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Abstract

As an effective black-box adversarial attack, decision-

based methods polish adversarial noise by querying the tar-

get model. Among them, boundary attack is widely applied

due to its powerful noise compression capability, especially

when combined with transfer-based methods. Boundary at-

tack splits the noise compression into several independent

sampling processes, repeating each query with a constant

sampling setting. In this paper, we demonstrate the advan-

tage of using current noise and historical queries to cus-

tomize the variance and mean of sampling in boundary at-

tack to polish adversarial noise. We further reveal the rela-

tionship between the initial noise and the compressed noise

in boundary attack. We propose Customized Adversarial

Boundary (CAB) attack that uses the current noise to model

the sensitivity of each pixel and polish adversarial noise

of each image with a customized sampling setting. On the

one hand, CAB uses current noise as a prior belief to cus-

tomize the multivariate normal distribution. On the other

hand, CAB keeps the new samplings away from historical

failed queries to avoid similar mistakes. Experimental re-

sults measured on several image classification datasets em-

phasizes the validity of our method.

1. Introduction

Adversarial examples [29, 22] have revealed the inher-

ent vulnerability of deep neural networks (DNNs). Based

on attackers’ knowledge of the target model [23], adversar-

ial attacks can be divided into white-box attacks and black-

box attacks. In black-box attack, attackers can only query

target model and get the hard-label predictions without ac-

cess to complete knowledge of target model. Transfer-

based attacks [13, 18, 8, 9, 25], decision-based attacks

[32, 10, 2, 25], and attacks based on zeroth order opti-

mization [5, 20, 31] are three mainstream black-box attacks.

∗Corresponding author.

Among them, decision-based attacks squeeze out noise by

randomly searching in the input space of original image. It

requires neither substitute models as transfer-based attacks

nor a thorough query to the target model as zeroth order

optimization, and can generate adversarial noise with rela-

tively small magnitude under limited queries. Several recent

studies [2, 1, 7] indicates that, a combination of transfer-

based attacks and decision-based attacks achieves the state-

of-the-art black-box attack effect.

Constructing adversarial examples is not to simply fool

DNNs, but to quantitatively evaluate the robustness of tar-

get model. By continuously polishing adversarial pertur-

bation, we can gradually achieve an accurate evaluation of

the minimum noise magnitude for misclassification. For an

image classifier, the minimum noise required to misclassify

each image, the reasonable query direction in each stages

of one attack process, and even the sensitivity of each pixel

in an image are all different [11]. Therefore, an accurate

evaluation on the robustness of one target model requires

customization of each image and its attack process. White-

box attacks directly model the correlation between pixels

and categories by back-propagation [13, 3]. For black-box

attacks, the only clue available for attackers is the historical

query, which is an unbiased characterization of each pixel’s

noise sensitivity. However, most existing decision-based at-

tacks [1, 2] use constant sampling settings independent of

historical queries or current noise, which severely hinders

the efficiency of noise polishing.

Failed samplings in decision-based attacks contain lo-

cation information of decision boundaries [12]. Although

failed samplings, i.e., samples fall in the true category, can-

not be directly used to compress noise, they depict direc-

tions with greater probability across the decision bound-

ary. Since we want as many samples as possible that fall

in the other side of decision boundary, this information can

be used to customize sampling process and keep new sam-

ples away from directions with a high probability of failure.

But existing decision-based attacks always sample on a con-

stant distribution, and never change the sampling during the
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Figure 1. Flowchart of CAB attack. Blue curve represents decision boundary between ‘church’ and ‘desk’ categories. In each plot, green

circle and black dot represent the original image and current adversarial example, respectively. Yellow crosses in (b) are set of historical

failed samplings x̃. CAB customizes the variance of the normal distribution by current noise z∗ in (a) and its mean by opposite direction

of historical failed samples −η̃ in (b). Then CAB perform random sampling on the customized distribution to form spherical direction.

Finally, spherical (yellow arrow in (c)) and source directions (red arrow) are combined to form a polished adversarial example x′ in (c).

attack process. In addition, the stepsize of single-step mod-

ification in existing decision-based attacks is also a constant

value. As the noise magnitude decreases, the success rate of

query will gradually decreases, and the efficiency of noise

polishing will be further affected with a constant stepsize.

