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Abstract

In this paper, we propose a novel and efficient refer-

ence feature extraction module referred to as the Similar-

ity Search and Extraction Network (SSEN) for reference-

based super-resolution (RefSR) tasks. The proposed mod-

ule extracts aligned relevant features from a reference im-

age to increase the performance over single image super-

resolution (SISR) methods. In contrast to conventional al-

gorithms which utilize brute-force searches or optical flow

estimations, the proposed algorithm is end-to-end trainable

without any additional supervision or heavy computation,

predicting the best match with a single network forward op-

eration. Moreover, the proposed module is aware of not

only the best matching position but also the relevancy of

the best match. This makes our algorithm substantially ro-

bust when irrelevant reference images are given, overcom-

ing the major cause of the performance degradation when

using existing RefSR methods. Furthermore, our module

can be utilized for self-similarity SR if no reference image

is available. Experimental results demonstrate the superior

performance of the proposed algorithm compared to previ-

ous works both quantitatively and qualitatively.

1. Introduction

Single Image Super-Resolution (SISR) aims to recon-

struct a high-resolution (HR) image from a low-resolution

(LR) image. Despite its notorious difficulty, SISR [34, 9]

has received substantial attention due to its importance and

practicality. As the Convolutional Neural Network (CNN)

has demonstrated its capability in various research areas,

including SISR, numerous deep learning-based SISR meth-

ods have been proposed [5, 14, 18] and have shown substan-

tial performance improvements, especially with respect to

reconstruction accuracy. To achieve a high peak signal-to-

noise ratio (PSNR), the optimization process is typically de-

fined as the minimization of the mean-squared-error (MSE)

or the mean-absolute-error (MAE) between a ground truth
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Figure 1: RefSR results with reference images with varying

levels of similarity. XH, H, M, L, and XL denote very-high,

high, middle, low, and very-low similarity levels, respec-

tively.

image and a predicted high-resolution image. This type of

algorithm has a critical limitation in that the generated solu-

tion is the mean or median of possible high-resolution im-

ages, with a lack of high-frequency details and a blurred

visual quality level.

In order to obtain high-resolution images with realis-

tic textures, high-level feature similarity between the high-

resolution and reconstructed images is enforced. Perceptual

loss [12] or Generative Adversarial Network (GAN)-based

algorithms [17, 24] are proposed for better output percep-

tual quality levels in SR. Specifically, adversarial learning

helps a generator network to synthesize more realistic im-

ages while competing with a discriminator which attempts

to differentiate super-resolved and original HR images. Al-

though those algorithms provide visually pleasing outputs,

they do not ensure an accurate reconstruction of the original

high-resolution image, and this leads to PSNR degradation.
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To mitigate this problem, some methods explicitly exploit

additional information to make the SR outputs more like

the ground truth and more visually pleasing [42, 40].

Because the original high-frequency information is lost

due to the down-sampling process, it is highly challeng-

ing to reconstruct the precise high-frequency details of the

ground truth. For such high-frequency details, providing

similar content explicitly is a more reasonable approach

compared to generating fake textures. Hence, the impor-

tance of reference-based SR (RefSR) is rapidly arising to

overcome the limitations of SISR. RefSR aims to recover

high-resolution images by utilizing an external reference

(Ref) containing similar content to generate rich textures,

changing the one-to-many to an one-to-one mapping prob-

lem (i.e., mapping textures from the reference to the out-

put). Many existing SR algorithms can be regarded as spe-

cial cases of RefSR based on which reference image is

paired with the input. For instance, reference images can

be diversely acquired from video frames [19, 3], web image

searches [35], or from different view points [42]. Conven-

tional RefSR algorithms [2, 41, 42] are known to have a

critical limitation in that the reference image should contain

similar content to avoid any unexpected degradation in the

performance. The most desired behavior of the RefSR al-

gorithm is that it should be aware of the degree of similarity

between low-resolution and reference images so as not to

be affected by irrelevant reference images.

Inspired by recent works on video SR [26, 28] and

RefSR methods [35, 42, 40], we propose a novel reference

feature extraction module for the RefSR task. The module

consists of stacked deformable convolution layers, and it

can be inserted into any existing super-resolution network.

The major benefit of our approach is that we aggressively

search for similarity using a sophisticatedly designed offset

estimator which learns the offsets of the deformable con-

volution. We adopt a non-local block [29] for our offset

estimator, which performs pixel- or patch-wise similarity

matching in a multi-scale manner. With the benchmark

dataset used with RefSR, which has images paired with ref-

erence images with five different levels of similarity [40],

we conduct experiments to demonstrate the superiority of

the proposed algorithm. Experimental results show that our

reconstruction results are more accurate and realistic with

the help of the proposed module compared to the outcomes

of previous algorithms.

Figure 1 shows the result of our method with refer-

ence images with different levels of similarity. Our method

shows robustness to similarity variations. Even with a ref-

erence image with unrelated content or a much lower sim-

ilarity level, our method still produces less noisy output,

demonstrating the adaptiveness/robustness to various levels

of content similarity in RefSR.

