
Fast Texture Synthesis via Pseudo Optimizer

Wu Shi Yu Qiao

ShenZhen Key Lab of Computer Vision and Pattern Recognition,

SIAT-SenseTime Joint Lab, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society

wu.shi@siat.ac.cn yu.qiao@siat.ac.cn

Abstract

Texture synthesis using deep neural networks can gener-

ate high quality and diversified textures. However, it usually

requires a heavy optimization process. The following works

accelerate the process by using feed-forward networks, but

at the cost of scalability. diversity or quality. We propose a

new efficient method that aims to simulate the optimization

process while retains most of the properties. Our method

takes a noise image and the gradients from a descriptor net-

work as inputs, and synthesis a refined image with respect

to the target image. The proposed method can synthesize

images with better quality and diversity than the other fast

synthesis methods do. Moreover, our method trained on a

large scale dataset can generalize to synthesize unseen tex-

tures.

1. Introduction

The pioneering work of Gatys et al. [5] can generate

high-quality and diversified texture images given an exam-

ple image. Their key idea is to match the statistics of the

synthesized image with the reference image by using an

iterative optimization process. The reference statistics are

extracted by a descriptive network that is trained on recog-

nition tasks. This process requires numerous steps to mod-

ify the synthesized image based on the gradient information

from the descriptive network until it is close to the refer-

ence statistics enough. It typically takes several minutes to

synthesize an image of a moderate size even with a modern

GPU.

Several following works [21, 13, 10, 14] have been pro-

posed to accelerate the inference process, but at the cost of

scalability, diversity or quality. [21] trains a feed-forward

network to synthesize a single target texture by imposing

the texture loss [5] on the synthesized image. The main

shortcoming is that the trained network cannot generate new

textures except for the one used in training. [13] designs

a deep neural network with conditional labels to synthe-

 x

 Δx x

GradientsTexture
Loss

L-BFGS
or Adam

 Δx

Gradients

Pseudo
Optimizer

n steps

Texture
Loss

one step

Figure 1. We propose a feed-forward framework, Pseudo Opti-

mizer, to simulate the optimization process of [5] in one step.

size multiple textures in a user-controlled manner. This

method greatly extends the scalability of the synthesis net-

work. However, this method cannot generate novel textures

in an online manner like [5]. [10] proposes to use Adaptive

Instance Normalization to do fast arbitrary style transfer. In

this method, the activations of the input image are normal-

ized and then scaled and shifted by the statistics of the ref-

erence image. Thus, the reference image can be inserted

at the inference time adaptively. It is shown to generalize

well in the task of style transfer. WCT [14] further extends

the linear transformation to a combination of whitening and

coloring transforms. This method computes the covariance

matrices from the features and uses the SVD decomposi-

tion to compute the transform matrix. This is not suitable

for computing on GPU. We notice that the common idea of

their methods is to integrate the information to change from

the input image to the reference image with the transform

network.

We incorporate the idea of fast feed-forward methods

into the optimization-based method and propose a novel

fast texture synthesis framework named Pseudo Optimizer

(PO). In our framework, the optimization process of [5] is

reduced to a prediction problem by training a feed-forward

network to map the gradient information to the optimal so-

lution (Figure 3). We make a careful investigation into the

5498

computation path of the optimization process and conclude

that the process can be implemented by a feed-forward

network and some arithmetic operations depending on the

choice of the optimizer. Unfolding the iterative optimiza-

tion algorithms into feed-forward neural networks has been

employed in the area of compressive sensing [7, 24]. As

neural networks are known to be good universal approxima-

tors [20], we replace the backward part of the optimization

process by a learnable network and train the network to ap-

proximate the iterative optimization process. Our method

has the following advantages:

• Efficient. The numerous iterative optimization steps

are replaced by a single forward pass of the proposed

network. The inference time is reduced from several

minutes to < 0.1 second per image. The network is

fully convolutional and can generate images with arbi-

trary size after training.

• Adaptive. Our method is designed to be self-

supervised and can learn from large-scale datasets.

The target texture is integrated in an online manner like

Gatys et al.’s method during inference phase.

• Diverse. An incremental learning mechanism is de-

signed to make it difficult for the model to memorize

each target images and thus the model produces diver-

sified results. We further propose a progressive archi-

tecture to encourage the locality of synthesized results.

