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Abstract

Cross-view geo-localization is the problem of estimat-

ing the position and orientation (latitude, longitude and

azimuth angle) of a camera at ground level given a large-

scale database of geo-tagged aerial (e.g., satellite) images.

Existing approaches treat the task as a pure location esti-

mation problem by learning discriminative feature descrip-

tors, but neglect orientation alignment. It is well-recognized

that knowing the orientation between ground and aerial im-

ages can significantly reduce matching ambiguity between

these two views, especially when the ground-level images

have a limited Field of View (FoV) instead of a full field-

of-view panorama. Therefore, we design a Dynamic Simi-

larity Matching network to estimate cross-view orientation

alignment during localization. In particular, we address the

cross-view domain gap by applying a polar transform to the

aerial images to approximately align the images up to an

unknown azimuth angle. Then, a two-stream convolutional

network is used to learn deep features from the ground and

polar-transformed aerial images. Finally, we obtain the ori-

entation by computing the correlation between cross-view

features, which also provides a more accurate measure of

feature similarity, improving location recall. Experiments

on standard datasets demonstrate that our method signifi-

cantly improves state-of-the-art performance. Remarkably,

we improve the top-1 location recall rate on the CVUSA

dataset by a factor of 1.5× for panoramas with known ori-

entation, by a factor of 3.3× for panoramas with unknown

orientation, and by a factor of 6× for 180◦-FoV images with

unknown orientation.

1. Introduction

Given an image captured by a camera at ground level, it

is reasonable to ask: where is the camera and which direc-

tion is it facing? Cross-view image geo-localization aims

to determine the geographical location and azimuth angle

of a query image by matching it against a large geo-tagged

Figure 1. Given a query ground image, we aim to recover its

geographical location (latitude and longitude) and orientation (az-

imuth angle) by matching it against a large database of geo-tagged

aerial images. To do so, we first apply a polar transform to aerial

images to approximately align them with the ground view images,

up to an unknown azimuth angle. We next compute the correla-

tion between ground and aerial features along the axis of azimuth

angles (horizontal direction) to estimate the orientation alignment

of the ground image with respect to the aerial image. We then

shift and crop out the corresponding aerial features, and compute

their distance to the ground features, which provides a similarity

measure for location retrieval.

satellite map covering the region. Due to the accessibil-

ity and extensive coverage of satellite imagery, ground-to-

aerial image alignment is becoming an attractive proposi-

tion for solving the image-based geo-localization problem.

However, cross-view alignment remains very difficult

due to the extreme viewpoint change between ground and
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aerial images. The challenges are summarized as follows.

(1) Significant visual differences between the views, in-

cluding the appearance and projected location of ob-

jects in the scene, result in a large domain gap.

(2) The unknown relative orientation between the images,

when the northward direction is not known in both,

leads to localization ambiguities and increases the

search space.

(3) Standard cameras have a limited Field of View (FoV),

which reduces the discriminativeness of the ground-

view features for cross-view localization, since the

image region only covers local information and may

match multiple aerial database images.

Existing methods cast this task as a pure location esti-

mation problem and use deep metric learning techniques to

learn viewpoint invariant features for matching ground and

aerial images. Many approaches require the orientation to

be provided, avoiding the ambiguities caused by orientation

misalignments [15, 12, 10]. However, the orientation is not

always available for ground images in practice. To handle

this, some methods directly learn orientation invariant fea-

tures [18, 5, 2], however they fail to address the large do-

main gap between ground and aerial images, limiting their

localization performance.

To reduce the cross-view domain gap, we explore the

geometric correspondence between ground and aerial im-

ages. We observe that there are two geometric cues that

are statistically significant in real ground images under an

equirectangular projection: (i) horizontal lines in the image

(parallel to the azimuth axis) have approximately constant

depth and so correspond to concentric circles in the aerial

image; and (ii) vertical lines in the image have depth that

increases with the y coordinate and so correspond to radial

lines in the aerial image. To be more specific, if the scene

was flat, then a horizontal line in the ground image maps to

a circle in the aerial image. We make use of these geometric

cues by applying a polar coordinate transform to the aerial

images, mapping concentric circles to horizontal lines. This

reduces the differences in the projected geometry and hence

the domain gap, as shown in Figure 2.