In summary, our contributions are as follows:

• We propose a novel end-to-end trainable reference fea-

ture extraction module termed the Similarity Search

and Extraction Network, with similarity-aware de-

formable convolutions.

• The proposed method shows superior robust-

ness/adaptiveness without any PSNR degradation

given irrelevant references.

• The proposed method can be utilized not only for

RefSR but also for exploiting self-similarity if no ref-

erence image is available.

2. Related Works

2.1. Single Image SuperResolution

Conventional SISR algorithms aim to reconstruct HR

images as accurately as possible by optimizing pixel-level

reconstruction errors such as MSE and MAE. Dong et

al. [5] propose a three-layer CNN-based SISR algorithm,

referred to as SRCNN. Each layer of SRCNN is closely re-

lated to sparse representation, and it shows substantial per-

formance improvements compared to those of conventional

algorithms. Kim et al. [13, 14] propose a very deep CNN

with input-output skip connections and a recursive archi-

tecture, offering stable and rapid convergence. Recently,

the reconstruction accuracy was improved even further by

adopting deeper networks with residual blocks and sub-

pixel convolutions [18].

To overcome the major drawback of reconstruction-

oriented SISR algorithms which produce blurred and non-

realistic textures [17], perceptual loss [12] has been pro-

posed to improve the perceptual quality of the generated

images by minimizing feature-level differences extracted

from a ImageNet [15] pre-trained network. Currently,

GAN is known to be effective when used to generate re-

alistic images [8], and numerous GAN-based SISR algo-

rithms [17, 30] have been proposed. SRGAN [17] is the

first GAN-based SISR algorithm which generates more re-

alistic SR images compared to those of conventional algo-

rithms. However, it was also found that degradation of the

reconstruction accuracy is inevitable with GAN-based ap-

proaches, because generated realistic textures do not always

correspond to ground truth textures.

2.2. Referencebased SR

Earlier works on RefSR derive from patch matching or

patch synthesis schemes [2, 41]. Zheng et al. [41] propose

a RefSR algorithm based on patch matching and synthesis

with a deep network. Down-sampled patches are used for

patch matching and for finding correspondences between

input and reference images. However, those schemes have

critical drawbacks in that they produce blur and grid arti-

facts and are unable to handle non-rigid image deformations
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Figure 2: Illustration of our RefSR framework. A stack of two deformable convolution layers is depicted in the figure.

or inter-patch misalignments. Moreover, optimization in-

cluding patch matching is inefficient due to its high compu-

tational cost. CrossNet [42] defines RefSR as a task where

the reference image shares a similar viewpoint with a LR in-

put image, and proposes an end-to-end neural network com-

bining a warping process and image synthesis based on an

optical flow [6, 10]. However, the ground truth for the op-

tical flow is obtained at a high cost, and the flow estimation

from other pre-trained networks is not accurate. In addition,

although warping somewhat handles non-rigid deformation,

it is highly vulnerable to large motions. SRNTT [40] points

out the problem of robustness in CrossNet [42], arguing

that severe performance degradation occurs when an un-

related reference image is paired with an input image. In

SRNTT [40], a patch-wise matching scheme is adopted at

the multi-scale feature level, which sacrifices computational

efficiency for capturing long distance dependencies.

2.3. SelfSimilarity and Nonlocal Block in SR

In a natural image, similar patterns tend to recur within

the same image. Various methods have been studied re-

garding how to exploit self-similarity for image restora-

tion [7, 33]. Those approaches attempt to utilize the internal

information as a reference to reconstruct high-quality im-

ages. Huang et al. [9] propose a model allowing geometric

transformation, which handles perspective distortions and

affine transformations. However, the method of utilizing the

intrinsic properties of images in deep learning-based meth-

ods remains ambiguous.

To deal with this problem, non-local block [29] based

approaches [20, 38] have been proposed. The non-local op-

eration computes pixel-wise correlations to capture long-

range and global dependencies. The correlation is com-

puted as a weighted sum of all positions in the input feature

maps. This approach largely overcomes the locality of pre-

vious CNNs and is therefore suitable for various computer

vision applications that require large receptive fields. The

proposed method can be used to search not only for corre-

spondences between input and reference image but also for

self-similarity within a single image with the help of non-

local blocks.

3. Similarity Search and Extraction Network

3.1. Network Architecture

The goal of reference-based super-resolution is to es-

timate a high-resolution image given a low-resolution in-

put image and a high-resolution reference image. Inspired

by the feature aligning capability of deformable convolu-

tion [26, 28], we formulate the RefSR problem as an inte-

grative reconstruction process of matching similar contents

between input and reference features and extracting the ref-

erence features in an aligned form. We propose an end-to-

end unified framework that transfers HR details from refer-

ence images to restore high-frequency textures with the help

of the proposed reference feature extraction module, specif-

ically Similairity Search and Extraction Network (SSEN).

The overall structure of SSEN is shown in Fig. 2. As input-

reference pair of images are fed into the framework to re-

construct the high-resolution image, SSEN extracts features

from the reference images in an aligned form, matching the

contents in the pixel space without any flow supervision.

