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Abstract

Recognizing faces in the wild is extremely hard as they

appear with diverse variations. Traditional methods either

train with specifically annotated target domain data which

contains the variations, or introduce unlabeled target do-

main data to adapt from the training domain. Instead, we

propose a universal representation learning face recognition

framework, URFace, that can deal with larger variations

unseen in the given training data, without leveraging knowl-

edge of the target domain. We firstly synthesize the training

data that corresponds to several semantically meaningful

variations, such as low resolution, occlusion and head pose.

However, directly using the augmented data hinders train-

ing convergence, since the augmented samples are usually

hard examples. We propose to split the feature embedding

into multiple sub-embeddings and associate different confi-

dence values for each sub-embedding to smooth the training

procedure. The sub-embeddings are further decorrelated by

regularizing classification loss on variations and adversarial

loss on different partitions of them. Experiments show that

our method achieves state-of-the-art performance on gen-

eral face recognition datasets such as LFW and MegaFace,

while being significantly better on extreme benchmarks such

as TinyFace and IJB-S.

1. Introduction

Deep face recognition seeks to map input images to a

feature space with small intra-identity distance and large

inter-identity distance, which has been achieved by prior

works through loss design and datasets with rich within-

class variations [29, 41, 17, 39, 4]. However, even very

large public datasets manifest strong biases, such as ethnicity

[33, 34] or head poses [20, 24, 45]. This lack of variation

leads to significant performance drops on challenging test

datasets, for example, accuracy reported by prior state-of-

the-art [31] on IJB-S or TinyFace [11, 3] are about 30%
lower than IJB-A [14] or LFW [10].

Recent works seek to close the domain gap caused by
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Figure 1: Traditional recognition models require target domain

data to adapt from the high-quality training data to conduct

unconstrained/low-quality face recognition. Model ensemble is

further needed for a universal representation purpose which sig-

nificantly increases model complexity. In contrast, our method

works only on original training data without any target domain data

information, and can deal with unconstrained testing scenarios.

such data bias through domain adaptation, i.e., identifying

specific factors of variation and augmenting the training

datasets [24], or further leveraging unlabeled data along

such nameable factors [33]. While nameable variations are

hard to identify exhaustively, prior works have sought to

align the feature space between source and target domains

[28, 34]. Alternatively, individual models might be trained

on various datasets and ensembles to obtain good perfor-

mance on each [19]. All these approaches either only handle

specific variations, or require access to test data distribu-

tions, or accrue additional run-time complexity to handle

wider variations. In contrast, we propose learning a single

“universal” deep feature representation that handles the varia-

tions in face recognition without requiring access to test data

distribution and retains run-time efficiency, while achieving

strong performance across diverse situations especially on

low-quality images (see Figure 1).

This paper introduces several novel contributions in Sec-

tion 3 to learn such a universal representation. First, we

note that inputs with non-frontal poses, low resolutions and

heavy occlusions are key nameable factors that present chal-

lenges for “in-the-wild” applications, for which training data

may be synthetically augmented. But directly adding hard

augmented examples into training leads to a more difficult
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optimization problem. We mitigate this by proposing an

identification loss that accounts for per-sample confidence

to learn a probabilistic feature embedding. Second, we seek

to maximize representation power of the embedding by de-

composing it into sub-embeddings, each of which has an

independent confidence value during training. Third, all the

sub-embeddings are encouraged to be further decorrelated

through two complementary regularization over different

partitions of the sub-embeddings, i.e., classification loss on

variations and adversarial loss on different partitions. Fourth,

we achieve further decorrelation by mining for additional

variations for which synthetic augmentation is non-trivial.

Finally, we account for the varying discrimination power of

sub-embeddings for various factors through a probabilistic

aggregation that accounts for their uncertainties.

In Section 5, we extensively evaluate the proposed meth-

ods on public datasets. Compared to our baseline model,

the proposed method maintains the high accuracy on gen-

eral face recognition benchmarks, such as LFW and YTF,

while significantly boosting the performance on challenging

datasets such as IJB-C, IJB-S, where new state-of-the-art

performance is achieved. Detailed ablation studies show the

impact of each of the above contributions in achieving these

strong performance.

