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Abstract

We investigate the emerging task of learning object de-

tectors with sole image-level labels on the web without re-

quiring any other supervision like precise annotations or

additional images from well-annotated benchmark datasets.

Such a task, termed as fully webly supervised object detec-

tion, is extremely challenging, since image-level labels on

the web are always noisy, leading to poor performance of

the learned detectors. In this work, we propose an end-to-

end framework to jointly learn webly supervised detectors

and reduce the negative impact of noisy labels. Such noise is

heterogeneous, which is further categorized into two types,

namely background noise and foreground noise. Regarding

the background noise, we propose a residual learning struc-

ture incorporated with weakly supervised detection, which

decomposes background noise and models clean data. To

explicitly learn the residual feature between clean data and

noisy labels, we further propose a spatially-sensitive en-

tropy criterion, which exploits the conditional distribution

of detection results to estimate the confidence of background

categories being noise. Regarding the foreground noise,

a bagging-mixup learning is introduced, which suppresses

foreground noisy signals from incorrectly labelled images,

whilst maintaining the diversity of training data. We evalu-

ate the proposed approach on popular benchmark datasets

by training detectors on web images, which are retrieved by

the corresponding category tags from photo-sharing sites.

Extensive experiments show that our method achieves sig-

nificant improvements over the state-of-the-art methods 1.

∗Corresponding author.
1Code and dataset are available at: https://github.com/

shenyunhang/NA-fWebSOD.

Figure 1: The overall flowchart of fully webly supervised

object detection.

1. Introduction

Most object detection methods [18, 40, 33, 39, 14, 13,

15] rely on strong supervision, i.e., ground-truth bounding

boxes, from well-annotated datasets [12, 32] for training.

Methods such as Mask R-CNN [22] even leverage fine-

grained pixel-level masks for supervision. Clearly, collect-

ing annotations of bounding boxes or pixel-level masks is

labor-expensive, which results in a serious limitation of ex-

isting methods in terms of both the category diversity and

label quantity. It is infeasible to learn an object detector to

effectively handle numerous object categories using such a

setting. One way to reduce the requirement of strong super-

vision is the Weakly Supervised Object Detection (WSOD),

which only relies on manual image-level annotations for

training [37, 6, 50, 56, 45, 44]. However, for applications

needing very large-scale image sets and categories, image-

level annotations still require enormous human effort. In

contrast, along with the popularity of photo-sharing sites
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Figure 2: This figure depicts several web images retrieved

by query aeroplane. The corresponding background labels

(BL), foreground labels (FL), background noise (BN) and

foreground noise (FN) are enumerated when target cate-

gories only have aeroplane and person.

like Flickr, there has been an explosion of images with noisy

tags available on the web. It is thus desirable to learn object

detectors from such large-scale web resources with noisy

image-level labels, which is referred to as Webly Super-

vised Object Detection (WebSOD). In this paper, we fo-

cus on fully WebSOD (fWebSOD), i.e., the most extreme

case of WebSOD where only web images are available and

no well-annotated benchmark is involved during training, as

shown in Fig. 1. Compared to WSOD and WebSOD, fWeb-

SOD is more feasible to learn diverse and numerous object

categories in real-world scenarios without any other form of

knowledge, e.g., precious annotations or additional images

from well-annotated benchmark datasets.

Although fWebSOD is challenging without any existing

work in the literature, several attempts of WebSOD have

been made [11, 7, 53]. Prevailing methods for the Web-

SOD task directly learn a detector from web labels with

a simple-to-complex strategy [7, 52] or using additional

data, e.g., Google books ngrams corpora [11] and PASCAL

VOC images [53]. Such methods have one main drawback:

They do not explicitly reduce the negative impact of image-

level label noise in web data, which introduces potential

risks of degenerating the performance of a learned detec-

tor significantly. Moreover, these methods usually follow

a two/multi-stage scheme during training or testing. Little

work explores an end-to-end pipeline for fWebSOD task.

In this paper, we address the above drawbacks by well

handling image-level noisy labels in an end-to-end fash-

ion. We categorize the heterogeneous noise into two types,

namely background noise and foreground noise. We de-

fine several relative concepts here. (i) Background labels

and foreground labels are referred to as the background

and foreground parts of the image-level labels, respectively.

(ii) Background noise, i.e., missing labels, denotes those

background labels that fail to describe foreground cate-

gories existing in the image. For example, the instances of

categories person and areoplane coexist in the second im-

age of Fig. 2, but the category person is not labelled, which

is defined as the background noise. (iii) Foreground noise

denotes those foreground labels where no instance of the

foreground category appears in the image. For example, the

last image of Fig. 2 does not contain any aeroplane of the

target category areoplane.

To handle the background noise, we decompose such

noise by modelling clean data with residual learning. To this

end, the reliable parts of background labels need to be iden-

tified from the massive noisy data explicitly. We observe

that the distribution of accurate detection results for back-

ground categories is spatially scattered and numerically uni-

form. Motivated by this observation, for the background

labels, we resort to producing spatially scattered propos-

als with uniform and moderate scores, whilst punishing the

detection results where only a small minority of clustered

proposals produce high scores. To handle the foreground

noise, we collect multiple images of the same foreground

label to synthesize a set of new training samples, as inspired

by Multiple Instance Classification (MIC) [1] where any in-

stances with positive labels will move positive labels to the

corresponding bags. Such multi-instance-bagging mecha-

nism enables to suppress the influence of foreground noise

from incorrect labels, and to simultaneously maintain the

diversity of training samples.