We then employ a two-stream CNN to learn feature

correspondences between ground and aerial images. We

extract feature volumes that preserve the spatial relation-

ships between features, which is a critical cue for geo-

localization. However, orientation misalignments lead to

inferior results when using spatially-aware image features.

Moreover, it is difficult to match features when a limited

FoV is imaged, since the ground image contains only a

small sector of the aerial image. Therefore, our intuition is

to find the orientation alignment and thus facilitate accurate

similarity matching.

As the polar transform projects the aerial image into the

ground-view camera coordinate frame, it allows to estimate

(a) Aerial (b) Ground

(c) Polar-transformed Aerial

Figure 2. The challenge of cross-view image matching caused by

the unknown orientation and limited FoV of the query ground im-

age. The scene content in panoramas captured at the same location

but with different azimuth angles (top and middle) is offset, and the

image content in a limited FoV image can be entirely different to

another image captured from the same location.

the orientation of each ground image with respect to its

aerial counterpart by feature correlation. In this paper, we

propose a Dynamic Similarity Matching (DSM) module to

achieve that goal. To be specific, we compute the corre-

lation between the ground and aerial features in order to

generate a similarity score at each angle, marked by the red

curve in Figure 1. The position of the similarity score max-

imum corresponds to the latent orientation of the ground

image with respect to the aerial image. If the ground im-

age has a limited FoV, we extract the appropriate local re-

gion from the aerial feature representation for localization.

By using our DSM module, the feature similarity between

the ground and aerial images is measured more accurately.

Therefore, our method outperforms the state-of-the-art by a

large margin.

The contributions of our work are:

• the first image-based geo-localization method to

jointly estimate the position and orientation1 of a query

ground image regardless of its Field of View;

• a Dynamic Similarity Matching (DSM) module to

measure the feature similarity of the image pair while

accounting for the orientation of the ground image, fa-

cilitating accurate localization; and

• extensive experimental results demonstrating that

our method achieves significant performance im-

provements over the state-of-the-art in various geo-

localization scenarios.

2. Related Work

Existing cross-view image-based geo-localization aims

to estimate the location (latitude and longitude) of a ground

image by matching it against a large database of aerial im-

ages. Due to the significant viewpoint changes between

1Throughout this paper, orientation refers to the 1-DoF azimuth angle.
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Figure 3. Flowchart of the proposed method. A polar transform is first applied to the aerial image, and then a two-stream CNN is employed

to extract features from ground and polar-transformed aerial images. Given the extracted feature volume representations, the correlation

between the two is used to estimate the orientation of the ground image with respect to the aerial image. Next, the aerial features are shifted

and cropped to obtain the section that (potentially) corresponds to the ground features. The similarity of the resulting features is then used

for location retrieval.

ground and aerial images, hand-crafted feature matching

[3, 9, 11] becomes the bottleneck of the performance of

cross-view geo-localization. Deep convolutional neural net-

works (CNNs) have proven their powerful capability on

image representations [13]. This motivates recent geo-

localization works to extract features from ground and aerial

images with CNNs.

Workman and Jacobs [19] first introduced deep features

to the cross-view matching task. They used an AlexNet

[7] network fine-tuned on Imagenet [13] and Places [22]

to extract deep features for cross-view image matching.