We conduct extensive experiments to validate the ef-

fectiveness of our framework. Comparing with the slow

optimization-based method, the proposed network can gen-

erate visually pleasing results in near real-time. The quali-

tative and quantitive results show that our method outper-

forms the other fast texture synthesis methods in the as-

pects of quality, diversity, and scalability. The code is avail-

able at https://github.com/swift-n-brutal/

syntex.

2. Related Work

Traditional methods Texture synthesis is defined as a

problem of sampling from a probability distribution in many

traditional methods. Heeger and Bergen [9] refine a random

noise image to match the histograms of filter response in an

image pyramid. Simoncelli and Portilla [17] use the first

and second order statistics of wavelet coefficients to model

textures. The major drawback of these methods is the lim-

ited expressive power. Zhu et al. [27] build a texture model

based on a Markov Random Field over the response of fil-

ters and synthesize textures using Gibbs sampling. Efros

and Leung [4] propose a sequential model by synthesiz-

ing one pixel at a time based on synthesized pixels and a

Markov Random Field model. [3] improves the previous

method via a process called image quilting. While these

methods can produce good results, their inference time is

notoriously long due to the difficulty of convergence or the

sequential synthesis procedure.

Optimization-based methods Recently Gatys et al. [5]

propose a successful texture synthesis method by matching

the statistics of the synthesized image with the reference im-

age. Starting from a white noise image, they gradually re-

fine the image using an iterative optimization method until

it matches with the reference statistic closely enough. Fol-

lowing the same idea, [1] incorporates long-range consis-

tency statistics to the objective function and generates tex-

tures with certain spatial structures. [19] matches the statis-

tics across scales of a Gaussian pyramid to synthesize su-

perior high-resolution textures. [23] uses histogram losses

to synthesize texture and makes the optimization process

more stable. citesendik2017deep introduces a structural

energy to capture the self-similarities and regularities. All

of these methods have a common shortcoming that it re-

quires a heavy optimization process which is both time and

memory consuming.

Efficient methods Several following methods [21, 13, 10,

14, 25] aim to accelerate the inference process of [5]. [21]

imposes the texture loss [5] on the output of a feed-forward

network. The network is trained to map from a set of

noise images of different sizes to the texture image. [25]

proposes an adversarial expansion approach to synthesize

a non-stationary texture image. The drawback is that the

trained network can only synthesize textures similar to the

one used during training. [13] designs a deep neural net-

work with conditional labels to synthesize multiple textures

in a user-controlled manner. They propose the selection unit

and the incremental learning algorithm to greatly extend the

scalability of the synthesis network. Moreover, they intro-

duce a diversity loss to prevent the network from mode-

collapse [6]. However, their method cannot generate novel

textures outside of the training dataset. In the area of style

transfer which is closely related to texture synthesis, [10]

proposes to use Adaptive Instance Normalization to do fast

arbitrary style transfer. It inspires a lot of adaptive meth-

ods for style and domain transfer [11, 15]. WCT [14] fur-

ther extends the linear transformation to a combination of

whitening and coloring transforms on the covariance matri-

ces. The common idea of their methods is to integrate the

information to change from the input image to the reference

image with the transform network. To make our framework

adaptive as well, we employ the per-layer gradients from

the texture loss as the information for transform.

Unfolding optimization algorithm Unfolding iterative

optimization algorithms into feed-forward neural networks

5499

has been applied in the areas of compressive sensing [7, 24],

and image processing [16]. An advantage of these network-

based methods is that they do not require an iterative pro-

cess. This effectively reduces the time needed comparing

with their optimization-based counterparts. As neural net-

works are known to be good universal approximators [20],

we replace the backward part of Gatys et al.’s method by a

learnable network and train the network to approximate the

iterative optimization process.