In particular, we propose an end-to-end learning frame-

work to jointly learn fully webly supervised detectors and

reduce the negative impact of image-level noisy labels.

Given a set of target categories, we query photo sharing

sites like Flickr to retrieve the corresponding web images

automatically. To tackle the background noise, we design

a residual learning structure incorporated with weakly su-

pervised detection. A novel spatially-sensitive entropy cri-

terion is further proposed to estimate the spatial and nu-

merical entropy of detection results in the bounding-box

search space. The criterion estimates the confidence of

background labels being noise. To handle the foreground

noise, a bagging-mixup learning strategy is introduced to

collect multiple images of the same foreground label to syn-

thesize a set of new training samples, each of which is a con-

vex combination of all images in the bag. Extensive exper-

iments show that the proposed framework achieves signifi-

cant improvements over state-of-the-art methods [11, 7, 53]

on PASCAL VOC and MS COCO. In summary, the main

contributions of this paper are as follows:

• We propose a residual learning structure incorporated

with weakly supervised detection in an end-to-end

framework, which learns fully webly supervised de-

tectors and reduces the negative impact of noisy labels

by decomposing noise and modelling clean data.

• A spatially-sensitive entropy criterion and a bagging-

mixup learning are further proposed to explicitly esti-

mate the confidence of background labels being noisy

and suppress the influence of foreground noise from
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incorrect labels, respectively.

• Our models trained on only web data, which has about

4, 000 images each category, achieves significant im-

provements over the state-of-the-art methods on popu-

lar benchmark, i.e., PASCAL VOC and MS COCO.

2. Related Work

Weakly supervised object detection. WSOD refers to

learning an object detection model with only image-level

annotations that only indicates the presence of an object

category. Recent approaches combine convolutional neu-

ral networks (CNNs) and Multiple Instance Classification

(MIC) [1] into a unified framework [6, 28, 10, 51, 42, 43].

The learning stage of MIC alternates between selecting pos-

itive samples and training an appearance model. There

are some methods focusing on proposal-free paradigms

by taking advantage of deep feature maps [4, 3, 62, 59]

and class activation maps [61, 20, 59]. Some works also

use additional annotations and data to improve the per-

formance, e.g., object size estimation [47], instance count

annotation [16], video motion cue [49] and human veri-

fication [38]. Knowledge transfer for progressive cross-

domain adaptation is also exploited, e.g., data domain adap-

tion [46] and task domain adaption [25]. Instead of op-

timizing the MIC, some methods optimize the objective

function of instance-level localization. For example, the

works in [30, 27, 16, 50] mine the high-confidence propos-

als, which are then treated as positive samples to train a fully

supervised model. Many efforts [60, 17] have been made to

mine high-quality bounding boxes. To further improve the

robustness, some works [50, 31, 54, 58] combine weakly

supervised MIC models and fully supervised detectors.

Webly supervised learning. Webly supervised learning

has been widely studied in the past decade, which is typ-

ically used in image classification [5, 34, 35, 36, 21, 63],

object detection [11, 7, 53], and semantic segmentation [55,

41, 24]. The domain adaptation approach by Bergamo et

al. [5] is proposed to combine manually annotated examples

and web data to learn image classifiers. Mahajan et al. [34]

showed that training large-scale hashtag prediction leads to

improvements in image classification and object detection

tasks. To cope with the label noise, Niu et al. [35] proposed

to join variational autoencoder and classification network

to leverage the image-level information. Guo et al. [21]

leveraged curriculum learning by measuring the complex-

ity of data using distribution density for image classifica-

tion. Niu et al. [36] combined webly supervised learning

and zero-shot learning to learn zero-shot fine-grained clas-

sifiers. Zhuang et al. [63] proposed to input multiple web

images to CNNs and pool parts of the neuron activations

as the final representation for classification. Wei et al. [55]

utilized easy web data to assist semantic segmentation with

image-level labels. Shen et al. [41] proposed to utilize com-

plementary information of web and target data to generate

training masks for semantic segmentation. Hong et al. [24]

used classifiers to identify relevant spatio-temporal volumes

in web video and generated object masks for segmentation.

Webly supervised object detection. There are a few

attempts in the literature for WebSOD. Divvala et al. [11]

trained deformable part models from the web data with

Google n-grams corpora to expand the categories. Chen

et al. [7] proposed a two-stage approach to learn a detector

from web data, which initiates CNNs with simple Google

images and fine-tunes them on more complex Flickr im-

ages. Tao et al. [53] focused on knowledge transfer from

web data to target data with adversarial domain adaptation.