They demonstrated that further tuning of the aerial branch

by minimizing the distance between matching ground and

aerial pairs led to better localization performance [20]. Vo

and Hays [18] investigated a set of CNN architectures (clas-

sification, hybrid, Siamese and triplet CNNs) for matching

cross-view images. Considering the orientation misalign-

ments between ground and aerial images, they proposed

an auxiliary orientation regression block to let the network

learn orientation-aware feature representations, and used

multiple aerial images with different orientations during

testing phase. To learn orientation invariant features, Hu

et al. [5] embedded a NetVlad layer [1] on top of a two-

branch CNN for cross-view image matching. Cai et al. [2]

introduced a lightweight attention module to reweight spa-

tial and channel features to obtain more representative de-

scriptors, and then proposed a hard exemplar reweighting

triplet loss to improve the quality of network training. They

also employed an orientation regression block to force the

network to learn orientation-aware features. Sun et al. [17]

employed capsule networks to encode spatial feature hier-

archies for feature representations. Although these meth-

ods learned orientation-aware descriptors for localization,

they overlooked the domain difference between ground and

aerial images.

To bridge the large domain gap between ground and

aerial images, Zhai et al. [21] learned a transformation

matrix between aerial and ground features for predicting

ground semantic information from aerial images. Regmi

and Shah [12] synthesized an aerial image from a ground

one using a generative model, and then fused features of

the ground image and the synthesized aerial image as the

descriptor for retrieval. Shi et al. [15] proposed a feature

transport module to map ground features into the aerial do-

main and then conducted similarity matching. Shi et al.

[14] also used polar transform to first bridge the geometric

domain difference and then a spatial-aware feature aggrega-

tion module to select salient features for global feature de-

scriptor representation. However, all those methods require

ground images to be panoramas or orientation-aligned. Fi-

nally, Liu & Li [10] found that the orientation provided im-

portant clues for determining the location of a ground im-

age, and thus explicitly encoded the ground-truth orienta-

tion as an additional network input.

In contrast to existing works, we aim to estimate the

location and orientation of ground images jointly, since

exploring orientation information can facilitate cross-view

matching for both panoramas and images with limited FoV.

3. Location and Orientation Estimation by

Cross-view Image Matching

In the cross-view image-based geo-localization task,

ground images are captured by a camera whose image plane

is perpendicular to the ground plane and y axis is paral-

lel to the gravity direction, and aerial images are captured

from a camera whose image plane is parallel to the ground

plane. Since there are large appearance variations between

these two image domains, our strategy is to first reduce the

projection differences between the viewpoints and then to
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extract discriminative features from the two domains. Fur-

thermore, inspired by how humans localize themselves, we

use the spatial relationships between objects as a critical cue

for inferring location and orientation. Therefore, we enable

our descriptors to encode the spatial relationship among the

features, as indicated by Fg and Fa in Figure 3.

Despite the discriminativeness of the spatially-aware

features, they are very sensitive to orientation changes.

For instance, when the azimuth angle of a ground camera

changes, the scene contents will be offset in the ground

panorama, and the image content may be entirely different

if the camera has a limited FoV, as illustrated in Figure 2.

Therefore, finding the orientation of the ground images is

crucial to make the spatially-aware features usable. To

this end, we propose a dynamic similarity matching (DSM)

module, as illustrated in Figure 3. With this module, we

not only estimate the orientation of the ground images but

also achieve more accurate feature similarity scores, regard-

less of orientation misalignments and limited FoVs, thus en-

hancing geo-localization performance.

3.1. A Polar Transform to Bridge the Domain Gap

Since ground panoramas2 project 360-degree rays onto

an image plane using an equirectangular projection, and are

orthogonal to the satellite-view images, vertical lines in the

ground image correspond to radial lines in the aerial im-

age, and horizontal lines correspond approximately to cir-

cles in the aerial image, assuming that the pixels along the

line have similar depths, which occurs frequently in prac-

tice. This layout correspondence motivates us to apply a

polar transform to the aerial images. In this way, the spa-

tial layouts of these two domains can be roughly aligned, as

illustrated in Figure 2(b) and Figure 2(c).