3. Method

Texture synthesis aims to infer a generative model from

an example texture, which can then synthesize new images

similar to the given texture. The optimization-based method

can generate high-quality and diverse images but requires a

long inference time. We propose to reduce the optimization

process into a prediction problem by training a feed-forward

network mapping the gradients of the objective function to

the optimal solution. In this way, the optimization can be

done in a single forward pass. The logical flow is shown as

follows. We first recap the optimization-based method us-

ing CNN in Sec. 3.1, and then analyze the feasibility of un-

folding the optimization loop into a feed-forward network

in Sec. 3.2. In Sec. 3.3, we delicately design a new feed-

forward network named Pseudo Optimizer (PO) to simulate

the optimization process. The network takes gradient in-

formation from the texture loss for a single target image

as input and predicts the modification direction to the in-

put image. In Sec. 3.4, we introduce an adaptive exten-

sion (AdaPO) to the PO network by simply training it on a

set of different target images. We explain the reasonable-

ness of “adaptive” by illustrating its relations to AdaIN and

WCT. In Sec. 3.5, we propose a progressive model (ProPO)

consisting of multi-stage refinements, which is a serial of

AdaPO networks. Each sub-network has independent pa-

rameters and different objectives. The progressive architec-

ture improves the quality and diversity of results.

3.1. Texture Synthesis using CNN

The authors of [5] reduce texture synthesis to the prob-

lem of sampling from the set of images that match the

spatial summary statistics of the example texture image.

They use the VGG19 network [18], a convolutional neu-

ral network trained on object classification, to extract a

set of powerful descriptive feature activations: {F (l) ∈

R
N(l)×C(l)

}Ll=1, where (l) is the index of layer, N (l) is the

spatial dimension and C(l) is the number of channels in

layer (l). The summary statistics are defined by the cor-

relations, i.e. the Gram matrix1 G(l) ∈ R
C(l)×C(l)

, between

1The notation is different from the one in the original paper. Here we

use the normalized Gram matrix to counteract the change of image size.

VGG

VGG

 Input

 Target

G

(1)

G

(2)

G

^

(1)

G

^

(2)

G

^

(3)

 Grad

Optimizer

Forward signal

Backward signal Adam/L-BFGS

Input Gram matrix

Target Gram matrix

L2 loss

G

(3)

Figure 2. Texture synthesis using CNN [5]. The architecture and

parameters are mainly designed for forward usage, and thus, may

not be suitable for efficient texture synthesis. In Section 3.3, we

replace the backward signals (red arrows) by a learnable network

to synthesize in one step.

the responses of different features:

G
(l)
ij =

1

N (l)

∑

k∈[N(l)]

F
(l)
k,iF

(l)
k,j , i, j ∈ [C(l)]. (1)

To synthesize a new texture given the example image x̃, they

pose the generation process as an optimization problem by

solving

argmin
x∈X

Ltex(x, x̃; [L]) =

L
∑

l=1

∥

∥

∥
G(l)(x)−G(l)(x̃)

∥

∥

∥

2

2
,

(2)

where X is the image space and [L] denotes the set of lay-

ers involved in the calculation. The objective function Ltex

is usually named as texture loss in the related works. In

practice, local optimization methods (e.g., Adam [12] and

L-BFGS [26]) are used to refine the image being gener-

ated. Specifically, the initial image is sampled from a noise

distribution x ∼ Z and the optimizer iteratively refine the

image x based on the current (and/or the history of) gra-

dient ∂Ltex/∂x. The optimization step is often repeated

hundreds of times to derive a high-quality texture image.

5500

Typically it takes more than one minutes to synthesize a

256x256 image, which is not acceptable for fast texture syn-

thesis applications.

3.2. Unfolding Optimization Loop

The idea of unfolding iterative optimization algorithms

into feed-forward neural networks has been applied in the

area of compressive sensing [7, 24]. In this subsection,

we justify conceptually the feasibility of unfolding the opti-

mization process of [5] using common components in neu-

ral networks. For synthesizing a single texture, the target

Gram matrices are computed once and fixed during opti-

mization. The effective optimization loop is surrounded by

the dashed box in Figure 2. The forward signal is passed

through the adjusted VGG network [5] to compute the tex-

ture loss given in Eq. 2. The network consists of several

convolutional layers followed by ReLU layers, and occa-

sionally average pooling layers for downsampling. The

backward signal (red arrows) can be divided into two parts:

(1) calculating the gradient of loss with respect to the input,

and (2) refining the gradient using the optimizer. For the

operations in (1), ∂Ltex/∂F
(l) is a series of matrix-vector

multiplications and can be implemented by a 1x1 convo-

lutional layer. The gradient of a convolutional layer is a

transposed convolutional layer with shared parameters. The

gradient of a ReLU layer is a gated layer, and that of an aver-

age pooling layer is a tiled (or nearest neighbor upsampling)

layer with a constant multiplier. Thus, the computation of

(1) can be implemented by a feed-forward network. For (2),

it depends on the choice of the optimizer:

• Adam [12] is an efficient optimization method using

only the first-order gradients. This method keeps the

moving average statistics of elementwise mean and

variance of the gradients and computes the adaptive

learning rate for each parameter. The computation can

be done by using basic arithmetic operations following

the formula.