Different from the work in [11, 7], we reduce the negative

impact of noisy image-level labels in web data by handling

both background noise and foreground noise in an end-to-

end manner. In contrast to [53] where the target dataset is

used, we aim at fWebSOD that trains detectors using only

the web images without any image from human-annotated

datasets, e.g., PASCAL VOC [12] or MS COCO [32]. Com-

pared to WSOD and WebSOD, fWebSOD does not rely on

any other form of knowledge, e.g., manual annotations or

additional images, and is able to handle diverse and numer-

ous object categories in real-world scenarios.

3. The Proposed Method

Given a set of Nc categories, we retrieve web images

by using the category labels as the query keywords and

construct the training data D = {Ii, ti}
ND

i=1
, where Ii is

a crawled web image and ti ∈ ℜNc is the corresponding

one-hot label vector. We employ the basic WSDDN [6]

as the base model in our framework. We first extract the

features φ = {φi}
Nb

i=1
of Nb object proposals {bi}

Nb

i=1
of

an image from the backbone by a spatial pyramid pool-

ing layer [23]. The pooled features are transformed by two

fully-connected (FC) layers, which output the proposal fea-

tures φfc = {φfc
i }

Nb

i=1
. Then the proposal features are forked

into two streams, i.e., a classification stream and a detection

stream, producing two score matrices Xc, Xd ∈ ℜNb×Nc

by two FC layers, respectively. Both the score matrices are

normalized by the softmax function σ(·) over categories and

proposals, respectively:

σ(Xc)ij =
eX

c
ij

∑Nc

k=1
eX

c
ik

, σ(Xd)ij =
eX

d
ij

∑Nb

r=1
eX

d
rj

. (1)

Then the Hadamard product of the two streams outputs the

detection score matrix: Xs = σ(Xc)⊙ σ(Xd). To acquire

image-level classification scores, a sum pooling is further

applied: yk =
∑Nb

r=1
Xs

rk, where Xs
rk is the score of the

r-th proposal and the k-th category in Xs. Then we obtain
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Figure 3: Overview of the proposed framework. Our method consists of three components: First, a bagging-mixup (BM)

learning strategy constructs a set of new training images with the same foreground label to suppress the negative influence

of foreground noise from incorrect labels. Second, the residual detection (RD) head and weak detection (WD) head are

responsible for decomposing background noise and modelling clean data, respectively. Third, the proposed spatially-sensitive

entropy (SSE) criterion is utilized to estimate the confidence of trusting image-level background labels.

a baseline cross-entropy loss function Lbaseline:

Lbaseline =

Nc
∑

k=1

{

tk logyk + (1− tk) log(1− yk)
}

. (2)

Our baseline approach is to learn a detector directly on the

web data D. However, as shown in the subsequent exper-

iments, the performance of such a detector drops dramati-

cally compared to the detector trained on manual-annotated

image-level labels. One main reason is that web data is

noisy. To conquer this issue, we present an end-to-end

learning framework to reduce the negative impact of image-

level noisy labels in web data from two aspects, i.e., back-

ground noise and foreground noise, as illustrated in Fig. 3.

3.1. Noise Decomposition

To reduce the negative impact of background noise,

we propose a residual feature learning structure incorpo-

rated with weakly supervised detection to decompose back-

ground noise and model clean data. We leverage multi-task

learning to learn two detection heads, i.e., weak detection

head and residual detection head, which share the backbone.

The weak detection (WD) head has the pooled features φ

as its input and outputs proposal features φfc and detection

scores Xs, which is similar to our baseline approach. The

loss function of the WD head for category k is:

LWD
k = tk logyk + (1− tk) log(1− yk). (3)

The proposed residual detection (RD) head is targeted

for learning the residual features between reliable and un-

reliable parts in the massive noisy data. Specifically, the

pooled features φ are mapped to residual features φ̄fc =
{φ̄fc

i }
Nb

i=1
by two FC layers. We sum the residual features

φ̄fc and the proposal features φfc from the WD head to get

noise features φ̂fc = {φ̂fc
i }

Nb

i=1
, where φ̂fc

i = φ̄fc
i + φfc

i . Sim-

ilar to the WD head, φ̂fc is fed into a classification stream

and a detection stream, followed by the softmax operation

and the sum pooling, which produces image-level classifi-

cation scores ŷk =
∑Nb

r=1
X̂s

rk. Given a category k, the loss

function of the RD head is:

LRD
k = tk log ŷk + (1− tk) log(1− ŷk). (4)

Finally, we obtain the overall loss function, which is the

sum of all category-specific weighed sums of LWD
k and LRD

k :

L =

Nc
∑

k=1

{

(1− pk)L
WD
k + pkL

RD
k

}

, (5)

where pk ∈ [0, 1] is the estimated confidence of the k-th

background label being a noisy label in an image.

From the perspective of learning the relation between

clean data and noisy labels, the RD head works as a de-

composition term, which helps the WD head to utilize the

reliable information among the massive noisy data, whilst

avoiding big influence by the unreliable information. When

label of category k has low confidence of being noise, i.e.,

pk is low, the RD head is suppressed and the WD head mod-

els reliable information for category k. When pk is high,

the RD head leverages the proposal features φfc from the

WD head and produces noise features φ̂fc to predict the un-

reliable label of category k, which imposes the RD head

to decompose the noise by learning the residual features

φ̄fc. Thus, the residual learning structure jointly decom-

poses background noise and models clean data based on the

confidence p, which controls the gradient flow through the

network. The confidence p can be seen as an information

gate. We visualize the proposal scores and pixel gradient

maps of the WD and RD heads in Fig. 4. WD and RD have

high responses to ground-truth labels and foreground labels
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Figure 4: Proposal scores and the corresponding pixel gra-

dient maps of the WD and RD heads for two web images.