In this paper, we show that in order to minimize the noise

magnitude after one single step of boundary attack, the vari-

ance of multivariate normal distribution should be linearly

correlated to the absolute value of current noise as shown in

Fig. 1 (a), instead of using unit variance for each dimension.

Moreover, we analyze the advantages of initializing adver-

sarial noise with transfer-based attack over random initial-

ization through the monotonicity of noise compression. We

adjusted the strategy of stepsize customization based on this

property of noise compression. Under the guidance of cur-

rent noise and historical queries, we propose Customized

Adversarial Boundary (CAB), a decision-based attack cus-

tomizes sampling distribution in line with noise sensitivity

of each pixel. CAB customizes the mean of sampling dis-

tribution by historical failed samples, as demonstrated by

yellow crosses in Fig. 1 (b). In this way, new samples are

guided away from directions with high failure rates. Exper-

iments on Imagenet [24], Tiny-Imagenet [1], MNIST [19],

and CIFAR-10 [17] show that CAB achieves the smaller

median noise magnitude than other decision-based attacks

under the same query limitation.

We summarize our contributions as follows:

(1) We show that in order to maximize the noise reduc-

tion expectation, the variance of sampling in boundary at-

tack should be proportional to current noise.

(2) Based on the monotonicity of noise compression for

boundary attack, we improve its stepsize adjustment and use

transfer-based attack to customize the initial noise.

(3) We develop CAB, a decision-based attack that ex-

ploits current noise and failed samples to customize the nor-

mal distribution in the sampling process. Extensive experi-

ments on several datasets and models demonstrate the supe-

rior performance of CAB over other decision-based attacks.

2. Related Work

When there is no access to gradients of the target model,

transfer-based attacks, decision-based attacks, and attacks

based on zeroth order optimization give three different so-

lutions for the black-box scenario. In this paper, we mainly

discuss the first two methods and their combinations.

2.1. Transferbased Attack

Transfer-based attacks fool DNNs by exploiting trans-

ferability between substitute model and target model [21].

The effect of transfer-based attack can be influenced by

ensemble adversarial training [30] of the target model. A

more reasonable strategy is to divide black-box attack into

two phases: firstly generate adversarial examples as starting

points by transfer-based attacks, and further compress their

redundant noise by decision-based attacks [25, 2].

2.2. Decisionbased Attack

Decision-based attacks sample in the neighborhood of

the original image to seek smaller noise magnitude with-

out crossing decision boundaries. Decision-based attacks

do not rely on substitute models, but use various strate-

gies to find adversarial examples. Most decision-based at-

tacks require an initial adversarial example that has already

been misclassified as starting point. Several state-of-the-art

decision-based attacks are introduced in the following.

Whey Optimization. Whey optimization [25] divides

adversarial noise into groups to reduce noise magnitude.
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The greedy searching process of Whey tends to fall into lo-

cal optimum after several steps of compression, reducing

searching efficiency of later stage.

Boundary Attack. Boundary attack [32] starts from an

adversarial example and search along two directions simul-

taneously, namely spherical direction and source direction:

xt+1 = xt+δ· η

‖η‖2
+ε· x− xt

‖x− xt‖2
, η ∼ N (0, I) (1)

where xt is the adversarial example with smallest noise af-

ter t steps of boundary attack. η and (x − xt) refer to the

direction of spherical and source direction, respectively. δ

is the stepsize of spherical direction, and ε is the stepsize

of source direction. Because of the indiscriminate use of

standard normal distribution for each dimension, boundary

attack cannot evaluate and exploit the differences of noise

sensitivity between pixels.

Biased Boundary Attack. The Biased Boundary Attack

[2] replaces the normal distribution in boundary with Perlin

distribution, concentrating on low-frequency domain of in-

put space to make the adversarial example more ‘natural’.

Evolutionary Attack. The Evolutionary Attack [10]

reduces the dimension of sampling space by bilinear in-

terpolation and restricting noise to the central part of im-

ages. Evolutionary attack performs better in tasks involving

strong prior knowledge such as face recognition.