• L-BFGS [26] is a Quasi-Newton optimization method.

It maintains a history of gradients and updates and ad-

justs the direction of the new step by the history infor-

mation. Most operations are inner-product of vectors

and basic arithmetics. The only tricky part is the line

search step which requires trial and error, and this can

be implemented by a conditional loop. For detailed

discussions, we refer the readers to the supplementary

materials.

Therefore, the optimization step can be conceptually im-

plemented by a feed-forward network with some additional

arithmetic operations depending on the optimizer. The op-

timization process simply repeats the step for hundreds of

times and finally derives a long computation graph.

PO

VGG

 Input

 Delta

Feature map

Loss

Gradient Convolution

Resblock x r NN upsample + conv

Elementwise add

Target Gram

Figure 3. Pseudo optimizer (PO). Our method aims to simulate

the optimization process using a feed-forward network. The PO

module takes the per-layer gradients calculated from the descrip-

tive network (VGG19) as input and predicts the change to refine

the input image. The updater being used is simply an elementwise

addition.

3.3. Pseudo Optimizer

Unfolding the optimization loop only provides a way to

interpret the iterative algorithm in a feed-forward manner.

However, the computation time remains unchanged. One

way to reduce the computation time is to limit the num-

ber of unfolded iterative steps, but this is achieved at the

cost of quality. We observe that the calculation of gradi-

ent is closely coupled with the descriptive network which is

mainly trained for usage in the forward direction, and thus

may not be suitable for efficient texture synthesis. We del-

icately design a new feed-forward network named Pseudo

Optimizer (PO) to simulate the optimization process. The

architecture is demonstrated in Figure 3.

The PO network reuses the forward part of the descrip-

tive network (black arrows in Figure 2) to extract the gradi-

ent information and replaces the backward part (red arrows

in Figure 2) with a learnable network. Specifically, it takes

the per-layer gradients of the texture loss (2) as inputs and

predicts the pixel-wise modification ∆x to the input image:

∆x = PO

(

{

∂Ltex(x, x̃; [L])

∂F (l)(x)

}L

l=1

)

. (3)

We write the function on the right as PO[L](x, x̃) for short.

As neural networks are known to be good universal approx-

imators [20], we can train the network to output the optimal

solution of (2). However, this is not feasible in practice,

5501

because each noise input may correspond to different local

optimum and it takes a too long time to compute the opti-

mum. Therefore, instead of finding the local optimum for

each input, we encourage the modified image to be close

to the optimal solution of (2) by again applying the texture

loss to the output and train the network PO[L] to minimize

the following objective:

S [L](x̃) , E
x∼Z

Ltex(x+∆x, x̃; [L]). (4)

3.4. Adaptive Pseudo Optimizer

The original optimization-based method [5] is a fully

adaptive method. That is, the target texture image can be an

arbitrary image and does not need to be seen by the model

before. To make our PO network an adaptive method, the

input of the network, i.e. the per-layer gradients, needs to be

descriptive enough. In the following, we discuss the relation

between our method and adaptive instance normalization, a

key component in adaptive texture synthesis and style trans-

fer.

Relation to Adaptive Instance Normalization Adaptive

instance normalization (AdaIN) is widely used in fast adap-

tive texture synthesis and style transfer [10, 14]. Basically,

the activations in some layer of a network is normalized and

then transformed by the statistics of the target image x̃:

F
(out)
k,i =

√

σ2
i (F̃)

σ2
i (F) + ǫ

(Fk,i − µi(F)) + µi(F̃), (5)

where F := F (x), F̃ := F (x̃), µi and σ2
i are the instance-

channel-wise mean and variance. WCT [14] further extends

the linear transform to a combination of whitening and col-

oring transforms. Their common idea is to integrate the

information to change from the input domain to the target

domain with the transform. Our method uses the per-layer

gradients as such information:

∂Ltex(x, x̃)

∂F
(l)
k,· (x)

=
4

N (l)

(

G(l)(x)−G(l)(x̃)
)

F
(l)
k,· (x). (6)

The transform matrix is defined by the difference between

the input and target Gram matrices with a constant multi-

plier.