To be specific, the polar origin is set to the center of each

aerial image, corresponding to the geo-tag location, and the

0◦ angle is chosen as the northward direction, correspond-

ing to the upwards direction of an aligned aerial image. In

addition, we constrain the height of the polar-transformed

aerial images to be the same as the ground images, and en-

sure that the angle subtended by each column of the polar

transformed aerial images is the same as in the ground im-

ages. We apply a uniform sampling strategy along radial

lines in the aerial image, such that the innermost and outer-

most circles of the aerial image are mapped to the bottom

and top line of the transformed image respectively.

Formally, let Sa×Sa represent the size of an aerial image

and Hg ×Wg denote the target size of polar transform. The

polar transform between the original aerial image points

2Although we use panoramic images as an example, the correspon-

dence relationships between ground and aerial images also apply to images

with limited FoV.
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By applying a polar transform, we coarsely bridge the pro-

jective geometry domain gap between ground and aerial

images. This allows the CNNs to focus on learning the

feature correspondences between the ground and polar-

transformed aerial images without consuming network ca-

pacity on learning the geometric relationship between these

two domains.

3.2. A Spatially­Aware Feature Representation

Applying a translation offset along the x axis of a polar-

transformed image is equivalent to rotating the aerial image.

Hence, the task of learning rotational equivariant features

for aerial images becomes learning translational equivariant

features, which significantly reduces the learning difficulty

for our network since CNNs inherently have the property of

translational equivariance [8]. However, since the horizon-

tal direction represents a rotation, we have to ensure that

the CNN treats the leftmost and rightmost columns of the

transformed image as adjacent. Hence, we propose to use

circular convolutions with wrap-around padding along the

horizontal direction.

We adopt VGG16 [16] as our backbone network. In par-

ticular, the first ten layers of VGG16 are used to extract fea-

tures from the ground and polar-transformed aerial images.

Since the polar transform might introduce distortions along

the vertical direction, due to the assumption that horizontal

lines have similar finite depths, we modify the subsequent

three layers which decrease the height of the feature maps

but maintain their width. In this manner, our extracted fea-

tures are more tolerant to distortions along the vertical di-

rection while retaining information along the horizontal di-

rection. We also decrease the feature channel number to

16 by using these three convolutional layers, and obtain a

feature volume of size 4×64×16. Our feature volume rep-

resentation is a global descriptor designed to preserve the

spatial layout information of the scene, thus increasing the

discriminativeness of the descriptors for image matching.

3.3. Dynamic Similarity Matching (DSM)

When the orientation of ground and polar-transformed

aerial features are aligned, their features can be compared

directly. However, the orientation of the ground images

is not always available, and orientation misalignments in-

crease the difficulty of geo-localization significantly, espe-

cially when the ground image has a limited FoV. When hu-

mans are using a map to relocalize themselves, they de-

termine their location and orientation jointly by compar-

4067



ing what they have seen with what they expect to see on

the map. In order to let the network mimic this process,

we compute the correlation between the ground and aerial

features along the azimuth angle axis. Specifically, we

use the ground feature as a sliding window and compute

the inner product between the ground and aerial features

across all possible orientations. Let Fa ∈ RH×Wa×C and

Fg ∈ RH×Wg×C denote the aerial and ground features re-

spectively, where H and C indicate the height and channel

number of the features, Wa and Wg represent the width of

the aerial and ground features respectively, and Wa ≥ Wg .

The correlation between Fa and Fg is expressed as

[Fa ∗ Fg](i)=
C
∑

c=1

H
∑

h=1

Wg
∑

w=1

Fa(h, (i+ w)%Wa, c)Fg(h,w, c),

(2)

where F (h,w, c) is the feature response at index (h, w,

c), and % denotes the modulo operation. After correlation

computation, the position of the maximum value in the sim-

ilarity scores is the estimated orientation of the ground im-

age with respect to the polar-transformed aerial one.