Figure 5: The distributions of detection results. The first

column shows input images. The last three columns ex-

plain the ideal detection results of background categories

and foreground categories, i.e., categories motorbike and

person, respectively. The figure is drawn with the jet color

scale, where the red rectangles correspond to high scores

and the blue ones to low scores.
I1 I2 Î1 Î2

Figure 6: This figure depicts bagging-mixup learning for

categories bottle (top) and train (bottom).

(FL), respectively. The two results combined from WD and

RD can decompose BN from FL. Instead of predicting the

confidence p by the model, we estimate it explicitly in on-

line fashion, which is detailed in the next subsection.

3.2. Spatially­Sensitive Entropy Criterion

We observe that the distribution of accurate detection re-

sults for background categories is spatially scattered and

numerically uniform, whilst the detection results that are

spatially clustered and numerically nonuniform may con-

tain instances of target categories, as illustrated in Fig. 5.

Motivated by this observation, for the background labels,

we resort to producing spatially scattered proposals with

low scores, whilst punishing the detection results where a

small minority of clustered proposals produce high scores.

We utilize the Shannon entropy as a sparsity indicator

to describe the conditional distribution of detection results,

which estimates the confidence p of background labels be-

ing noise. It is noted that the detection results consist of

both confidence scores and bounding boxes. Suppose we

have a result with only two bounding boxes {bA, bB} and

the corresponding detection scores { 1

2
, 1

2
} for a category. If

bA and bB have no overlap, we can estimate the entropy as

ln 2. However, if bA and bB have a large intersection-over-

union (IoU), e.g., IoU(bA, bB) ≥ 0.9, one would expect the

entropy to be lower. In the latter case, bA and bB are near

points in the bounding-box searching space, and the detec-

tion result is sparser than the former case. Therefore, it is

difficult to accurately estimate the sparsity of detection re-

sults without the spatial information of the bounding boxes.

To handle this, we propose a Spatially-Sensitive Entropy

(SSE) criterion to estimate the sparsity by introducing spa-

tial information in this subsection.

We compute the Shannon entropy of detection scores as:

Erk = −Xs
rk lnX

s
rk, (6)

where E ∈ ℜNb×Nc and Xs
rk ∈ [0, 1]. We also compute

the Jaccard index matrix J ∈ ℜNb×Nb as Jij = IoU(bi, bj),
where bi and bj denote the i-th and the j-th proposals, re-

spectively. We obtain an entropy regularizer as:

G = E ⊘ (JE), (7)

where ⊘ is the Hadamard division and G ∈ ℜNb×Nc . The

denominator term JE sums up all the entropies of individ-

ual detection scores weighted by their spatial information,

i.e., the IoU between two proposals. Then, the original en-

tropy E is divided by the weighted sum of entropies, which

is in the range of [0, 1]. Our intuition is that the entropy de-

creases according to the IoU between each pair of propos-

als. If the detection bounding boxes have no overlap with

each other, then JE = E, and G is an all-one matrix.

Then, the refined entropy after considering the spatial

information among proposals is computed as:

Ê = G⊙ E, (8)

where ⊙ is the Hadamard product. The confidence of the

background label k being noise in Eq. 5 is computed as:

pk =

{

1−
∑Nb

r
Êrk

zk
if tk = 0

0 if tk = 1
, (9)

where p, z ∈ ℜNc and zk = −yk ln
yk

Nb
. We use zk to de-

note the maximum entropy of detection results given image-

level prediction yk for the k-th category and Nb bounding

boxes. Therefore,
∑Nb

r
Êrk

zk
is in the range of [0, 1] in Eq. 9.

To further verify the above analysis, we compute the

SSE criterion p of 200 web images randomly sampled from
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Table 1: The datasets in the experiments.

Category Dataset
#Images

Training Testing

VOC

PASCAL VOC 2007 [12] - 4,952

PASCAL VOC 2012 [12] - 1,0991

Flickr-Clean [55] 41,625 -

Flickr-VOC 88,064 -

COCO
MS COCO [32] - 5,000

Flickr-COCO 335,324 -

Flickr-VOC after model training and normalize them in the

range of [0, 1]. The average Ê of foreground and back-

ground are 0.07 and 0.78, respectively. For BN, i.e., fore-

ground missing, p has an average of 0.93. The Pearson

correlation between SSE and BN is as high as 0.91.

3.3. Bagging­Mixup Learning

To reduce the negative impact of foreground noise, we

propose a novel bagging-mixup strategy for data augmenta-

tion, which is inspired by the multi-instance-bagging mech-

anism to efficiently handle incorrect labels. In particular,

the bagging-mixup strategy applies convex combinations of

all images with the same foreground label in the bag to syn-

thesize a set of training images. Therefore, bagging-mixup

aims at suppressing the probability of using incorrect labels,

whilst maintaining the diversity of training samples.