There are some other attacks involving zeroth order opti-

mization [5, 20, 31, 4, 6]. They are mainly aiming at black-

box scenario where score of each category can be obtained

or with relatively sufficient query budget. In this paper, we

only discuss black-box scenario with limited queries and the

target model only outputs hard label.

3. Proposed Method

3.1. Notation

Consider a target model based on DNN under black-

box attack: F : XN → Y C , where X represents the in-

put space, N is the dimension (N = Width × Height ×
Channel for image data) and Y represents the classifica-

tion space with C categories. Suppose x∗ is an adversarial

example with smallest noise magnitude that we have found.

The objective of decision-based attack can be described as:

max
x′

‖x∗−x‖2− ‖x′−x‖2, s.t. F (x) 6= F (x′) , (2)

where x and x′ represent the original image and the new ad-

versarial example generated after this step, respectively. We

replace the adversarial examples x∗ and x′ with the sum of

original image x and adversarial noise, z∗ and z∗+z, where

z∗ and z are the current adversarial noise with minimum

magnitude and the noise added after this step, respectively.

Since x and x∗ are fixed, the objective function in Eqn. (2)

can be equivalently reformulated as:

min
z
‖z∗ + z‖2, s.t. F (x) 6= F (x+ z∗ + z) , (3)

Note that the ℓ2 distance is calculated under the premise

that adversarial examples are misclassified by the target

model. The ℓ2 norm is chosen as the distance metric be-

cause it can more accurately characterize the robustness of

one model than ℓ∞ norm [11].

3.2. Variance and Noise Reduction

In this section, we will formally demonstrate that expec-

tation of noise reduction maximizes when variance of nor-

mal distribution in sampling linearly correlates to the abso-

lute value of current noise.

Consider the one-step noise update of boundary attack

in Eqn. (1), we rewrite z as δ · η
‖η‖2

+ ε · x−x∗

‖x−x∗‖2

, and

(1− ε
‖z∗‖2

) as α. Since x− x∗ = −z∗, we have

‖z∗ + z‖2
= ‖z∗ + δ · η

‖η‖2
+ ε · −z∗

‖ − z∗‖2
‖2

= ‖α · z∗ + δ · η

‖η‖2
‖2

=

√

‖α · z∗‖22 + 2 · δ · α · (z∗ • η

‖η‖2
) + ‖δ · η

‖η‖2
‖22

where • denotes the standard inner product. Since z∗, ε and

δ are all fixed, ‖δ · η
‖η‖2

‖22 ≡ δ2, object of Eqn. (3) is

actually to minimize z∗ • η
‖η‖2

. By the Cauchy-Schwarz

Inequality we have

− ‖z∗‖2 · ‖η‖2 ≤ z∗ • η ≤ ‖z∗‖2 · ‖η‖2 (4)

with β = η
‖η‖2

, this yields

‖z∗ + z‖22
≥ ‖α · z∗‖22 − 2 · α · δ · (‖z∗‖2 • ‖β‖2) + ‖δ · β‖22
= (‖α · z∗‖2 − ‖δ · β‖2)2
=⇒ ‖z∗ + z‖2 ≥

∣

∣‖α · z∗‖2 − ‖δ · β‖2
∣

∣

The equality holds when z∗ = −kβ, k ∈ R+. In other

words, the magnitude of total noise ‖z∗‖2 after boundary at-

tack is minimized when the direction of η
‖η‖2

and current

noise z∗ are exactly reversed. Suppose that η ∼ N (0,Σ)
is a N -dimensional random vector that follows the normal

distribution with zero mean and covariance matrix Σ =
diag(σ2

1 , · · · , σ2
N ) (in boundary attack, Σ = IN ). Each

element of η is a univariate normal distribution, the mean is

set to zero for better exploration in the sampling space [10].