When a ground image is a panorama, regardless of

whether the orientation is known, the maximum value in

the correlation results is directly converted to the L2 dis-

tance by computing 2(1−max([Fa ∗Fg](i)), where Fa and

Fg are L2-normalized. When a ground image has a limited

FoV, we crop the aerial features corresponding to the FoV

of the ground image at the position of the maximum similar-

ity score. Then we re-normalize the cropped aerial features

and calculate the L2 distance between the ground and aerial

features as the similarity score for matching. Note that if

there are multiple maximum similarity scores, we choose

one randomly, since this means that the aerial images has

symmetries that cannot be disambiguated.

3.4. Training DSM

During the training process, our DSM module is ap-

plied to all ground and aerial pairs, whether they are match-

ing or not. For matching pairs, DSM forces the network

to learn similar feature embeddings for ground and polar-

transformed aerial images with discriminative feature repre-

sentations along the horizontal direction (i.e., azimuth). In

this way, DSM is able to identify the orientation misalign-

ment as well as find the best feature similarity for match-

ing. For non-matching pairs, as it is the most challenging

case when they are aligned (i.e., their similarity is larger),

our DSM is also used to find the most feasible orientation

for a ground image aligning to a non-matching aerial one,

and we minimize the maximum similarity of non-matching

pairs to make the features more discriminative. Following

traditional cross-view localization methods [5, 10, 15], we

employ the weighted soft-margin triplet loss [5] to train our

network

L = log

(

1 + e
α
(∥

∥

∥
Fg−F

a
′

∥

∥

∥

F
−

∥

∥

∥
Fg−F

a∗
′

∥

∥

∥

F

)
)

, (3)

where Fg is the query ground feature, Fa
′ and Fa∗

′ indi-

cate the cropped aerial features from the matching aerial

image and a non-matching aerial image respectively, and

‖·‖F denotes the Frobenius norm. The parameter α con-

trols the convergence speed of training process; following

precedents we set it to 10 [5, 10, 15].

3.5. Implementation Details

We use the first ten convolutional layers in VGG16 with

pretrained weights on Imagenet [4], and randomly initial-

ize the parameters in the following three layers for global

feature descriptor extraction. The first seven layers are kept

fixed and the subsequent six layers are learned. The Adam

optimizer [6] with a learning rate of 10−5 is employed for

training. Following [18, 5, 10, 15], we adopt an exhaustive

mini-batch strategy [18] with a batch size of B = 32 to cre-

ate the training triplets. Specifically, for each ground image

within a mini-batch, there is one matching aerial image and

(B − 1) non-matching ones. Thus we construct B(B − 1)
triplets. Similarly, for each aerial image, there is one match-

ing ground image and (B − 1) non-matching ones within a

mini-batch, and thus we create another B(B − 1) triplets.

Hence, we have 2B(B − 1) triplets in total.

4. Experiments

4.1. Datasets

We carry out the experiments on two standard cross-

view datasets, CVUSA [21] and CVACT [10]. They both

contain 35, 532 training ground and aerial pairs and 8, 884
testing pairs. Following an established testing protocol

[10, 15], we denote the test sets in CVUSA and CVACT

as CVUSA and CVACT_val, respectively. CVACT also

provides a larger test set, CVACT_test, which contains

92, 802 cross-view image pairs for fine-grained city-scale

geo-localization. Note that the ground images in both of the

two datasets are panoramas, and all the ground and aerial

images are north aligned. Figure 4 presents samples of

cross-view image pairs from the two datasets.

Furthermore, we also conduct experiments on ground

images with unknown orientation and limited FoV.

We use the image pairs in CVUSA and CVACT_val,

and randomly rotate the ground images along the

azimuth direction and crop them according to a pre-

determined FoV. The constructed test set with different

FoVs as well as our source code are available via

https://github.com/shiyujiao/cross_view_localization_DSM.git.

4068



Figure 4. Cross-view image pairs from the CVUSA (top two rows)

and CVACT (bottom two rows) datasets. The aerial images are on

the left and the ground panoramas are on the right.