In summary, the main contributions of this paper are:

• A method for learning a universal face representation by

associating features with different variations, leading to

improved generalization on diverse testing datasets.

• A confidence-aware identification loss that utilizes sample

confidence during training to leverage hard samples.

• A feature decorrelation regularization that applies both a

classification loss on variations and an adversarial loss on

different partitions of the feature sub-embeddings, leading

to improved performance.

• A training strategy to effectively combine synthesized

data to train a face representation applicable to images

outside the original training distribution.

• State-of-the-art results on several challenging benchmarks,

such as IJB-A, IJB-C, TinyFace and IJB-S.

2. Related Work

Deep Face Recognition: Deep neural networks are widely

adopted in current research on face recognition [36, 35, 29,

20, 17, 8, 25, 38, 4, 45]. Taigman et al. [36] propose an

early deep convolutional neural network for face recognition.

Subsequent works have explored different loss functions to

improve the discrimination power of the feature representa-

tion. Wen et al. [41] propose center loss to reduce intra-class

variation. A series of works have also proposed to use metric

learning for face recognition [29, 32]. Recent works have

attempted to achieve discriminative embeddings with a sin-

gle identification loss function where proxy or prototype

(a) Blur (b) Occlusion

(c) Pose (d) Randomly Combined

Figure 2: Samples with augmentation alongside different variations.

vectors are used to represent each class in the embedding

space [17, 38, 39, 25, 4].

Universal Representation: Universal representation refers

to a single model that can be applied to various visual do-

mains (usually different tasks), e.g. object, character, road

signs, while maintaining the performance of using a set of

domain-specific models [1, 26, 27, 40, 34]. The features

learned by such a single model are believed to be more uni-

versal than domain-specific models. Different from domain

generalization [13, 22, 15, 16, 37], which targets adaptability

on unseen domains by learning from various seen domains,

universal representation learning does not involve re-training

on unseen domains. Several methods focus on increasing

the parameter efficiency by reducing the domain-shift with

techniques such as conditioned BatchNorm [1] and residual

adapters [26, 27]. Based on SE modules [9], Wang et al. [40]

propose a domain-attentive module for intermediate (hidden)

features of a universal object detection network. Our work is

different from those methods in two ways: (1) it is a method

for similarity metric learning rather than detection or clas-

sification tasks and (2) it is model-agnostic. The features

learned by our model can then be directly applied to differ-

ent domains by computing the pairwise similarity between

samples of unseen classes.

3. Proposed Approach

In this section, we first introduce three augmentable vari-

ations, namely blur, occlusion and head pose, to augment

the training data. Visual examples of augmented data are

shown in Figure 2 and the details can be found in Section 4.

Then in Section 3.1, we introduce a confidence-aware iden-

tification loss to learn from hard examples, which is fur-

ther extended in Section 3.2 by splitting the feature vectors

into sub-embeddings with independent confidence. In Sec-

tion 3.3, we apply the introduced augmentable variations to

further decorrelate the feature embeddings. A method for dis-

covering further non-augmentable variations is proposed to

achieve better decorrelation. Finally, an uncertainty-guided

pairwise metric is proposed for inference.
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Figure 3: Overview of the proposed method. High-quality input images are first augmented according to pre-defined variations, i.e.,

blur, occlusion and pose. The feature representation is then split into sub-embeddings associated with sample-specific confidences.

Confidence-aware identification loss and variation decorrelation loss are developed to learn the sub-embeddings.

3.1. ConfidenceAware Identification Loss

We investigate the posterior probability of being classi-

fied to identity j ∈ {1, 2, . . . , N}, given the input sample

xi. Denote the feature embedding of sample i as fi and the

jth identity prototype vector as wj , which is the identity

template feature. A probabilistic embedding network θ rep-

resents each sample xi as a Gaussian distribution N (fi, σ
2
i I)

in the feature space. The likelihood of xi being a sample of

class j is given by:

p(xi|y = j) ∝ pθ(wj |xi)

=
1

(2πσ2
i )

D
2

exp(−
‖fi −wj‖

2

2σ2
i

), (1)

where D is feature dimension. Further assuming the prior of

assigning a sample to any identity as equal, the posterior of

xi belonging to the jth class is derived as:

p(y = j|xi) =
p(xi|y = j)p(y = j)