Training an adaptive pseudo optimizer (AdaPO) is quite

straightforward by using a set of target images {x̃i}
n
i=1. The

training objective is defined as follows:

S
[L]
ada({x̃i}

n
i=1) ,

1

n

n
∑

i=1

S [L](x̃i). (7)

∼ Zx

[0]

PO

[1]

Target x~

VGG stage 1

PO

[2]

x

[1]

VGG stage 2

PO

[3]

x

[2]

VGG stage 3

x

[3]

VGG full

S

[3]

S

[2]

S

[1]

Figure 4. Progressive Pseudo Optimizer (ProPO). The actual num-

ber of stages is 5. To save space, we only draw 3 in this figure.

3.5. Progressive Pseudo Optimizer

We further propose a progressive architecture (Figure 4)

for training stabililty and diversified results. The progres-

sive model (named ProPO) consists of multi-stage refine-

ments. At the first stage, the PO network takes the noise

input x[0] and employs the first level of texture loss to re-

fine the input image. In the following stages, higher levels

of texture loss are gradually added to the objectives and the

PO network refines the output from the previous stage. For-

mally, the intermediate images are defined by:

x[0] ∼ Z(the noise distribution), (8)

x[m] = x[m−1] + PO[m](x[m−1], x̃), 1 ≤ m ≤ L,(9)

and x[L] is regarded as the final output. We impose the tex-

ture loss corresponding to the level of input gradients on

the intermediate results. The final objective function is the

average of texture losses from all stages:

S [L]
pro({x̃i}

n
i=1) ,

1

L

L
∑

m=1

1

n

n
∑

i=1

E
x[0]∼Z

Ltex(x
[m], x̃i; [m]).

(10)

4. Experiments

4.1. Experimental Setup

Dataset We collect a small dataset consisting of 47 floral

images from the internet for illustration purpose, and con-

duct some preliminary experiments on this dataset. Addi-

tionally, we use the Describable Texture Dataset [2] (DTD),

a larger dataset, for testing the robustness and scalability of

our method. This dataset consists of 47 texture categories

and each contains 120 images. We resize the shortest edge

of images to 256 and randomly crop and flip patches from

the images for data augmentation.

Baselines We summarize the properties of related base-

line methods in Table 1. TextureNet [21] is designed for

synthesis a single texture and is not scalable to multiple or

adaptive syntheses. AdaIN [10] is designed for a closely

5502

Method Speed Scalability

Gatys et al. [5] slow arbitrary

TextureNet [21] fast single

MultiTexture [13] fast multiple

AdaIN [10] fast arbitrary

WCT [14] fast arbitrary

PO (ours) fast arbitrary
Table 1. Comparison of texture synthesis methods in aspects of

speed and scalability. “Single” means the network is trained to

synthesize a single texture. “Multiple” means the network is

trained to synthesize a fixed set of textures. “Arbitrary” means the

network is fully adaptive and can synthesizes in an online manner.

related task, style transfer. Although their model can be

adapted to transfer a noise image, we find their synthesized

textures are not satisfactory and thus exclude their model

from our baselines. In the Section 4.2, we mainly com-

pare the performance of Gatys et al. [5], MultiTexture [13],

WCT [14] and our method. We use the projects of base-

lines that can be publicly downloaded from the Internet for

the experiments.

Training details Following the setting of [5], five levels

of feature maps are extracted from conv1 1, pool1, pool2,

pool3 and pool4 layers in the VGG19 network. We num-

ber them from 1 to 5 and set L = 5 for all models. The

architecture of the PO network is shown in Figure 3. The

per-layer gradient is first passed through two convolutional

layers and r = 2 residual blocks [8] and then upsampled

to match the size of the next feature map. We use the near-

est neighbor upsampling followed by a convolutional layer.