Since β = η
‖η‖2

and βi =
ηi√

η2

i
+···+η2

N

. The ratio of β2
i ’s
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Figure 2. Distribution of z with σ1 : σ2 = 3 : 1 (a) and σ1 : σ2 =
1 : 1 (b) when N = 2.

expectation satisfies

E(β2
1) : E(β2

2) : · · · : E(β2
N )

= E(η21) : E(η22) : · · · : E(η2N )

= V ar(η1) : V ar(η2) : · · · : V ar(ηN )

= σ2
1 : σ2

2 : · · · : σ2
N

As one kind of rejection sampling [12], the boundary at-

tack will only query the target model when noise reduction

regard to one sampling is greater then zero, i.e., z∗ • η ≤ 0.

Therefore, the expectation of new noise x′ after one-step

boundary attack minimizes when σi ∝
∣

∣z∗i
∣

∣ , 1 ≤ i ≤ N .

To show the the influence of σ on noise reduction

more intuitively, we visualize the distribution of x′ in two-

dimensional space in Fig. 2. Blue vectors represent x∗ =
(3, 1). Red marks indicate the distribution of x′ after 1000

samplings under normal distribution with σ1 : σ2 = 3 : 1
(a) and σ1 : σ2 = 1 : 1 (b) centered on (3, 1). The deeper

the red, the denser samples are in the neighborhood. Black

line charts at x1 = 0 and x2 = 4 are independent proba-

bility distribution P of x2 and x1, respectively. When the

variance ratio of two dimensions σ1 : σ2 = x∗
1 : x∗

2, x′ con-

centrates in the opposite direction of x∗ in (a). However,

with an equal variance for each dimension in (b), x∗ evenly

distributes in all directions, which impedes the efficient pol-

ishing of noise. This relationship suggests that, compared

to standard normal distribution for all dimensions, sampling

over normal distribution customized by current noise in-

creases the expectation of noise reduction.

3.3. Customization of Initial Noise and Stepsize

In this section, we customize the initial noise and step-

size by analyzing the monotonicity of noise compression

in decision-based attack. Under the assumption that mis-

classification probability increases monotonically with the

distance from the original image, the final noise magnitude

is positively correlated with the initial noise magnitude. On

the one hand, this explains the effectiveness of initializing

adversarial noise by transfer-based attacks. On the other

hand, we adapt the strategy of customize stepsize in bound-

ary attack based on this feature.

According to the setting in [11], we denote ρF,x(λ) as

the misclassification probability of target model F for a ran-

dom point with the distance λ from original image x:

ρF,x(λ) = Pz∼λS{F (x) 6= F (x+ z)} (5)

where λS denotes the uniform measure on the sphere sur-

face centered at 0 and of radius λ. In other words, the set

of points satisfie ‖z‖2 = λ. Since the risk of misclassifica-

tion generally increases with the distance from the original

image, we assume ρF,x(λ) (abbreviated as ρ(λ)) increases

monotonically with λ within a certain range△adv(x;F ) ≤
λ ≤ △unif,ξ(x;F ):

∀ λ1, λ2 ∈ [△adv(x;F ),△unif,ξ(x;F )],

λ1 ≥ λ2 → ρ(λ1) ≥ ρ(λ2)

As defined in [11], △adv(x;F ) denotes the ℓ2
norm of the global smallest adversarial perturbation that

causes misclassification. And △unif,ξ(x;F ) denotes the

ξ−robustness of F to random uniform noise. For simplic-

ity, we assume that after b steps of queries in decision-

based attack, the noise magnitude of adversarial example

x′ to be queried is subject to a uniform distribution from

△adv(x;F ) to the current smallest noise magnitude ‖z∗‖2.

Proposition 1 Assume that misclassification probability

ρ(λ) increases monotonically with λ within a certain range

△adv(x;F ) ≤ λ ≤ △unif,ξ(x;F ). For any two adversar-

ial examples x′
1 and x′

2 about original image x, if the cor-

responding noise magnitude satisfies △adv(x;F ) ≤ λ2 <

λ1 ≤ △unif,ξ(x;F ), the expected noise magnitude after

one step of decision-based attack satisfies E(λ2) < E(λ1).
Proof. Consider the relationship between noise magnitudes

λ = ‖z‖2 and misclassification probabilities ρ(λ), the ex-

pected noise magnitude after b+ 1 steps is:

E(λ) =

∫ λ

△adv(x;F )

aρ(a)
1

λ−△adv(x;F )
da (6)