∑N

c=1 p(xi|y = c)p(y = c)

=
exp(−‖fi−wj‖

2

2σ2

i

)
∑N

c=1 exp(−
‖fi−wc‖

2

2σ2

i

)
, (2)

For simplicity, let us define a confidence value si =
1
σ2

i

. Con-

straining both fi and wj on the ℓ2-normalized unit sphere,

we have
‖fi−wj‖

2

2σ2

i

= si(1−w
T
j fi) and

p(y = j|xi) =
exp(siw

T
j fi)

∑N

c=1 exp(siw
T
c fi)

. (3)

The effect of confidence-aware posterior in Equation 3 is

illustrated in Figure 4. When training is conducted among

samples of various qualities, if we assume the same confi-

dence across all samples, the learned prototype will be in

the center of all samples. This is not ideal, as low-quality

samples convey more ambiguous identity information. In

low-quality 

samples

high-quality 

samples

prototype

(a) w/o confidence

prototype
low-quality 

samples

high-quality 

samples

(b) w/ confidence

Figure 4: Illustration of confidence-aware embedding learning

on quality-various data. With confidence guiding, the learned

prototype is closer to high-quality samples which represents the

identity better.

contrast, if we set up sample-specific confidence si, where

high-quality samples show higher confidence, it will push

the prototype wj to be more similar to high-quality sam-

ples in order to maximize the posterior. Meanwhile, during

update of the embedding fi, it provides a stronger push for

low-quality fi to be closer to the prototype.

Adding loss margin [39] over the exponential logit has

been shown to be effective in narrowing the within-identity

distribution. We also incorporate it into our loss:

L′
idt = − log

exp(siw
T
yi
fi −m)

exp(siwT
yi
fi −m) +

∑

j 6=yi
exp(siwT

j fi)
,

(4)

where yi is the ground-truth label of xi. Our confidence-

aware identification loss (C-Softmax) is different from co-

sine loss[39] as follows: (1) each image has an independent

and dynamic si rather than a constant shared scalar and (2)

the margin parameter m is not multiplied by si. The inde-

pendence of si allows it to gate the gradient signals of wj

and fi during network training in a sample-specific way, as

the confidence (degree of variation) of training samples can

have large differences. Though samples are specific, we aim

to learn a homogeneous feature space such that the metric

across different identities is consistent. Thus, allowing si to

compensate for the confidence difference of the samples, we
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(a) sub-embedding of size 8 (b) sub-embedding of size 32

Figure 5: The correlation matrices of sub-embeddings by splitting

the feature vector into different sizes. The correlation is computed

in terms of distance to class center.

expect m to be consistently shared across all the identities.

3.2. ConfidenceAware SubEmbeddings

Though the embedding fi learned through a sample-

specific gating si can deal with sample-level variations, we

argue that the correlation among the entries of fi itself is still

high. To maximize the representation power and achieve a

compact feature size, decorrelating the entries of the embed-

ding is necessary. This encourages us to further break the

entire embedding fi into partitioned sub-embeddings, each

of which is further assigned a scalar confidence value.

Illustrated in Figure 3, we partition the entire feature

embedding fi into K equal-length sub-embeddings as in

Equation 5. Accordingly, the prototype vector wj and the

confidence scalar si are also partitioned into the same size

K groups.

wj = [w
(1)T
j ,w

(2)T
j , . . . ,w

(K)T
j ],

fi = [f
(1)T
i , f

(2)T
i , . . . , f

(K)T
i ],

si = [s
(1)
i , s

(2)
i , . . . , s

(K)
i ],

(5)

Each group of sub-embeddings f
(k)
i is ℓ2 normalized onto

unit sphere separately. The final identification loss thus is:

Lidt = − log
exp(ai,yi

−m)

exp(ai,yi
−m) +

∑

j 6=yi
exp(ai,j)

, (6)

ai,j =
1

K

K
∑

k=1

s
(k)
i w

(k)T
j f

(k)
i . (7)

A common issue for neural networks is that they tend to be

“over-confident” on predictions [6]. We add an additional

l2 regularization to constrain the confidence from growing

arbitrarily large:

Lreg =
1

K

K
∑

k=1

s
(k)2
i . (8)
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Figure 6: The variation decorrelation loss disentangles different

sub-embeddings by associating them with different variations. In

this example, the first two sub-embeddings are forced to be invariant

to occlusion while the second two sub-embeddings are forced to be

invariant to blur. By pushing stronger invariance for each variation,

the correlation/overlap between two variations is reduced.