The outputs of convolutional layers are followed by Instan-

ceNorm [22] and Leaky ReLU layers. We use the ProPO

structure in all the experiments because it produces results

with better quality and richer diversity than what AdaPO

does. Later they are compared in the ablation study. We

train the ProPO model to minimize the objective (10) using

Adam [12] optimizer. The hyperparameters are set as fol-

lows: batchsize = 1, lr = 2e − 4, beta1 = 0.5, beta2 =
0.999. The number of training iterations is 800K and the

learning rate is linearly decreased to 0 after 400K iterations.

4.2. Experimental Results

In the following, we present the experimental results of

baseline methods and ours and compare their performance

in the aspects of efficiency, quality, diversity, and scalabil-

ity. More results of our method (ProPO) can be found in

Figure 6.

Comparison with Gatys et al. [5] is a fully adaptive

method that can produce high-quality and diversified re-

sults. The main drawback is that it requires a heavy op-

Figure 5. Curves of texture loss. Gatys et al.’s method finally out-

performs the other three feed-forward methods. While our meth-

ods can synthesize over 13 images per second on a single GPU.

timization process. We compare the trade-off between the

quality and efficiency of this method and ours. We report

the texture loss (2) in Table 2 and plot the loss curves over

time (iterations) in Figure 5. Gatys et al.’s method con-

verges approximately after 400 iterations and achieves a

superior texture loss comparing to other fast feed-forward

methods and ours. However, it takes more than one minute

to synthesize that using a 2080 Ti GPU and 16 CPU cores.

Our unoptimized code can synthesize over 13 images per

second on a single GPU, which outperforms Gatys et al.’s

method by a large margin. The qualitative results can be

viewed in Figure 6. We can see that the synthesized images

(6th columns) are very similar to the target images (the last

column) in both aspects of coarse and fine structures.

Comparison with fast feed-forward methods. For the

fast feed-forward methods, we focus on comparing their di-

versity and scalability. Diversity can measured by the diver-

sity loss defined in [13]. We modify the formula by taking

the expectation of the loss in a set of synthesized images

{xi}
b
i=1:

Ldiv({xi}
b
i=1) = E

i 6=j

∥

∥

∥
F (div)(xi)− F (div)(xj)

∥

∥

∥

1
, (11)

where F (div) is the feature map at the conv4 2 layer of the

VGG19 network. Following their setting, we synthesize

b = 5 images for each texture and compute the diversity

loss for each method respectively. The numeric results are

listed in Table 2. We can see that our method generally

outperforms the other two fast feed-forward methods. The

qualitative results are shown in Figure 7. Our synthesized

texture images present richer diversity in both coarse and

fine details. For validating the robustness and scalability,

we train our method with the same structure on DTD. The

training data size increases from 47 to 5760. All of the three

methods have a raise in the texture loss. Our method still

5503

Input x[0]

x

[1]

x

[2]

x

[3]

x

[4] Ours x[5] Target x̃ Gatys et al.

Figure 6. Results of ProPO. The leftmost column contains the input noise images x[0]
∼ Z. The second to the fifth columns contain the

results of x[1], x[2], x[3], x[4] respectively. The sixth column contains the output of our method, x[5]. The seventh column contains the

target texture images x̃. The rightmost column contains the results of Gatys et al. [5].

achieves the best performance. We further test our method

on unseen images collected from the Internet. The results

are demonstrated in Figure 8. Most colors and textures can

be preserved, which shows that our method can generalize

to unseen images. While some large-scale patterns cannot

be recognized and this is to be investigated in the future.

4.3. Ablation Study

Design of architecture When training using the single-

stage model, AdaPO, we find that the texture loss is in gen-

eral higher than the one using ProPO. Moreover, we of-

ten observe frame-like artifacts in the synthesized images

of AdaPO (Figure 9). We believe that it is very difficult

5504

Figure 7. Synthesized results (the three on the left) using the same

target image (right) and different noise inputs.

Figure 8. Synthesized results (left) of unseen images (right).

