as opposed to line-based, is that it is robust

to occlusions and makes better use of the network capacity

since a larger fraction of image pixels belong to a meaning-

ful class.

However, a limitation of IoU-based loss is that as the

fraction of the field in view decreases, the IoU loss becomes

sensitive to segmentation errors. For example, if the field
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only occupied a tiny proportion of the image, a small trans-

form could reduce the IoU dramatically. Figure 3 shows

two examples of the occupancy fraction in basketball and

soccer from two perspectives. Soccer has a higher occu-

pancy fraction from the camera perspective, while top view

has a lower occupancy fraction, and basketball is the oppo-

site. Therefore, we use the Dice loss on the warped field

in both perspectives; the high occupancy perspective can

achieve coarse registration quickly while the low occupancy

perspective can provide strong constraints on fine-tuning.

Thus, we define the loss function in Equation 2 as,

(8)
Lwarp = δDice(Y,W(M, θH))

+ (1− δ)Dice(M ′,W(Y, θH−1)),

where Y is the ground truth semantic image and M ′ is

masked overhead field model so that loss is only computed

for the area shown in the image. Losses from the two per-

spectives are weighted by δ, where the weight for the lower

occupancy fraction perspective is always higher.

Figure 4 shows some example homography refinement

results. The green field lines are projected with the initial

camera poses from the selected templates, while the blue

projections use the refined homographies. Those results

showcase the ability of STN to learn relatively large trans-

formations, which allows us to use a much smaller camera

pose set in our method.

3.4. Learning

Since each module uses the output of other modules as

input, the three modules can be connected into a single neu-

ral network, as shown in Figure 2. The total loss of the

network becomes

L = αLce + βLcon + (1− α− β)Lwarp, (9)

where α, β ∈ [0, 1).
We turn on the training of the entire network incre-

mentally, module-by-module, so the siamese network and

STN can start training with reasonable inputs. Training

starts with a 20-epoch warm-up for the Unet. Then the

siamese network training is turned on with α = 0.1 and

β = 0.9. After another 10 epochs, the STN is turned on

with α = 0.05 and β = 0.05. The full network continues

joint training until convergence.

4. Evaluation And Experiments

4.1. Dataset

College Basketball Dataset We create a dataset from 13

NCAA basketball games. We use 10 games for training and

the remaining 3 for testing. Different games have different

camera locations, and each game was played in a unique

venue; this means the field appearance is very different from

game to game. For each game, we selected 30-60 frames for

annotations with a high camera pose diversity. Professional

annotators clicked 4-6 point correspondences in each image

to compute the ground truth homography. These annota-

tions produced 526 images for training and 114 images for

testing. We further enrich the training data by flipping the

images horizontally, which gives us 1052 training examples

in total.

World Cup 2014 Dataset A soccer dataset was collected

by Homayounfar et al. [14] from 20 games of the World

Cup 2014. Those games were held in 9 different stadiums

during day and night, and the images consist of different

perspectives and lighting conditions. There are 209 train-

ing images collected from 10 games and 186 testing images

from the other 10 games.

4.2. Implementation

College Basketball Dataset Since the training set for the

basketball dataset is large and diverse, we use the GMM-

based method to generate camera pose templates from 1052

training images. The standard deviation for pan, tilt, fo-

cal length, and camera locations (x, y, z) are set to 5◦, 5◦,

1000 pixels, and 15 feet respectively. The non-diagonal el-

ements are set to zero as we assume those camera configu-

rations are independent of each other. The threshold for the

stopping criteria was set to 0.6 and the clustering algorithm-

generated 210 components.

For the warping loss, Lwarp δ is set to 0.8 because the

camera perspective has a lower field occupancy rate than the

top view perspective.

World Cup Dataset Because the soccer field is much

larger than basketball, a high grid resolution is used for

template generations: we set the resolution of pan, tilt, and

focal length to 5◦, 2.5◦, and 500 pixels. The camera loca-

tion is fixed at (560, 1150, 186) yard relative to the top left

corner of the field since camera locations are very similar

among different games. The soccer dataset has an insuf-

ficient number of examples to use the GMM-based cam-

era pose estimation. Therefore, we used a uniform sam-

pling for this dataset with estimated pan, tilt, and focal

length range ([−35◦, 35◦], [5◦, 15◦], [1500, 4500] pixels re-

spectively), which generates 450 templates for camera pose

initialization.