3.3. SubEmbeddings Decorrelation

Setting up multiple sub-embeddings alone does not guar-

antee the features in different groups are learning comple-

mentary information. Empirically shown in Figure 5, we find

the sub-embeddings are still highly correlated, i.e., dividing

fi into equal 16 groups, the average correlation among all the

sub-embeddings is 0.57. If we penalize the sub-embeddings

with different regularization, the correlation among them

can be reduced. By associating different sub-embeddings

with different variations, we conduct variation classification

loss on a subset of all the sub-embeddings while conducting

variation adversarial loss in terms of other variation types.

Given multiple variations, such two regularization terms are

forced on different subsets, leading to better sub-embedding

decorrelation.

For each augmentable variation t ∈ {1, 2, . . . ,M}, we

generate a binary mask Vt, which selects a random K
2 subset

of all sub-embeddings while setting the other half to be zeros.

The masks are generated at the beginning of the training

and will remain fixed during training. We guarantee that

for different variations, the masks are different. We expect

Vt(fi) to reflect tth variation while invariant to the others.

Accordingly, we build a multi-label binary discriminator C

by learning to predict all variations from each masked subset:

min
C

LC =−
M
∑

t=1

log pC(ui = ûi|Vt(fi))

=−
M
∑

t=1

M
∑

t′=1

log pC(u
(t′)
i = û

(t′)
i |Vt(fi))

(9)

where ui = [u
(1)
i , u

(2)
i , . . . , u

(M)
i ] are the binary labels (0/1)

of the known variations and ûi is the ground-truth label. For

example, if t = 1 corresponds to resolution, û
(1)
i would be

1 and 0 for high/low-resolution images, respectively. Note

that Equation 9 is only used for training the discriminator C.

The corresponding classification and adversarial loss of the
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embedding network is then given by:

Lcls = −
M
∑

t=1

log pC(u
(t) = û

(t)
i |Vt(fi)) (10)

Ladv = −
M
∑

t=1

∑

t′ 6=t

(
1

2
log pC(u

(t′) = 0|Vt(fi))+

1

2
log pC(u

(t′) = 1|Vt(fi)))

(11)

The classification loss Lcls to encourage Vt to be variation-

specific while Ladv is an adversarial loss to encourage in-

variance to the other variations. As long as no two masks

are the same, it guarantees that the selected subsets Vt is

functionally different from other Vt′ . We thus achieve decor-

relation between Vt and Vt′ . The overall loss function for

each sample is:

min
θ

L = Lidt + λregLreg + λclsLcls + λadvLadv. (12)

During the optimization, Equation (12) is averaged across

the samples in the mini-batch.

3.4. Mining for Further Variations

The limited number (three in our method) of augmentable

variations leads to limited effect of decorrelation as the num-

ber of Vt are too small. To further enhance the decorrelation,

as well to introduce more variations for better generaliza-

tion ability, we aim to explore more variations with seman-

tic meaning. Notice that not all the variations are easy to

conduct data augmentation, e.g. smiling or not is hard to

augment. For such variations, we attempt to mine out the

variation labels from the original training data. In particular,

we leverage an off-the-shelf attribute dataset CelebA [18] to

train a attribute classification model θA with identity adver-

sarial loss:

min
θA

LθA = − log p(lA|xA)−
1

NA

NA
∑

c

log p(yA = c|xA)

min
DA

LDA
= − log p(yA = yxA

|xA), (13)

where lA is the attribute label and yA is the identity label. xA

is the input face image and NA is the number of identities in

the CelebA dataset. The first term penalizes the feature to

classify facial attributes and the second term penalizes the

feature to be invariant to identities.

The attribute classifier is then applied to the recognition

training set to generate T new soft variation labels, e.g. smil-

ing or not, young or old. These additional variation binary

labels are merged with the original augmentable variation

labels as: ui = [u
(1)
i , . . . , u

(M)
i , u

(M+1)
i , . . . , u

(M+T )
i ] and

are then incorporated into the decorrelation learning frame-

work in Section 3.3.