Method Quality ↓ Diversity ↑
Floral DTD Floral

Gatys et al. [5] 90.1 N/A 433.2

MultiTexture [13] 719.8 6639.0 385.9

WCT [14] 2042.5 6673.2 309.3

PO (ours) 645.9 4672.5 397.1
Table 2. Comparison of adaptive (multiple) texture synthesis meth-

ods. Quality is measured by the texture loss (2) (the lower the bet-

ter). Diversity is measured by the diversity loss (11) (the higher

the better). It takes a too long time to synthesize images on DTD

using Gatys et al.’s method. So we omit their results on DTD. We

want to mention that their results usually achieve better quality and

richer diversity.

Figure 9. Results of AdaPO. Frame-like artifacts are frequently

observed in the synthesized results (left).

to directly synthesize from a noise image to an image that

matches the full levels of texture features. Inspired by [14],

we propose the multi-stage model (ProPO) to synthesize the

output by gradually matching the features from lower levels

to higher levels. Taking the first stage PO[1] (Figure 4) as

example, the neuron in the first layer has a small receptive

field and it is responsible for low-level features, like colors.

It is relatively easier to synthesize a small color patch from

a noise input. The multi-stage effects can be observed in

Figure 6. We also observe that the multi-stage structure re-

sults in richer diversity. We conjecture that the progressive

structure can encourage the locality of our optimizer as the

output is synthesized incrementally and the following PO

modules tend to make as little modification as possible to

the previous results.

Extended objective function We observe that our frame-

work is not tied to texture loss. The only requirement is

that the objective is differentiable. This allows us to use

extended texture losses, e.g. shifted Gram matrix [1] and

multi-scale Gram matrix [19]. We show some results using

the objective of [1] in the supplementary materials.

5. Conclusion

We propose a new framework, named Pseudo Optimizer

(PO), for fast texture synthesis. Our method simulates the

optimization process of Gatys et al.’s method [5] using a

feed-forward network (AdaPO). The network takes the per-

layer gradients from the texture loss to predict the modi-

fication to make the input closer to the optimal solutions.

We further proposed a progressive architecture (ProPO) to

improve the quality and diversity of synthesized images.

Both networks are fully adaptive and can synthesize images

controlled by the target image both inside and outside of

the training dataset. Extensive experiments are conducted

on two datasets. Our model can synthesize visually pleas-

ing and high-quality texture images in near-realtime. Our

method outperforms other fast synthesis methods in aspects

of quality, diversity, and scalability.

Although our method runs faster than Gatys et al.’s

method in the inference phase, there are still opportunities

for further improvements in the quality. We also plan to

investigate the performance on large-scale self-supervised

learning tasks using different objective functions.

Acknowledgement This work is partially supported by

Science and Technology Service Network Initiative of

Chinese Academy of Sciences (KFJ-STS-QYZX-092),

Guangdong Special Support Program (2016TX03X276),

and National Natural Science Foundation of China

(U1813218, U1713208), Shenzhen Basic Research Pro-

gram (JCYJ20170818164704758, CXB201104220032A),

the Joint Lab of CAS-HK, Shenzhen Institute of Artificial

Intelligence and Robotics for Society.

5505

References

[1] Guillaume Berger and Roland Memisevic. Incorporat-

ing long-range consistency in cnn-based texture generation.

arXiv: Computer Vision and Pattern Recognition, 2016. 2, 8

[2] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy

Mohamed, and Andrea Vedaldi. Describing textures in the

wild. In The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), June 2014. 5

[3] Alexei A. Efros and William T. Freeman. Image quilting for

texture synthesis and transfer. In Proceedings of the 28th

Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’01, page 341–346, New York, NY,