It is worth noting that the sampling resolutions we se-

lected for both soccer and basketball are NOT guaranteed

to be optimal. Using different resolutions may lead to bet-

ter or worse performance, but in this paper, we focus on

demonstrating the outstanding performance of our method

with a much smaller template set. Investigating the optimal

size of template set is out of the scope of this work.

Due to the small number of training examples in the

World Cup dataset, we use synthesized data to warm up the

camera pose initialization module and the homography re-

finement module. Apart from the Unet, the rest of the net-
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work uses the semantic image as input so that we can syn-

thesize an arbitrary number of semantic images to pre-train

those parts of the network. We generated 2000 semantic

images by uniformly sampling the pan, tilt, and focal length

parameters. For each synthesized image, their ground truth

homography is known, and template assignment can be eas-

ily found by down-sampling the grid. Thus, the camera pose

initialization module, and STN can be pre-trained individ-

ually. After these two modules are warmed up, we follow

the training procedure in section 3.4 to train the network

with real data. Because soccer’s top view has a lower field

occupancy rate, δ was set to 0.2 for training.

4.3. Quantitative evaluation

We use the intersection over union (IoU) score as our

evaluation metric. We compute the IoU in the top view and

compare the intersection between the ground truth and the

estimated homography. Previous works [14, 24, 5] mea-

sured the IOU on either the entire field IoUentire or on only

the polygonal area that appeared in the image IoUpart. We

report our results under both approaches for ease of compar-

ison. Our approach is implemented with Tensorflow on an

Ubuntu system with an Intel 3.6GHz CPU, 48GB memory,

and an Nvidia Titan RTX GPU.

Table 1 compares our method to Chen et al. [5] on the

basketball dataset. The method in [5] is implemented with

their released code. To ensure a fair comparison of the vari-

ous calibration methods, we use the same template set (210

camera poses) for [5]. Apart from the direct comparison be-

tween [5] and our method, we also created two impractical

variants of [5]; first, we provide perfect line extraction, and

second, we supply perfect templates. We designed these

variants to show the impact of these factors on calibration

performance. To provide perfect templates, we created one

template per example in the dataset, so every image has a

perfect match, and no homography refinement is required.

By providing the perfect segmentation or templates, we can

see the best theoretical result that can be achieved by Chen

et al.’s method. We also compare the performance of joint

and separate training of each module to evaluate the benefit

of end-to-end training on our network.

The result in Table 1 shows our method is a significant

improvement (5% - 15%) over Chen et al. [5], even when

provided with ground truth line segmentation or perfect

templates. When we provide ground truth line extraction

to the baseline, the IoUpart improves because camera pose

initialization becomes trivial, but IoUentire remains low be-

cause refinement based on Lucas-Kanade cannot handle the

large transformations required by a small template set. In

contrast, an infinitely large template set (perfect templates)

addresses the error in the refinement step, so IoUentire in-

creases substantially, although the line extraction approach

still limits the performance. Those results verify that in or-

Table 1. Evaluation results on College Basketball dataset. For the

baseline method, ‘GT’ means the ground truth line extraction is

provided while ‘Per’ means perfect templates are given. For our

method, results from training each module separately and end-to-

end training are reported. Here our method, when trained end-to-

end is significantly better than the previous state of the art (Chen et

al. [5]), even when the previous state of the art is provided with the

best possible set of templates (Chen et al. + Per).

Method
IoUentire IoUpart

Mean Med. Mean Med.

Chen et al. 62.6 68.4 85.0 90.1

Chen et al. + GT 67.2 71.2 91.7 91.8

Chen et al. + Per 80.5 82.3 91.9 94.5

Ours (Modular) 81.1 81.7 92.6 93.8

Ours (End-to-End) 83.2 84.6 94.2 95.4

Table 2. Evaluation results on World Cup dataset [14]. Baseline

methods are take from their papers. These results indicate that our

method is significantly better than Homayounfar et al. [14] and

Sharma et al. [24], but marginally worse than Chenet al. [5] due to

insufficient training data.

Method
IoUentire IoUpart

Mean Med. Mean Med.