3.5. UncertaintyGuided Probabilistic Aggregation

Considering the metric for inference, simply taking the av-

erage of the learned sub-embeddings is sub-optimal. This is

because different sub-embeddings show different discrimina-

tive power for different variations. Their importance should

vary according to the given image pairs. Inspired by [31],

we consider applying the uncertainty associated with each

embedding for a pairwise similarity score:

score(xi,xj) =−
1

2

K
∑

k=1

∥

∥

∥
f
(k)
i − f

(k)
j

∥

∥

∥

2

σ
(k)2
i + σ

(k)2
j

−
D

2K

K
∑

k=1

log(σ
(k)2
i + σ

(k)2
j )

(14)

Though with Equation 8 for regularization, we empirically

find that the confidence learned with the identification loss

still tend to be overconfident and hence cannot be directly

used for Equation 14, so we fine-tune the original confidence

branch to predict σ while fixing the other parts. We refer the

readers to [31] for the training details of fine-tuning.

4. Implementation Details

Training Details and Baseline All the models are imple-

mented with Pytorch v1.1. We use the clean list from Arc-

Face [4] for MS-Celeb-1M [7] as training data. After clean-

ing the overlapped subjects with the testing sets, we have

4.8M images of 76.5K classes. We use the method in [46] for

face alignment and crop all images into a size of 110× 110.

Random and center cropping are applied during training and

testing, respectively, to transform the images into 100× 100.

We use the modified 100-layer ResNet in [4] as our architec-

ture. The embedding size is 512 for all models, and the fea-

tures are split into 16 groups for multi-embedding methods.

The model C is a linear classifier. The baseline models in the

experiments are trained with CosFace loss function [39, 38],

which achieves state-of-the-art performance on general face

recognition tasks. The models without domain augmentation

are trained for 18 epochs and models with domain augmen-

tation are trained for 27 epochs to ensure convergence. We

empirically set λreg, λcls and λadv as 0.001, 2.0 and 2.0,

respectively. The margin m is empirically set to 30. For

non-augmentable variations, we choose T = 3 attributes,

namely smiling, young and gender.

Variation Augmentation For the low-resolution, we use

Gaussian blur with a kernel size between 3 and 11. For

the occlusion, we split the images into 7 × 7 blocks and

randomly replace some blocks with black masks. (3) For

pose augmentation, we use PRNet [5] to fit the 3D model

of near-frontal faces in the dataset and rotate them into a

yaw degree between 40◦ and 60◦. All the augmentations are

randomly combined with a probability of 30% for each.
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(a) Type I (b) Type II (c) Type III

Figure 7: Examples of the three types of datasets. The images are

sampled from LFW [10], IJB-A [14], IJB-S [11], respectively.
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(b) Proposed

Figure 8: Testing results on synthetic data of different variations from IJB-A

benchmark (TAR@FAR=0.01%). Different rows correspond to different

augmentation strategies during training. Columns are different synthetic

testing data. “B”, “O”, “P” represents “Blur”, “Occlusion” and “Pose”,

respectively. The performance of the proposed method is improved in a

monotonous way with more augmentations being added.

5. Experiments

In this section, we firstly introduce different types of

datasets reflecting different levels of variation. Different

levels of variation indicate different image quality and thus

lead to different performance. Then we conduct detailed

ablation study over the proposed confidence-aware loss and

all the proposed modules. Further, we show evaluation on

those different types of testing datasets and compare to state-

of-the-art methods.

5.1. Datasets

We evaluate our models on eight face recognition bench-

marks, covering different real-world testing scenarios. The

datasets are roughly categorized into three types based on

the level of variations:

Type I: Limited Variation LFW [10], CFP [30],

YTF [42] and MegaFace [12] are four widely applied bench-

marks for general face recognition. We believe the variations

in those datasets are limited, as only one or few of the varia-

tions being presented. In particular, YTF are video samples

with relatively lower resolution; CFP [30] are face images

with large pose variation but of high resolution; MegaFace

includes 1 million distractors crawled from internet while

its labeled images are all high-quality frontal faces from

FaceScrub dataset [23]. For both LFW and YTF, we use the

unrestricted verification protocol. For CFP, we focus on the

frontal-profile (FP) protocol. We test on both verification

original augmented

(a) Baseline

original augmented

(b) Proposed

Figure 9: t-SNE visualization of the features in a 2D space. Colors

indicate the identities. Original training samples and augmented

training samples are shown in circle and triangle, respectively.
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Figure 10: Performance change with respect to difference choice

of K.

and identification protocols of MegaFace.