Since it is impossible to get the specific value of

△adv(x;F ) before the decision-based attack completely

converges, and ρ(λ) = 0 when λ ≤ △adv(x;F ), we rewrite

Eqn. (6) as:

E(λ) =

∫ λ

0

aρ(a)
1

λ
da (7)

For x′
1 and x′

2 satisfies △adv(x;F ) ≤ λ2 < λ1 ≤
△unif,ξ(x;F ), the difference between the expected noise

magnitude after one step of decision-based attack is:

E(λ1)− E(λ2)

=

∫ λ1

0

aρ(a)
1

λ1
da−

∫ λ2

0

aρ(a)
1

λ2
da

=
1

λ1

∫ λ1

λ2

aρ(a)da− (
1

λ2
− 1

λ1
)

∫ λ2

0

aρ(a)da
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Given λ2 < λ1 and monotonicity of ρ(λ), we have:

E(λ1)− E(λ2)

≥ 1

λ1

∫ λ1

λ2

aρ(λ2)da− (
1

λ2
− 1

λ1
)

∫ λ2

0

aρ(λ2)da

=
ρ(λ2)

2λ1
(λ2

1 − λ2
2)−

λ2
2ρ(λ2)

2
(
1

λ2
− 1

λ1
)

=
ρ(λ2)

2λ1
(λ2

1 − λ1λ2) > 0 �

From Proposition 1, we show that under the assump-

tion that misclassification probability increases monotoni-

cally with the distance from the original image, the expected

noise magnitude after one step also increases monotonically

with the initial noise magnitude. The decision-based at-

tack process satisfies memorylessness, i.e., the current noise

is determined only by noise of last step [32]. Therefore,

the monotonicity of noise compression satisfies transitiv-

ity in multiple steps. In other words, when using the same

decision-based attack and querying the target model for the

same times, the expected final noise magnitude is positively

correlated with the initial noise magnitude.

This explains the effectiveness of combining transfer-

based attack with decision-based attack in black-box sce-

nario. Decision-based methods such as boundary attack use

random noise as initial noise, whose magnitude is much

larger than that generated by transfer-based attacks, thus the

final noise is also larger under the same number of queries.

We follow this black-box attack setup that uses adversarial

examples generated by transfer-based attack as the starting

point of decision-based attack.

In addition, as the noise magnitude is continuously com-

pressed, the possibility of misclassification for new query

will gradually decrease if the stepsize δ and ε in Eqn. (1) for

spherical and source direction remain the same. In order to

compensate for the decrease in success rate of querying, we

introduce the exponential scheduling to dynamically cus-

tomize the stepsize in both directions:

δs = δ0ϕ
s, εs = ε0ϕ

s, (8)

where s represents the number of successful queries so far,

δs and εs are stepsizes of spherical and source direction

after s successful queries. δ0 and ε0 are initial stepsizes.

ϕ ∈ (0, 1) is a decay factor for stepsize scheduling. As the

distance between nearest adversarial example and the orig-

inal image is shortened, the stepsize of new query is also

reduced. This exponential scheduling strategy balances the

noise compression rate with the query success rate, enabling

stepsize customization for different images and for different

query phases of one image.

3.4. CAB Attack

For boundary attack which randomly searches in a large

input space, reducing the sampling space is critical to the

Algorithm 1 Customized Adversarial Boundary

Input: Target DNN F (x) and adversarial example x∗

Original image x and its label y

Max querying number B, pixel retention rate r

Initial stepsize of spherical direction δ0
Initial stepsize of source direction ε0
Decay factor for stepsize scheduling ϕ

Output: Adversarial example x′ with compressed noise

1: W ← [ ], s← 0;

2: for b in 1 to B do

3: if W 6= ∅ then

4: z∗ ← x∗ − x;

5: // Sample over a customized normal distribution;

6: η ∼ N (− 1
|W |

∑

η̃, z∗2) s.t. η̃ ∈W ;

7: else

8: η ∼ N (0, z∗2);

9: end if

10: // Pick up pixels with the largest absolute value in z∗;