4.2. Evaluation Metrics

Location estimation: Following the standard evaluation

procedure for cross-view image localization [18, 5, 10, 15,

2, 17, 12], we use the top K recall as the location evaluation

metric to examine the performance of our method and com-

pare it with the state-of-the-art. Specifically, given a ground

image, we retrieve the top K aerial images in terms of L2

distance between their global descriptors. The ground im-

age is regarded as successfully localized if its correspond-

ing aerial image is retrieved within the top K list. The per-

centage of correctly localized ground images is recorded as

recall at top K (r@K).

Orientation estimation: The predicted orientation of a

query ground image is meaningful only when the ground

image is localized correctly. Hence, we evaluate the ori-

entation estimation accuracy of our DSM only on ground

images that have been correctly localized by the top-1 re-

call. In this experiment, when the differences between the

predicted orientation of a ground image and its ground-truth

orientation is within ±10% of its FoV, the orientation esti-

mation of this ground image is deemed as a success. We

record the percentage of ground images for which the ori-

entation is correctly predicted as the orientation estimation

accuracy (orien_acc). Since aerial images are often rota-

tionally symmetric, orientation estimation can yield large

errors, such as 180◦ for scenes that look similar in opposite

directions. Hence we report the robust median orientation

error, denoted as median_error, instead of the mean.

4.3. Localizing Orientation­Aligned Panoramas

We first investigate the location estimation performance

of our method and compare it with the state-of-the-art on

the standard CVUSA and CVACT datasets, where ground

images are orientation-aligned panoramas. In Table 1, we

Table 1. Comparison with existing methods on the CVUSA [21]

dataset. Here, “–” denotes that the results on the corresponding

evaluation metric are not available as some of the works only use

r@1% as the evaluation metric.

Methods
CVUSA

r@1 r@5 r@10 r@1%

Workman et al. [20] – – – 34.3

Zhai et al. [21] – – – 43.2

Vo and Hays [18] – – – 63.7

CVM-NET [5] 22.47 49.98 63.18 93.62

Liu & Li [10] 40.79 66.82 76.36 96.12

Regmi and Shah [12] 48.75 – 81.27 95.98

Siam-FCANet34 [2] – – – 98.3

CVFT [15] 61.43 84.69 90.49 99.02

Ours 91.96 97.50 98.54 99.67

Table 2. Comparison with existing methods on the CVACT_val

[10] dataset by re-training existing networks using the code pro-

vided by the authors.

Methods
CVACT_val

r@1 r@5 r@10 r@1%

CVM-NET [5] 20.15 45.00 56.87 87.57

Liu & Li [10] 46.96 68.28 75.48 92.01

CVFT [15] 61.05 81.33 86.52 95.93

Ours 82.49 92.44 93.99 97.32

present our results on the CVUSA dataset with the recall

rates reported in other works [10, 15, 5, 12, 2]. We also

retrain existing networks [5, 10, 15] on the CVACT dataset

using source code provided by the authors. The recall re-

sults at top-1, top-5, top-10 and top-1% on CVACT_val are

presented in Table 2, and the complete r@K performance

curves on CVUSA and CVACT_val are illustrated in Figure

5(a) and Figure 5(b), respectively.

Among those comparison methods, [20, 21, 18] are first

explorers to apply deep-based methods to cross-view re-

lated tasks. CVM-NET [5] and Siam-FCANet34 [2] focus

on designing powerful feature extraction networks. Liu &

Li [10] introduce the orientation information to networks so

as to facilitate geo-localization. However, all of them ignore

the domain difference between ground and aerial images,

thus leading to inferior performance. Regmi and Shah [12]

adopt a conditional GAN to generate aerial images from

ground panoramas. Although it helps to bridge the cross-

view domain gap, undesired scene contents are also induced

in this process. Shi et al. [15] propose a cross view feature

transport module (CVFT) to better align ground and aerial

features. However, it is hard for networks to learn geomet-

ric and feature response correspondences simultaneously.