Bagging-mixup learning consists of three steps. First, we

randomly sample Na web images {Ii}
Na

i=1
with the same la-

bel t, i.e., the same foreground label. Second, we random

draw blending ratios {λi}
Na

i=1
from a Dirichlet distribution

Dir(α1, . . . , αNa
), where α1 = Naα2 = · · · = NaαNa

. Fi-

nally, bagging-mixup constructs multiple synthetic training

images with the same label:

Îi = λ1Ii +
∑{2,...,Na},{1,...,Na}\i

m,n λmIn , (10)

where i ∈ {1, 2, . . . , Na}. The visual comparisons of the

original and synthetic images are illustrated in Fig. 6. Then

the synthetic images {Îi}
Na

i=1
are fed to the model as training

samples with label t. We do not extract object proposals

from the synthetic images, which is infeasible in terms of

efficiency during training. Instead, we translate proposal

coordinates of the original images to the synthetic images.

The proposed bagging-mixup learning is distinct from

the mixup [57] in the following two aspects. First, mixup is

agnostic to the category, as it randomly samples data among

all categories. Bagging-mixup is category-specific by sam-

pling images with the same label, which is designed to be

robust to foreground noise. Second, mixup only exploits

partial information of each image pair to generate a single

image. Bagging-mixup constructs multiple synthetic im-

ages, each of which is a convex combination of all images

in the bag with the weights sampled from a Dirichlet distri-

bution, which also maintains the diversity of training data.

4. Experimental Evaluation

4.1. Training Datasets

Flickr-VOC and Flickr-COCO. We construct two new

datasets called Flickr-VOC and Flickr-COCO to train the

detectors. The categories from PASCAL VOC [12] and MS

COCO [32] are employed as queries to retrieve images from

the Flickr photo-sharing website. No other query criteria,

e.g., date of capture, photographer’s name, etc, are speci-

fied. For each category, we crawl images in about the first

4, 000 search results returned by the Flickr API. In total,

83, 905 and 335, 327 images are collected without any post-

processing for Flickr-VOC and Flickr-COCO, respectively.

Flickr-Clean [55]. Flickr-Clean [55] is constructed

from Flickr with PASCAL VOC [12] categories, which has

41, 625 images in total. Different from our Flickr-VOC,

Flickr-Clean [55] is post-processed by a salient object de-

tector (DRFI [26]) and saliency-cut segmentation [8] to re-

move noisy data and to keep only simple images. In other

words, Flickr-Clean is filtered from the original web data

and contains human annotations from [26, 8]. Therefore,

our crawled Flickr-VOC is more challenging and closer to

the real-world web dataset.

4.2. Testing Datasets

PASCAL VOC 2007 and 2012 [12]. When training on

Flickr-VOC and Flickr-Clean [55], we evaluate the detec-

tors on the test sets of PASCAL VOC 2007 and 2012 [12],

which have 4, 092 and 10, 991 test images over 20 cate-

gories, respectively. In our evaluation, we ensure that none

of the PASCAL VOC images (including the trainval and test

sets) exists in our training set.

MS COCO [32]. When training on Flickr-COCO, we

evaluate the detectors on MS COCO [32], which is among

the most challenging datasets for object detection. It con-

sists of 80 object categories. Our experiments involve 5, 000
images of MS COCO validation (minival) for testing. More

detailed statistics about these datasets are given in Tab. 1.

4.3. Evaluation Protocol

For VOC categories, Average Precision (AP) and mean

Average Precision (mAP) are used as the evaluation met-

rics. We follow the standard PASCAL VOC protocol to

report the mAP at 50% Intersection-over-Union (IoU) of

the detected boxes with the ground-truth. For COCO cate-

gories, we also report the standard COCO metrics, includ-

ing AP at different IoU thresholds and scales.

4.4. Implementation Details

The proposed approach is implemented on 4 GPUs. We

report our performance on three backbone networks, i.e.,

VGG-CNN-F [29] (VGG-F), VGG-CNN-M-1024 (VGG-
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Table 2: Comparison to the baselines for object detection on the VOC 2007 test set in terms of AP (%).
Method aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Av.

Training on PASCAL VOC 2007 trainval images with image-level annotations

WSDDN VGG-F [6] 42.9 56.0 32.0 17.6 10.2 61.8 50.2 29.0 3.8 36.2 18.5 31.1 45.8 54.5 10.2 15.4 36.3 45.2 50.1 43.8 34.5

WSDDN VGG-M [6] 43.6 50.4 32.2 26.0 9.8 58.5 50.4 30.9 7.9 36.1 18.2 31.7 41.4 52.6 8.8 14.0 37.8 46.9 53.4 47.9 34.9

WSDDN VGG16 [6] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8

Training on Flickr-VOC

WSDDN VGG-F 32.4 36.7 31.1 10.7 12.8 48.0 40.2 39.7 10.5 21.4 10.4 24.7 30.4 44.9 12.1 10.2 35.3 30.2 35.3 1.8 25.9

WSDDN VGG-M 6.6 24.3 32.3 10.8 13.8 37.3 37.5 41.5 7.6 24.4 5.5 29.6 30.0 47.9 10.4 9.7 35.1 13.9 41.4 20.7 25.5

WSDDN VGG16 35.8 39.5 35.8 9.6 10.0 51.5 39.5 41.3 7.1 22.4 7.4 31.0 33.4 47.3 13.0 9.2 32.7 27.5 44.6 14.2 27.6

Our VGG-F 45.4 38.1 38.9 20.1 13.8 60.8 42.9 55.2 16.1 29.2 9.4 33.3 30.9 52.9 14.5 14.9 37.8 28.8 49.2 26.8 32.9