DSM [14] 83 - - -

Sharma et al. [24] - - 91.4 92.7

Chen et al. [5] 89.4 93.8 94.5 96.1

Ours 88.3 92.1 93.2 96.1

Table 3. Comparison of inference time and the size of effective

search space between different methods

Method Mean Time(s) # of templates/iter

DSM [14] 0.44 3328

Sharma et al. [24] - 100,000

Chen et al. [5] 0.5 100,000

Ours 0.004 450

der to perform camera calibration in challenging dynamic

environments, the networks need better semantic segmenta-

tion and homography refinement methods. Our method has

an approximately 2% improvement over even the impracti-

cal variants of the previous state of the art.

Table 2 shows the results of our method on the World

Cup dataset. We compare our method with end-to-end train-

ing against previous methods under both metrics using both

mean and median. Our method performed significantly bet-

ter than Homayounfar et al. [14] and Sharma et al. [24], but

approximately equal to Chen et al. [5]. On this dataset, our

method suffers the insufficient training data, particularly for

the semantic segmentation.

In Table 3, we also report the average inference time per

image and the size of the search space in different methods.

The method of [14] requires a search of a 3002× 6002 grid,

although they use branch and bound techniques to reduce

this search space substantially. Thus, we only compare to
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IoUpart = 99.0

IoUentire = 97.5

IoUpart = 97.9

IoUentire = 94.2

IoUpart = 94.5

IoUentire = 87.0

IoUpart = 91.3

IoUentire = 81.8 IoUentire = 79.5

IoUpart = 88.9

Figure 5. In the first row, we show the field projection (blue lines) generated by the predicted homography. The second row shows the

semantic segmentation output. The third row shows the IoUpart, and the fourth row shows the IoUentire, where red is the ground truth

field, and the blue is the field warped by the predicted homography.

their effective search space, which is the average number of

iterations required for homography estimation. Our speed

is 2 orders of magnitude faster than [14] and [5] due to the

end-to-end architecture and reduced search space, allowing

our method to calibrate a moving camera live.

4.4. Qualitative Evaluation

Figure 5 shows some output examples from the basket-

ball dataset; soccer figures can be found in Appendix Sec-

tion B. Our method works quite well as long as the semantic

segmentation is reasonable. For the rightmost example, cal-

ibration failed due to poor segmentation as a result of light-

ing variability. In soccer, the large shadows in the stadium

similarly lead to poor segmentation and calibration results.

More training data is required to enable the Unet to gener-

alize to these extreme conditions. However, typically, the

semantic segmentation module performs very well, leading

to near-perfect calibration results. In fact, due to the end-to-

end training of the network, we reduce the effect of small

errors in semantic segmentation compared to the previous

state of the art.

Thought the IoUpart is similar between soccer and bas-

ketball, the IoUentire is quite different. The reason is two-

fold. Firstly, the top-down view of basketball is the higher

occupancy perspective. Therefore, a small error in homog-

raphy does not influence the IoUpart but can limit the per-

formance in IoUentire. Secondly, the basketball field has a

larger width-to-height ratio than soccer, so a small error on

one side can lead to a larger error on the out of view side.

5. Conclusion

In this work, we present an novel method for broadcast

camera calibration in a dynamic environment which inte-

grates semantic segmentation, camera pose initialization,

and homography refinement into one neural network, which

enables end-to-end training and inference. Furthermore, we

use area-based rather than line-based semantics, which al-

lows our method to handle noisy scenarios where there is

significant occlusion of the court. We also used a spatial

transformer network for the homography refinement task,

allowing the refinement module to handle large transforma-

tions, thereby reducing the search space for camera pose

initialization. The evaluation results show that our method

outperforms the previous state-of-the-art in challenging sce-

narios like basketball and achieves competitive performance

in relatively static environments like soccer.

One drawback of our method is that the selection step in

the camera pose initialization module is not differentiable

due to the argmin operation. Thus, the back-propagation

from the homography refinement module cannot flow into

the camera pose initialization module. This limitation pre-

vents us from using self-consistency between the warped

image in the STN and the output from the Unet, which

should be identical. Therefore, if the selection step was

differentiable, we could train our network in a weakly su-

pervised fashion. The weakly surprised training would also

address the need for more substantial training datasets; we

leave this as a challenge for our future work.
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