11: H(z, r) = argmaxẑ⊂z∗, |ẑ|/|z∗|=r

∑

z∈ẑ|z|;
12: Construct T by H according to Eqn. (10);

13: x′ = x∗ + T • (δs · η
‖η‖2

− εs · z∗

‖z∗‖2

);

14: if y 6= F (x′) then

15: // Sampling is successful, noise is compressed;

16: x∗ ← x′, W ← [ ];
17: s← s+ 1, δs ← δs−1ϕ, εs = εs−1ϕ;

18: else

19: // Sampling is failed, update the failed sampling set;

20: W = W ∪ η;

21: end if

22: end for

23: return x′.

efficiency of noise polishing. Evolutionary Attack [10] re-

duces sampling space by bilinear interpolation and by limit-

ing adversarial noise to the center of an image. Distinguish-

ing the sensitivity of pixels to noise by relative position may

be effective for images with a single structure (e.g., face

recognition images) or a small size, but not for larger and

more complex ones. The current noise z∗ is a more unbi-

ased characterization of the sensitivity of pixels compared

to artificial rules in [10]. Therefore, we only adjust noise on

pixels where the current noise magnitude is already large:

H(z, r) = argmax
ẑ⊂z∗, |ẑ|/|z∗|=r

∑

z∈ẑ

|z| , (9)

Ti =

{

1, if z∗i ∈ H,

0, else.
(10)

where ẑ is a set of pixels in z∗ with the largest absolute

values, r ∈ (0, 1) is the ratio of the pixel numbers in ẑ and

z∗. Specifically, we pick pixels with the largest absolute

value in z∗ according to ratio r, and form up a mask T to
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filter out the less sensitive area of the new noise.

Under the guidance of current noise, CAB attack adap-

tively assigns the variance ratio of the normal distribu-

tion for each dimension according to the conclusion drawn

from Section 3.2 and Fig. 2, and selects area most sensi-

tive to noise to further reduce sampling space. Both pro-

cesses take advantage of historical successful samplings.

Although existing decision-based attacks directly discard

failed samplings, they in fact contain information about de-

cision boundaries. We amend the distribution’s mean of

next sample to keep away failed samplings:

η ∼ N (− 1

K

K
∑

j=1

η̃j , z
∗2),

s.t. F (x∗ + δ · η̃

‖η̃‖2
+ ε · x− x∗

‖x− x∗‖2
) = F (x),

where K is the total number of failed samplings on the cur-

rent adversarial example x∗, and η̃j is the normal random

vector used at the j-th failed sampling. We maintain a sam-

pling record of adversarial examples and save all the failed

samplings about the current adversarial example x∗ as x̃.

The record is continually updated until a successful sam-

pling occurs, i.e., the noise is further compressed. Since in

the later stage of decision-based attack, the success rate of

sampling decreases with the reduction of noise magnitude,

maintaining the record can keep new samplings away from

the historical failed ones. Algorithm 1 details CAB attack.

4. Experiments

4.1. Setup

CAB attack is tested on Tiny-Imagenet [1] and Imagenet

[24] datasets with image size of 64 × 64 × 3 and 224 ×
224 × 3, respectively. In experiment, we add adversarial

noise to the validation set of Imagenet and Tiny-Imagenet,

containing 50000 and 10000 images respectively, and input

to eight different target models: Resnet-18 [14], Inception-

v3 [28], Inception-Resnet v2 [27], NASNet [34], Resnet-

101 , Dense-161[16] , VGG19 [26] and SENet-154 [15].

As for evaluation criteria, we compare CAB with other

attacks by median noise magnitude:

mid = median({‖x′ − x‖2 | x ∈ X}), (11)

where x is an original image in the test set X. x′ is the ad-

versarial example found that is closest to x. A smaller me-

dian ℓ2 noise magnitude indicates that the attack method can

better polish the adversarial noise under the same number

of queries. It is worth noting that adversarial examples are

rounded before being input to the target model for a more

realistic black-box attack setting.