Type II: Mixed Quality IJB-A [14] and IJB-C [21] in-

clude both high quality celebrity photos taken from the wild

and low quality video frames with large variations of illumi-

nation, occlusion, head pose, etc. We test on both verification

and identification protocols of the two benchmarks.

Type III: Low Quality We test on TinyFace [3] and IJB-

S [11], two extremely challenging benchmarks that are

mainly composed of low-quality face images. In particu-

lar, TinyFace only consists of low-resolution face images

captured in the wild, which also includes other variations

such as occlusion and pose. IJB-S is a video face recogni-

tion dataset, where all images are video frames captured by

surveillance cameras except a few high-quality registration

photos for each person. Example images of the three types

of datasets are shown in Figure 7.

5.2. Ablation Study

5.2.1 Effect of Confidence-aware Learning

We train a set of models by gradually adding the nameable

variations. The “Baseline” model is an 18-layer ResNet

trained on a randomly selected subset of MS-Celeb-1M

(0.6M images). The “Proposed” model is trained with the

confidence-aware identification loss and K = 16 embed-

ding groups. As a controlled experiment, we apply the same

type of augmentation on IJB-A dataset to synthesize testing

data of the corresponding variations. In Figure 8, “Baseline”

model shows decreasing performance when gradually adding
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Model Method LFW CFP-FP IJB-A (TAR@FAR) TinyFace IJB-S

VA CI ME DE PA Accuracy Accuracy FAR=0.001% FAR=0.01% Rank1 Rank5 Rank1 Rank 5

Baseline 99.75 98.16 82.20 93.05 46.75 51.79 37.14 46.75

A X 99.70 98.35 82.42 93.86 55.26 59.04 51.27 58.94

B X X 99.78 98.30 94.70 96.02 57.11 63.09 59.87 66.90

C
X X X 99.77 98.50 94.75 96.27 57.30 63.73 59.66 66.30

X X X X 99.78 98.66 96.10 97.29 55.04 60.97 59.71 66.32

D
X X X 99.65 97.77 80.06 92.14 34.76 39.86 29.87 40.69

X X X X 99.68 98.00 94.37 96.42 35.05 40.13 50.00 56.27

E (all)
X X X X 99.75 98.30 95.00 96.27 61.32 66.34 60.74 66.59

X X X X X 99.78 98.64 96.00 97.33 63.89 68.67 61.98 67.12

Table 1: Ablation study over the whole framework. “VA” indicates “Variation Augmentation” (Section 3), “CI” indicates “Confidence-aware Identification

loss” (Section 3.1), “ME” indicates “Multiple Embeddings” (Section 3.3), “DE” indicates “Decorrelated Embeddings” (Section 3.3) and “PA” indicates

“Probabilistic Aggregation”. (Section 3.5). E(all) uses all the proposed modules.

Method LFW YTF CFP-FP
MF1

Rank1 Veri.

FaceNet [29] 99.63 95.1 - - -

CenterFace [41] 99.28 94.9 - 65.23 76.52

SphereFace [17] 99.42 95.0 - 75.77 89.14

ArcFace [4] 99.83 98.02 98.37 81.03 96.98

CosFace [39] 99.73 97.6 - 77.11 89.88

Ours (Baseline) 99.75 97.16 98.16 80.03 95.54

Ours (Baseline+VA) 99.70 97.10 98.36 78.10 94.31

Ours (all) 99.75 97.68 98.30 79.10 94.92

Ours (all) + PA 99.78 97.92 98.64 78.60 95.04

Table 2: Our method compared to state-of-the-art methods on Type I

datasets. The MegaFace verification rates are computed at FAR=0.0001%.