Our VGG-M 45.7 38.5 36.9 20.6 16.9 55.2 38.8 57.5 14.8 25.0 10.6 38.7 39.3 51.8 16.3 13.6 38.0 34.6 46.3 26.1 33.3

Our VGG16 45.9 39.6 39.8 21.1 14.4 60.9 39.9 61.5 15.6 32.5 14.1 44.8 45.2 51.7 18.0 13.8 38.9 32.1 47.2 23.5 35.1

Table 3: Comparison to the SOTAs for object detection on the VOC 2007 test set in terms of AP (%).
Method aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Av.

Training on PASCAL VOC 2007 trainval images with proposal/image-level annotations

FSOD VGG16 [40] 70.0 80.6 70.1 57.3 49.9 78.2 80.4 82.0 52.2 75.3 67.2 80.3 79.8 75.0 76.3 39.1 68.3 67.3 81.1 67.6 69.9

WSOD VGG16 [43] 64.8 70.7 51.5 25.1 29.0 74.1 69.7 69.6 12.7 69.5 43.9 54.9 39.3 71.3 32.6 29.8 57.0 61.0 66.6 57.4 52.5

Training on web data from Google and Flickr

Divvala et al. [11] 14.0 36.2 12.5 10.3 9.2 35.0 35.9 8.4 10.0 17.5 6.5 12.9 30.6 27.5 6.0 1.5 18.8 10.3 23.5 16.4 17.1

Chen et al. Google [7] 29.5 38.3 15.1 14.0 9.1 44.3 29.3 24.9 6.9 15.8 9.7 22.6 23.5 34.3 9.7 12.7 21.4 15.8 33.4 19.4 21.5

Chen et al. Flickr [7] 30.2 41.3 21.7 18.3 9.2 44.3 32.2 25.5 9.8 21.5 10.4 26.7 27.3 42.8 12.6 13.3 20.4 20.9 36.2 22.8 24.4

Training on Flickr-Clean and PASCAL VOC 2007 trainval images

Tao et al. VGG-M [53] 35.6 31.3 18.2 7.7 9.1 40.4 38.4 23.8 9.7 20.1 33.4 22.5 30.9 41.4 9.8 10.8 18.7 28.7 27.1 34.7 24.6

Tao et al. VGG16 [53] 40.6 30.1 17.8 15.9 6.4 42.9 40.5 31.5 11.4 20.3 27.4 15.7 24.1 43.8 8.9 12.2 17.7 37.3 32.1 31.0 25.4

Training on Flickr-Clean

Our VGG-F 43.7 34.5 32.9 12.6 13.7 54.2 45.2 35.0 11.3 26.0 26.9 22.7 25.7 49.2 20.8 9.1 34.7 48.9 46.6 38.9 31.6

Our VGG-M 44.3 37.8 32.5 15.0 14.1 55.2 44.5 32.4 10.9 28.0 26.8 17.9 26.2 49.6 20.2 9.7 35.4 49.4 48.9 37.2 31.8

Our VGG16 44.6 36.6 34.3 18.6 13.8 56.7 47.2 37.7 11.6 23.3 32.5 29.1 33.3 52.6 21.5 8.9 35.5 52.4 45.3 38.2 33.7

Training on Flickr-VOC

Our VGG-F 45.4 38.1 38.9 20.1 13.8 60.8 42.9 55.2 16.1 29.2 9.4 33.3 30.9 52.9 14.5 14.9 37.8 28.8 49.2 26.8 32.9

Our VGG-M 45.7 38.5 36.9 20.6 16.9 55.2 38.8 57.5 14.8 25.0 10.6 38.7 39.3 51.8 16.3 13.6 38.0 34.6 46.3 26.1 33.3

Our VGG16 45.9 39.6 39.8 21.1 14.4 60.9 39.9 61.5 15.6 32.5 14.1 44.8 45.2 51.7 18.0 13.8 38.9 32.1 47.2 23.5 35.1

M) and deep VGG-VD16 [48] (VGG16), which are initial-

ized with the weights pre-trained on ImageNet [9].

Training. In all experiments, the size of mini-batch,

the learning rate, the momentum, the decay weight and the

dropout rate are set to 1, 0.001, 0.9, 0.0005 and 0.5, respec-

tively. We freeze all convolutional layers in our backbones

during training. To improve the robustness, we randomly

adjust the exposure and saturation of the images by up to a

factor of 1.5 in the HSV space. And a random crop with 0.9
of the original image size is applied. We use MCG [2] to

generate object proposals for all experiments, including our

baseline methods. We set the maximum number of region

proposals in an image to 2, 048. All models are trained for

200K iterations. We apply Xavier initialization [19] to ini-

tialize the new fully-connected layers. The bagging-mixup

hyper-parameter α1 is set to 1.5.