4.2. Comparison of Attack Effect

We report the comparison of median noise magnitude us-

ing different decision-based attacks in Table 1. The ℓ2 norm

of initial noise is shown in the first row. Last five rows in

the table represent median noise magnitude under five dif-

ferent decision-based attacks. Two columns represent two

datasets, Tiny-Imagenet (left) and Imagenet (right). For

four models of each dataset, we use Curls [25], a state-

of-the-art transfer-based iterative method, to attack each

substitute-target model pair and input the generate adver-

sarial example as starting point of decision-based attacks.

Each element in the 6×2 table is a 4×4 matrix, where each

row represents the substitute model used by Curls method

and each column represents the target model. Therefore, el-

ements on the diagonal are actually results of polished noise

magnitude in white-box attack setting. mid of each attack

method are calculated under the same amount of queries

B = 300. Pixel retention rate r = 0.2 for our CAB at-

tack. Stepsizes of spherical direction and source direction

are δ0 = 0.1, ε0 = 0.003 for Boundary, Biased Bound-

ary, Evolutionary and CAB attacks. Decay factor ϕ is set

to 0.99. For BBA [2], we use the version that incorporates

information from a substitute model at each step.

It can be seen from Table 1 that CAB achieves the small-

est noise magnitude on different target models with the

same number of queries on all the black-box attacks, or the

off-diagonal elements in each 4× 4 matrix. Compared with

boundary attack, CAB has a significant decrease on median

noise magnitude, which validates the effectiveness of cus-

tomizing the distribution with current noise and failed sam-

plings. Since the magnitude of white-box noise (diagonal

elements in each 4× 4 matrix) tends to be rather small (less

than 1/10 of black-box noise in ℓ2 norm), the strategy used

by Boundary that sampling over a standard normal distri-

bution equally for each dimension is more suitable. As a

result, white-box noise magnitude of CAB on Imagenet is

slightly bigger than that of Boundary.

4.3. Ablation Study

The max query number B is the key parameter in CAB.

We use inc-v3 as substitute model and res-18 as target

model for three different transfer-based attacks, Curls [25],

I-FGSM [18] and VR-IGSM [33], to generate initial adver-

sarial examples. Curves of noise magnitude as B increases

is shown in Fig. 3. A higher B provides decision-based

attacks with more opportunities to fine-tune the adversar-

ial noise. It can be seen that noise magnitude of CAB is

lower than other methods at different query numbers. We

recorded clock-time efficiency of each method on Imagenet

with Densenet161 as target model. The average time re-

quired for Boundary and CAB to query each image 300

times are 15.31s and 13.39s, respectively. The efficiency of

CAB is improved because it avoids sampling space where
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Tiny-Imagenet Imagenet