“-” indicates that the author did not report the performance on the corre-

sponding protocol.

new variations as in the grid going down from top row to

bottom row. In comparison, the proposed method shows

improving performance when adding new variations from

top to bottom, which highlights the effect of our confidence-

aware representation learning and it further allows to add

more variations into the framework training.

We also visualize the features with t-SNE projected onto

2D embedding space. Figure 9 shows that for “Baseline”

model, with different variation augmentations, the features

actually are mixed and thus are erroneous for recognition.

While for “Proposed” model, different variation augmen-

tation generated samples are still clustered together to its

original samples, which indicates that identity is well pre-

served. Under the same settings as above, we also show

the effect of using different number of groups in Figure 10.

At the beginning, splitting the embedding space into more

groups increases performance for both TARs. When the

size of each sub-embedding becomes too small, the perfor-

mance starts to drop because of the limited capacity for each

sub-embedding.

5.2.2 Ablation on All Modules

We investigate each module’s effect by looking into the abla-

tive models in Table 1. Starting from the baseline, model A

is trained with variation augmentation. Based on model A,

we add confidence-aware identification loss to obtain model

B. Model C is further trained by setting up multiple sub-

embeddings. In model E, we further added the decorrelation

loss. We also compare with a Model D with all the modules

except variation augmentation. Model C, D and E, which

have multiple embeddings, are tested w/ and w/o probabilis-

tic aggregation (PA). The methods are tested on two type

I datasets (LFW and CFP-FP), one type-II dataset (IJB-A)

and one type-III dataset (TinyFace).

Shown in Table 1, compared to baseline, adding variation

augmentation improves performance on CFP-FP, TinyFace,

and IJBA. These datasets present exactly the variations intro-

duced by data augmentation, i.e., pose variation and low res-

olution. However, the performance on LFW fluctuates from

baseline as LFW is mostly good quality images with few

variations. In comparison, model B and C are able to reduce

the negative impact of hard examples introduced by data aug-

mentation and leads to consistent performance boost across

all benchmarks. Meanwhile, we observe that splitting into

multiple sub-embeddings alone does not improve (compare

B to C first row) significantly, which can be explained by the

strongly correlated confidence among the sub-embeddings

(see Figure 5). Nevertheless, with the decorrelation loss

and probabilistic aggregation, different sub-embeddings are

able to learn and combine complementary features to further

boost the performance, i.e., the performance in the second

row of Model E is consistently better than its first row.

5.3. Evaluation on General Datasets

We compare our method with state-of-the-art methods on

general face recognition datasets, i.e., those Type I datasets

with limited variation and high quality. Since the testing

images are mostly with good quality, there is limited advan-

tage of our method which is designed to deal with larger

variations. Even though, shown in Table 2, our method still

stands on top being better than most of the methods while

slightly worse than ArcFace. Notice that our baseline model

already achieves good performance across all the testing sets.

It actually verifies that the type I testing sets do not show

significant domain gap from the training set, where even

without variation augmentation or embedding decorrelation,
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Method
IJB-A (Vrf) IJB-A (Idt) IJB-C (Vrf) IJB-C (Idt) IJB-S (S2B)

FAR=0.001% FAR=0.01% Rank1 Rank5 FAR=0.001% FAR=0.01% Rank1 Rank5 Rank1 Rank5 FPIR=1%

NAN [44]* - 88.1±1.1 95.8±0.5 98.0±0.5 - - - - - - -

L2-Face [25]* 90.9±0.7 94.3±0.5 97.3±0.5 98.8±0.3 - - - - - - -

DA-GAN [47]* 94.6±0.1 97.3±0.5 99.0±0.2 99.5±0.3 - - - - - - -

Cao et al. [2] - 92.1±1.4 98.2±0.4 99.3±0.2 76.8 86.2 91.4 95.1 - - -

Multicolumn [43] - 92.0±1.3 - - 77.1 86.2 - - - - -

PFE [31] - 95.3±0.3 - - 89.6 93.3 - - 50.16 58.33 31.88

ArcFace [4]+ 93.7±1.0 94.2±0.8 97.0±0.6 97.9±0.4 93.5 95.8 95.87 97.27 57.36 64.95 41.23

Ours (Baseline) 82.6±8.3 93.3±3.0 95.5±0.7 96.9±0.6 43.9 86.7 89.85 90.86 37.14 46.75 24.75