Testing. We use the output of the WD head Xs as the

final detection scores. Detection results are post-processed

by a NMS module using a threshold of 0.5 IoU.

4.5. Comparison to Baselines

We first compare the performance of WSDDN trained

on PASCAL VOC 2007 with human-annotated image-level

labels and directly trained on the Flickr data, i.e., Flickr-

VOC. As shown in the first and the second parts of Tab. 2,

the performance of the detector trained on Flickr-VOC de-

creases dramatically. Due to the noisy image-level labels

in Flickr-VOC, the performances of the three backbones

are only 25.9%, 25.5% and 27.6% in terms of mAP, with

losses of 10.1%, 9.7% and 9.3% compared to the WSDDN

models trained on PASCAL VOC 2007, respectively. Over-

all, there is a significant gap between the models trained on

the PASCAL VOC and web data. We show that the pro-

posed method on Flickr-VOC achieves the performances

of 32.9%, 33.3% and 35.1% with improvements of 7.0%,

7.8% and 7.5%, respectively. It also demonstrates that our

method outperforms the baselines by a large margin, and

reduces the gap between fWebSOD and WSOD.

4.6. Comparison with State of the Arts (SOTAs)

We compare our method with the state of the arts, in-

cluding [11, 7, 53]. Tab. 3 shows our results on the PAS-

CAL VOC 2007 test in terms of mAP. Our three mod-

els on Flickr-VOC reach 32.9%, 33.3% and 35.1% mAP

with VGG-F, VGG-M and VGG16 backbones, respectively,

which outperform the state-of-the-art algorithms. Although

Flickr-Clean has been post-processed to reduce noise, our

models trained on Flickr-VOC still achieve better perfor-

mance. As Flickr-VOC has more than twice the image num-

ber of Flickr-Clean, and our method is able to reduce the

negative impact of noise. It is worth noting that, compared

to the baseline WSDDN [6] approach, our method has the

same inference speed. Our single model VGG-F outper-

forms the state-of-the-art result 25.4% with a gain of 7.5%
in terms of mAP. Note that the comparison of data usage

between the proposed framework and the previous methods

can better reveal the significance of our work. The works

in Divvala et al. [11], Chen et al. [7] and Tao et al. [53]

all use external manual knowledge, e.g., Google Books n-

grams corpora, easy images from the Google search engine

and PASCAL VOC images. However, our method only uses

web images without any other form of knowledge.
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Table 4: Comparison to the SOTAs for object detection on the VOC 2012 test set in terms of AP (%).
Method aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Av.

Training on PASCAL VOC 2012 trainval images with proposal/image-level annotations

FSOD VGG16 [18] 82.3 76.4 71.0 48.4 45.2 72.1 72.3 87.3 42.2 73.7 50.0 86.8 78.7 78.4 77.4 34.5 70.1 57.1 77.1 58.9 67.0

WSOD VGG16 [43] - - - - - - - - - - - - - - - - - - - - 46.1

Training on Flickr-Clean and PASCAL VOC 2012 trainval images

Tao et al. VGG-M [53] 44.3 29.8 15.6 6.6 6.0 34.4 24.2 25.1 5.7 20.3 22.3 24.9 29.1 45.2 7.8 9.4 12.4 21.4 22.6 26.0 21.7

Training on Flickr-Clean

Our VGG-F 41.0 15.1 29.7 10.4 13.2 47.6 42.0 36.8 10.2 16.5 13.2 28.2 20.5 39.6 15.0 8.4 28.0 38.6 9.6 38.2 25.1

Our VGG-M 40.7 17.2 28.1 11.6 12.5 48.4 39.7 31.1 5.5 20.8 12.2 27.3 27.9 37.3 17.7 7.0 28.1 40.1 10.0 36.6 25.0

Our VGG16 39.6 18.1 30.7 8.4 12.0 51.2 42.5 42.6 9.4 20.4 16.1 23.5 26.9 41.6 17.1 7.9 29.1 39.0 9.6 39.9 26.3

Training on Flickr-VOC

Our VGG-F 40.2 33.7 38.4 12.5 13.0 52.7 40.4 41.2 13.0 24.7 18.0 31.6 32.5 51.7 12.4 11.6 33.3 30.4 40.5 22.1 29.7

Our VGG-M 42.6 36.7 36.9 17.5 14.8 53.6 38.3 44.4 13.7 28.8 19.2 24.6 26.8 52.2 11.3 10.5 39.1 26.6 42.9 21.4 30.1

Our VGG16 41.9 40.6 38.4 20.5 9.0 56.9 40.3 50.1 13.0 30.8 17.2 32.7 29.9 51.2 17.0 13.5 36.4 39.2 45.3 29.2 32.7

Table 5: Ablation study of our method for object detection on the VOC 2007 test set in terms of AP (%).
Method aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Av.