res-18 inc-v3 inc-res nasnet res-101 dense vgg-19 senet

res-18 0.076 1.617 1.833 2.002 res-101 0.325 3.060 3.232 4.367

inc-v3 0.510 0.124 1.137 1.216 dense 2.777 0.269 3.112 4.241

Initial inc-res 0.552 1.083 0.147 1.088 vgg-19 6.050 6.034 0.183 5.135

nasnet 0.577 1.272 1.199 0.134 senet 3.013 5.193 6.141 0.413

res-18 0.071 1.140 1.250 1.342 res-101 0.315 2.868 2.785 3.836

inc-v3 0.360 0.121 0.865 0.909 dense 2.695 0.262 2.627 3.737

Whey inc-res 0.369 0.796 0.142 0.819 vgg-19 5.149 4.996 0.180 4.333

nasnet 0.401 0.927 0.906 0.129 senet 2.708 4.529 5.101 0.393

res-18 0.059 1.220 1.386 1.467 res-101 0.279 2.982 2.904 4.092

inc-v3 0.384 0.110 1.001 1.041 dense 2.713 0.231 2.683 3.949

Boundary inc-res 0.379 0.923 0.134 0.949 vgg-19 5.395 5.161 0.155 4.646

nasnet 0.421 1.024 1.052 0.120 senet 2.738 4.695 5.761 0.360

res-18 0.072 1.129 1.283 1.358 res-101 0.318 2.586 2.704 3.745

inc-v3 0.308 0.122 0.890 0.912 dense 2.441 0.263 2.496 3.542

Biased Boundary inc-res 0.325 0.813 0.144 0.829 vgg-19 4.776 4.402 0.181 4.133

nasnet 0.332 0.928 0.924 0.132 senet 2.693 4.119 4.953 0.397

res-18 0.068 0.951 1.112 1.147 res-101 0.310 2.518 2.373 3.217

inc-v3 0.269 0.117 0.881 0.851 dense 2.394 0.256 2.253 3.128

Evolutionary inc-res 0.292 0.761 0.138 0.797 vgg-19 4.112 4.036 0.176 3.442

nasnet 0.301 0.849 0.888 0.126 senet 2.569 3.730 4.644 0.386

res-18 0.058 0.935 0.929 1.030 res-101 0.290 2.387 1.953 3.116

inc-v3 0.263 0.109 0.692 0.733 dense 2.294 0.236 2.025 3.051

CAB inc-res 0.251 0.689 0.131 0.682 vgg-19 3.982 3.730 0.157 3.413

nasnet 0.284 0.757 0.726 0.119 senet 2.287 3.588 4.449 0.366

Table 1. Median noise magnitude of five decision-based attacks against target models on two datasets.
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Whey Boundary Biased Boundary Evolutionary CAB

Figure 3. Median ℓ2 distance of adversarial noise under different query number B on Tiny-Imagenet.

x∗ VC VC+SS VC+EFS CAB

median 0.496 0.314 0.293 0.304 0.269

average 2.066 1.275 1.264 1.236 1.202

Table 2. Comparison of noise magnitude on each step of CAB.

the noise magnitude increases with the help of historical in-

formation, reducing the the proportion of invalid samplings.

We further tested CAB attack using randomly initial-

ized adversarial noise on MNIST [19] and CIFAR-10 [17]

datasets. We use Resnet-50 [14] for MNIST and Dense-

100 [16] for CIFAR-10 as target models. The initial adver-

sarial examples are generated by adding uniform noise to

the original images until misclassification. The number of

queries B for decision-based attack is set to 300. As Table 3

shows, CAB can still generate smaller noise than other de-

cision methods under random initialization. In order to fur-

ther verify the effectiveness of each step in CAB attack, we

compare median and mean adversarial noise [1] when using

several steps independently or in combination. For Tiny-
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Whey Boundary BBA Evolutionary CAB

water ouzel red shank

goldfish sea star

green mamba eel
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Figure 4. Comparison of adversarial noise generated by Whey, Boundary, Biased Boundary (BBA), Evolutionary (EVO) and our CAB

attack. The label and misclassification category is noted above x∗ of each row as y → F (x∗).

MNIST CIFAR-10

Initial 5.866 8.429

Whey 4.118 6.222

Boundary 4.147 6.689

Biased Boundary 4.062 6.414

Evolutionary 3.445 5.812

CAB 3.163 5.414

Table 3. Comparison of median ℓ2 noise magnitude on MNIST

and CIFAR-10 with random initialization.

Imagenet, we show that all three steps, the variance cus-

tomization (VC), stepsize scheduling (SS), and exploitation

of failed samplings (EFS) contribute to improving the noise

reduction rate in Table 2. Fig. 4 compares adversarial noise

generated by five different decision-based attacks on Ima-

genet (first 4 rows) and Tiny-Imagenet (last 2 rows). The

first image of each row is the initial adversarial example x∗

generated by Curls attack, followed by noise magnitude of

five attacks. Polished noise (with magnitude enhanced for

better visualization) of five methods are listed from left to

right. Since CAB customizes sampling with current noise,

area with higher noise is effectively suppressed, and thus a

higher noise polishing efficiency is achieved.

5. Conclusion

In this paper, we propose Customized Adversarial

Boundary, a new decision-based attack that uses current

noise to select the sensitive area of images and customize

sampling distribution. We reveal the relationship between

variance and current noise to customize the sampling pro-

cess of boundary attack. Moreover, we further customize

the stepsize and initial noise with transfer-based attack to

polish noise of decision-based attack through the mono-

tonicity in the noise compression process. Extensive exper-

iments on multiple datasets demonstrate that CAB achieves

smaller median noise magnitude against a variety of target

models than other decision-based attacks.
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