In contrast, our polar transform explicitly reduces the pro-

jected geometry difference between ground and aerial im-

ages, and thus eases the burden of networks. As is clear in

Table 1 and Table 2, our method significantly outperforms
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(a) CVUSA (b) CVACT_val (c) CVACT_test

Figure 5. Recall comparison at different values of K on the CVUSA, CVACT_val and CVACT_test datasets.

the state-of-the-art methods by a large margin.

Fine-grained localization: We also compare our method

with state-of-the-art methods on the CVACT_test dataset.

This dataset provides fine-grained geo-tagged aerial images

that densely cover a city, and the localization performance

is measured in terms of distance (meters). Specifically, a

ground image is considered as successfully localized if one

of the retrieved top K aerial images is within 5 meters of the

ground truth location of the query ground image. Following

the evaluation protocol in Liu & Li [10], we plot the per-

centage of correctly localized ground images (recall) at dif-

ferent values of K in Figure 5(c). Our method achieves su-

perior results compared to state-of-the-art on this extremely

challenging test set.

4.4. Localizing With Unknown Orientation and
Limited FoV

In this section, we test the performance of our algorithm

and other methods, including CVM-NET [5] and CVFT

[15], on the CVUSA and CVACT_val datasets in a more

realistic localization scenario, where the ground images do

not have a known orientation and have a limited FoV. Re-

call that Liu & Li [10] require orientation information as an

input, so we cannot compare with this method.

Location estimation: Since existing methods are only de-

signed to estimate the location of ground images, we only

evaluate their location recall performance. In order to eval-

uate the impact of orientation misalignments and limited

FoVs on localization performance, we randomly shift and

crop the ground panoramas along the azimuth direction for

the CVUSA and CVACT_val datasets. In this manner, we

mimic the procedure of localizing images with limited FoV

and unknown orientation. The first results column in Ta-

ble 3 demonstrates the performance of localizing panoramas

with unknown orientation. It is clear that our method sig-

nificantly outperforms all the comparison algorithms, ob-

taining a 2.34× improvement on CVUSA and a 2.72× im-

provement on CVACT in terms of r@1. We also conduct

comparisons with the other methods on ground images with

FoVs of 180◦ (fish-eye camera), 90◦ (wide-angle camera)

and 70◦ (general phone camera) respectively in Table 3.

Note that the orientation is also unknown. As illustrated

in Figure 6(b), as the FoV of the ground image decreases,

the image become less discriminative. This increases the

difficulty of geo-localization especially when the orienta-

tion is unknown. As indicated in the second, third and

fourth results column of Table 3, our method, benefiting

from its DSM module, significantly reduces the ambiguity

caused by unknown orientations and measures feature sim-

ilarity more accurately, achieving better performance than

the state-of-the-art.

Orientation estimation: As previously mentioned, the ex-

periments of orientation estimation is conducted on ground

images which are correctly localized in terms of top-1 re-

trieved candidates. The first row in Table 4 presents the ori-

entation prediction accuracy of ground images with differ-

ent FoVs. As indicated in the table, the orientation of almost

all ground images with 360◦ and 180◦ FoV is predicted cor-

rectly, demonstrating the effectiveness of our DSM module

for estimating the orientation of ground images. It is also

clear that the matching ambiguity increases as the FoV de-

creases. Considering that scene contents in an aerial image

might be very similar in multiple directions, the orientation

estimation can be inaccurate while the estimated location is

correct. For instance, a person standing on a road is able to

localize their position but will find it difficult to determine

their orientation if the view is similar along the road in both

directions. We provide an example of this in the supplemen-

tary material. Therefore, even when our method estimates

orientation inaccurately, it is still possible to localize the

position correctly using our DSM module. We also report

the median value of the errors (in degrees) between the es-

timated and ground truth orientation in the second row of

Table 4. The estimated errors are very small with respect

to the FoV of the image, and so will not negatively affect

the localization performance. Figure 6 shows the estimated
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Table 3. Comparison of recall rates for localizing ground images with unknown orientation and varying FoVs.