Ours (Baseline + VA) 82.4±8.1 93.9±3.5 95.8±0.6 97.2±0.5 47.6 90.6 90.16 91.20 51.27 58.94 31.19

Ours (all) 95.0±0.9 96.3±0.6 97.5±0.4 98.4±0.4 91.6 93.7 94.39 96.08 60.74 66.59 37.11

Ours (all) + PA 96.0±0.8 97.3±0.4 97.5±0.3 98.4±0.3 95.0 96.6 96.00 97.06 61.98 67.12 42.73

Table 3: Our model compared to state-of-the-art methods on IJB-A, IJB-C and IJB-S. “-” indicates that the author did not report the performance on the

corresponding protocol. “*” indicates fine-tuning on the target dataset during evaluation on IJB-A benchmark and “+” indicates the testing performance by

using the released models from corresponding authors.

High-quality Blur Occlusion Large-pose

Figure 11: Heatmap visualization of sub-embedding uncertainty on

different types of images from IJB-C dataset, shown on the right of

each face image. 16 values are arranged in 4×4 grids (no spatial

meaning). Brighter color indicates higher uncertainty.

the straight training can lead to good performance.

5.4. Evaluation on Mixed/Low Quality Datasets

When evaluating on more challenging datasets, those

state-of-the-art general methods encounter performance drop

as the challenging datasets present large variations and thus

large domain gap from the good quality training datasets.

Table 3 shows the performance on three challenging bench-

marks: IJB-A, IJB-C and IJB-S. The proposed model

achieves consistently better results than the state-of-the-arts.

In particular, simply adding variation augmentation (“Ours

(Baseline + VA)”) actually leads to a worse performance

on IJB-A and IJB-C. When variation augmentation is com-

bined with our proposed modules (“Ours”), significant per-

formance boost is achieved. Further adding PA with “Ours”,

we achieve even better performance across all datasets and

protocols. Notice that IJB-A is a cross-validation protocol.

Many works fine-tune on training splits before evaluation

(shown with “*”). Even though, our method without fine-

tuning still outperforms the state-of-the-art methods with

significant margin on IJB-A verification protocol, which

suggests that our method indeed learns the representation

towards dealing with unseen variations.

Table 3 last column shows the evaluation on IJB-S, which

is so far the most challenging benchmark targeting real

surveillance scenario with severe poor quality images. We

show the Surveillance-to-Booking (S2B) protocol of IJB-

S. Other protocol results can be found in supplementary.

As IJB-S is recently released, there are few studies that

have evaluated on this dataset. To comprehensively evalu-

ate our model, we use the publicly released models from

ArcFace [4] for comparison. Our method achieves consis-

tently better performance across Rank-1 and Rank-5 identifi-

cation protocol. For TinyFace, as in Table 1, we achieve

63.89%, 68.67% rank-1 and rank-5 accuracy, where [3]

reports 44.80%, 60.40%, and ArcFace achieves 47.39%,

52.28%. Combining Table 2, our method achieves top level

accuracy on general recognition datasets and significantly

better accuracy on challenging datasets, which demonstrates

the advantage in dealing with extreme or unseen variations.

Uncertainty Visualization Figure 11 shows uncertainty

scores for the 16 sub-embeddings reshaped into 4× 4 grids.

High-quality and low-quality sub-embeddings are shown

in dark and light colors respectively. The uncertainty map

presents different patterns for different variations.

6. Conclusion

In this work, we propose a universal face representation

learning framework, URFace, to recognize faces under all

kinds of variations. We firstly introduce three nameable vari-

ations into MS-Celeb-1M training set via data augmentation.

Traditional methods encounter convergence problem when

directly feeding the augmented hard examples into training.

We propose a confidence-aware representation learning by

partitioning the embedding into multiple sub-embeddings

and relaxing the confidence to be sample and sub-embedding

specific. Further, the classification and adversarial losses on

variations are proposed to decorrelate the sub-embeddings.

By formulating the inference with an uncertainty model, the

sub-embeddings are aggregated properly. Experimental re-

sults show that our method achieves top performance on

general benchmarks such as LFW and MegaFace, and sig-

nificantly better accuracy on challenging benchmarks such

as IJB-A, IJB-C and IJB-S.
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