USA, 2001. Association for Computing Machinery. 2

[4] A. A. Efros and T. K. Leung. Texture synthesis by non-

parametric sampling. In Proceedings of the Seventh IEEE In-

ternational Conference on Computer Vision, volume 2, pages

1033–1038 vol.2, 1999. 2

[5] Leon Gatys, Alexander S Ecker, and Matthias Bethge. Tex-

ture synthesis using convolutional neural networks. In Ad-

vances in Neural Information Processing Systems 28, pages

262–270. Curran Associates, Inc., 2015. 1, 2, 3, 4, 5, 6, 7, 8

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances

in Neural Information Processing Systems 27, pages 2672–

2680. Curran Associates, Inc., 2014. 2

[7] Karol Gregor and Yann LeCun. Learning fast approxima-

tions of sparse coding. In Proceedings of the 27th Inter-

national Conference on International Conference on Ma-

chine Learning, ICML’10, pages 399–406, USA, 2010. Om-

nipress. 2, 3, 4

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2016. 6

[9] David J. Heeger and James R. Bergen. Pyramid-based tex-

ture analysis/synthesis. In Proceedings of the 22nd Annual

Conference on Computer Graphics and Interactive Tech-

niques, SIGGRAPH ’95, page 229–238, New York, NY,

USA, 1995. Association for Computing Machinery. 2

[10] Xun Huang and Serge J. Belongie. Arbitrary style transfer

in real-time with adaptive instance normalization. In IEEE

International Conference on Computer Vision, ICCV 2017,

Venice, Italy, October 22-29, 2017, pages 1510–1519, 2017.

1, 2, 5, 6

[11] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.

Multimodal unsupervised image-to-image translation. In The

European Conference on Computer Vision (ECCV), Septem-

ber 2018. 2

[12] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA,

May 7-9, 2015, Conference Track Proceedings, 2015. 3, 4, 6

[13] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,

and Ming-Hsuan Yang. Diversified texture synthesis with

feed-forward networks. In 2017 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR). IEEE, July

2017. 1, 2, 6, 8

[14] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,

and Ming-Hsuan Yang. Universal style transfer via feature

transforms. In Advances in Neural Information Processing

Systems 30, pages 386–396. Curran Associates, Inc., 2017.

1, 2, 5, 6, 8

[15] Mingyu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo

Aila, Jaakko Lehtinen, and Jan Kautz. Few-shot unsuper-

vised image-to-image translation. arXiv: Computer Vision

and Pattern Recognition, 2019. 2

[16] Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm

unrolling: Interpretable, efficient deep learning for signal

and image processing. arXiv: Image and Video Processing,

2019. 3

[17] Eero P. Simoncelli and Javier Portilla. Texture characteriza-

tion via joint statistics of wavelet coefficient magnitudes. In

Proc. 5th Int’l Conf. on Image Processing Chicago, IL, pages

4–7. IEEE Computer Society, 1998. 2

[18] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv:

Computer Vision and Pattern Recognition, 2014. 3

[19] Xavier Snelgrove. High-resolution multi-scale neural texture

synthesis. In SIGGRAPH Asia 2017 Technical Briefs, SA

’17, pages 13:1–13:4, New York, NY, USA, 2017. ACM. 2,

8

[20] Sho Sonoda and Noboru Murata. Neural network with un-

bounded activation functions is universal approximator. Ap-

plied and Computational Harmonic Analysis, 43(2):233 –

268, 2017. 2, 3, 4

[21] Dmitry Ulyanov, Vadim Lebedev, Andrea, and Victor Lem-

pitsky. Texture networks: Feed-forward synthesis of textures

and stylized images. In Proceedings of The 33rd Interna-

tional Conference on Machine Learning, volume 48 of Pro-

ceedings of Machine Learning Research, pages 1349–1357,

New York, New York, USA, 20–22 Jun 2016. PMLR. 1, 2,

5, 6

[22] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky.

Instance normalization: The missing ingredient for fast styl-

ization. CoRR, abs/1607.08022, 2016. 6

[23] Pierre Wilmot, Eric Risser, and Connelly Barnes. Stable and

controllable neural texture synthesis and style transfer using

histogram losses. CoRR, abs/1701.08893, 2017. 2

[24] Jian Zhang and Bernard Ghanem. Ista-net: Interpretable

optimization-inspired deep network for image compressive

sensing. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2018. 2, 3, 4

[25] Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel

Cohen-Or, and Hui Huang. Non-stationary texture synthesis

by adversarial expansion. ACM Trans. Graph., 37(4), July

2018. 2

[26] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge No-

cedal. Algorithm 778: L-bfgs-b: Fortran subroutines for

large-scale bound-constrained optimization. ACM Trans.

Math. Softw., 23(4):550–560, Dec. 1997. 3, 4

[27] Song Chun Zhu, Yingnian Wu, and David Mumford. Fil-

ters, random fields and maximum entropy (frame): Towards

5506

a unified theory for texture modeling. International Journal

of Computer Vision, 27(2):107–126, Apr. 1998. 2

5507