Dataset Comparison Algorithms
FoV=360◦ FoV=180◦ FoV=90◦ FoV=70◦

r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%

CVUSA

CVM-NET [5] 16.25 38.86 49.41 88.11 7.38 22.51 32.63 75.38 2.76 10.11 16.74 55.49 2.62 9.30 15.06 21.77

CVFT [15] 23.38 44.42 55.20 86.64 8.10 24.25 34.47 75.15 4.80 14.84 23.18 61.23 3.79 12.44 19.33 55.56

Ours 78.11 89.46 92.90 98.50 48.53 68.47 75.63 93.02 16.19 31.44 39.85 71.13 8.78 19.90 27.30 61.20

CVACT_val

CVM-NET [5] 13.09 33.85 45.69 81.80 3.94 13.69 21.23 59.22 1.47 5.70 9.64 38.05 1.24 4.98 8.42 34.74

CVFT [15] 26.79 46.89 55.09 81.03 7.13 18.47 26.83 63.87 1.85 6.28 10.54 39.25 1.49 5.13 8.19 34.59

Ours 72.91 85.70 88.88 95.28 49.12 67.83 74.18 89.93 18.11 33.34 40.94 68.65 8.29 20.72 27.13 57.08

(a) FoV=360◦

(b) FoV=70◦

Figure 6. Visualization of estimated orientation for ground images

with FoV = 360◦ and 70◦. In each of the subfigures, the aerial

images are on the left and the ground images are in the middle.

We visualize the polar transformed-aerial features and the correla-

tion results (red curves) in the right column. The positions of the

correlation maxima in the curves corresponds to the orientation of

the ground images.

Table 4. Orientation prediction performance on correctly localized

ground images.

Dataset CVUSA CVACT_val

FoV 360◦ 180◦ 90◦ 70◦ 360◦ 180◦ 90◦ 70◦

orien_acc 99.41 98.54 76.15 61.67 99.84 99.10 74.51 55.18

median_error 2.38 2.38 4.50 4.88 1.97 2.89 5.21 6.22

orientation of ground images with 360◦ and 70◦ FoVs, and

Figure 7 presents some qualitative examples on joint loca-

tion and orientation estimation. More visualization results

on orientation estimation are provided in the supplementary

material.

5. Conclusion

In this paper we have proposed an effective algorithm for

image-based geo-localization, which can handle complex

situation when neither location nor orientation is known.

Contrast to many existing methods, our algorithm recov-

ers both location and orientation by joint cross-view im-

FoV=360◦ , Azimuth=−32.344◦

FoV=180◦ , Azimuth=128.672◦

FoV=90◦ , Azimuth=−158.906◦

FoV=70◦ , Azimuth=−115.469◦

(a) Query

−33.750◦

129.375◦

−157.50◦

−116.875◦

(b) Top-1

−61.875◦

−129.375◦

−163.125◦

57.500◦

(c) Top-2

−28.125◦

−146.250◦

−28.125◦

−128.125◦

(d) Top-3

−123.750◦

−180.000◦

39.375◦

175.635◦

(e) Top-4

Figure 7. Visualization of joint location and orientation estima-

tion results by our method on the CVUSA dataset. The FoV and

ground truth azimuth angle are presented under each query image.

The angle under each aerial image is the estimated relative orien-

tation of the query image with respect to this aerial image. Green

and red borders indicate correct and wrong retrieved results, re-

spectively.

age matching. Key components of our framework include a

polar-transformation to bring different domains closer and

a novel Dynamic Similarity Matching module (DSM) to

regress on relative orientation. Benefited from the two

items, our network is able to extract appropriate aerial fea-

tures if the ground image is disoriented and has a limited

FoV. We obtained higher location recalls for cross-view im-

age matching, significantly improve the state-of-the-art in

multitude practical scenarios.
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