Baseline 35.8 39.5 35.8 9.6 10.0 51.5 39.5 41.3 7.1 22.4 7.4 31.0 33.4 47.3 13.0 9.2 32.7 27.5 44.6 14.2 27.6

RD 42.2 34.8 34.5 19.4 9.8 53.1 42.0 46.6 10.6 26.0 9.4 29.9 26.2 48.7 13.7 18.2 38.8 28.7 40.7 22.7 29.8

RD + EW 44.3 34.9 38.7 16.3 13.0 55.5 40.7 44.3 15.3 23.5 5.2 35.6 35.3 50.7 14.7 11.6 30.1 33.1 45.9 24.9 30.7

RD + SSE 45.4 46.9 38.3 19.8 12.4 61.7 41.5 47.1 13.9 26.1 11.8 39.1 41.6 52.8 16.3 13.7 38.4 32.0 45.7 24.6 33.4

RD + SSE-ALL 48.0 42.7 41.6 20.1 12.5 60.8 42.1 48.7 15.4 27.7 18.3 38.8 34.9 52.2 16.8 11.6 40.0 32.8 39.0 27.6 33.6

RD + SSE + BM2 45.9 39.6 39.8 21.1 14.4 60.9 39.9 61.5 15.6 32.5 14.1 44.8 45.2 51.7 18.0 13.8 38.9 32.1 47.2 23.5 35.1

RD + SSE + BM3 45.7 39.9 40.9 20.7 14.3 60.7 39.9 61.7 15.8 32.1 13.9 44.4 45.4 51.8 18.4 15.2 38.7 32.0 47.7 24.3 35.2

RD + SSE + BM4 45.9 39.0 41.4 20.6 14.3 60.5 39.5 60.9 15.3 32.1 17.2 43.7 44.5 52.3 18.0 14.6 38.7 30.9 49.3 24.1 35.1

Table 6: Result on the COCO minival set.

Method
Avg. Precision, IoU: Avg. Precision, Area:

0.5:0.95 0.5 0.75 S M L

Training on COCO train images with proposal/image-level annotations

FSOD VGG16 [18] 21.2 41.5 - - - -

WSOD VGG16 [43] 10.5 20.3 9.2 2.2 10.9 18.3

WSDDN VGG16 9.5 19.2 8.2 2.1 10.4 17.2

Training on Flickr-COCO

WSDDN VGG16 3.1 7.0 2.3 0.4 2.6 6.9

Our VGG16 5.4 10.6 4.6 0.6 5.1 10.7

In Tab. 4, we also evaluate our method on the PASCAL

VOC 2012 test. Our models consistently outperform the

state-of-the-art methods. In Tab. 6, we evaluate our method

on MS COCO. Compared to using well labelled MS COCO,

directly training the WSDDN model on Flickr-COCO re-

sults in poor performance (19.2% vs. 7.0% AP0.5). How-

ever, our framework achieves 10.6% AP0.5, which outper-

forms the state-of-the-art method by a large margin.

4.7. Ablation Study

The residual detection (RD) head. To investigate the

effect of the RD head, we set pk to 0.5 for all categories.

Thus, it always combines the gradient flow from both heads

in this setting. As shown in Tab. 5, the result of RD is

slightly better than the baseline, as it imposes the model

to learn residual features without considering noise explic-

itly. It also demonstrates that the performance gain does not

merely come from the additional parameters of RD head.

The spatially-sensitive entropy (SSE) criterion. To

further verify the effects of the SSE criterion, we first use

the original entropy to compute the confidence weight for

each background label. This is implemented by replacing

Ê with E in Eq. 9. As shown in Tab. 5, adding the original

entropy weight to the RD head (“RD + EW”) achieves 0.9%
mAP improvement over the baseline method on Flickr-

VOC. Replacing the original entropy by the SSE criterion,

“RD + SSE”, achieves a large gain of 3.6% mAP on PAS-

CAL VOC 2007 test, which demonstrates the contribution

of SSE to the overall network. We also apply the SSE cri-

terion for all categories (background and foreground). We

find that “RD + SSE-ALL” helps reduce foreground noise.

The bagging-mixup (BM) learning. We further exam-

ine the results of BM with different numbers Na of images

in a bag. In Tab. 5, we can see that the result of two images

in a bag (“RD + SSE + BM2”) is better than that without

BM (“RD + SSE”), which suggests that the combinations of

multiple images during training do help suppress the nega-

tive impact of foreground noise. We also evaluate the effec-

tiveness of increasing Na in BM. We find that the gain of

more than two images in a bag (“RD + SSE + BM3” and

“RD + SSE + BM4”) is trivial.

5. Conclusion

In this work, we focus on training object detectors using

only web supervision without requiring any other form of

knowledge, e.g., manual annotations or additional images.

As image-level labels on the web contain heterogeneous

noise, we categorize them into two types, namely back-

ground noise and foreground noise. To this end, we present

an end-to-end learning framework to learn webly super-

vised detectors and reduce the negative impact of noisy la-

bels. The proposed framework outperforms the baseline

methods and sets new state-of-the-art results on the PAS-

CAL VOC and MS COCO in the task of fWebSOD.
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