We design deformable convolution layers in a sequential

approach, noting that the receptive field becomes larger as

stacking continues in a sequential manner. Stacking multi-

ple layers of deformable convolution, we discover that three

layers of deformable convolution are the optimal structure

for the best performance (c.f ., Tab. 4). As RefSR expects

to search for similar areas within the entire image, a large

receptive field is the most critical issue during this task. For
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this purpose, a multi-scale structure and non-local blocks

are adopted to propagate offset information. Our module

softly conducts pixel- or patch-level matching with an ex-

tremely large receptive field, estimating the offsets for de-

formable convolution kernels.

3.2. Stacked Deformable Convolution Layers

Deformable convolution [4] is proposed to improve the

CNN’s capability to model geometric transformations. It is

trained with a learnable offset, which helps with the sam-

pling of pixel points with a deformed sampling grid. Due to

this characteristic, it is widely leveraged for feature align-

ments or implicit motion estimations without any optical-

flow priors [26, 28]. In this work, we leverage the de-

formable convolution for the similarity search and extrac-

tion steps, adopting modulated deformable convolution [43]

which additionally learns the dynamic weights of the sam-

pling kernels with a modulation scalar.

In the modulated deformable convolution, modulation

scalars are learned together with offsets to make the kernels

more spatially-variant. Formally, the deformable convolu-

tion operation is defined as follows:

Y (p) =

K
∑

k=1

wk ·X(p+ pk +△pk) · △mk, (1)

where X is the input, Y is the output, and k and K cor-

respondingly denote the index and the number of kernel

weights. wk, p, pk and △pk are the k-th kernel weight,

indices of the center, the k-th fixed offset and the learnable

offsets for the k-th location, respectively. △mk is the mod-

ulation scalar, which enables relevancy-aware weight learn-

ing to robustly extract correspondences for cluttered or ir-

relevant input data in RefSR.

SSEN consists of several deformable convolution lay-

ers arranged in a sequential manner as shown in Fig. 2.

The purpose of the stacking of deformable convolution lay-

ers sequentially is to sample more locations from reference

images for aligning features with a larger receptive field.

SSEN gradually aligns reference features to input features

in each layer according to the offset provided from the dy-

namic offset estimator, which will be covered in detail in

the following section.

3.3. Dynamic Offset Estimator

To capture the similarity located from near to far dis-

tances, the offset should be learned dynamically (i.e., the

offset should be able to cover a wide range of area, actively

reaching various and distant positions). We design an offset

estimator for learning the dynamic offsets, called dynamic

offset estimator. Because the offset for deformable convo-

lution should be learned based on the similarity between the

reference image and the input low-resolution image, a ref-

erence feature and an input feature are concatenated as an

Figure 3: The proposed dynamic offset estimator. Features

are down-sampled and fed into non-local blocks. The esti-

mator is designed to learn residuals with skip connections.

input for the dynamic offset estimator, as shown in Fig. 3.

We follow the multi-scale philosophy commonly adopted

in optical flow estimations [6, 10]. The concatenated in-

put is down-sampled three times such that multiple levels

of scales can be considered when predicting offsets.

To localize relevant features which can be located at far

distances effectively, we exploit non-local blocks in the dy-

namic offset estimator. The non-local operations capture

the global correlation of intra- or inter-features, which helps

with the prediction of dynamic offsets with an extremely

large receptive field to handle both small and large displace-

ments. We utilize three non-local blocks in the dynamic

offset estimator so that the features are amplified with at-

tention in each level of scale. Note that the processing of

non-local operations with regard to down-sampled features

can be considered as measuring the patch-wise similarity

rather than the pixel-wise similarity.

Given an input x and an output y, the non-local block

operation is defined as follows:

yi = xi +Wy

1

C(x)

∑

j

f(xi,xj)g(xj), (2)

where i is the index of the output position and j is the index

of all possible positions. Wy denotes the weight matrix and

C(x) is the normalization factor. f(·) and g(·) represent

the pair-wise operation and the linear embedding function,

respectively.

Here, we can consider y as an attention guided feature,

which highlights the global correlation between the input

feature and the reference feature at the pixel- or patch-level.

The function g(xj) can be expressed as Wgxj , which com-

putes the linear embedding of the input signal x at position

j. f(xi,xj) calculates the pairwise similarity between xi

and xj . In this operation, we expect the similarity to be

calculated in a similar manner to an inner product which is

commonly used in patch matching. We adopt an embedded

Gaussian function [29] for this pairwise operation defined
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Figure 4: Illustration of the self-similarity SR framework

as follows:

f(xi,xj) = exp(θ(xi)
Tφ(xj)), (3)

where θ(·) and φ(·) are two linear embedding functions. For

parameter-efficiency, we halve the dimension of the embed-

dings within the dynamic offset estimator.

3.4. RefSR and SelfSimilarity SR Framework

RefSR The baseline is implemented with stacked resid-

ual blocks [18], which consist of residual blocks without

batch normalization. Following previous work [18], we

remove batch normalization from the network for better

super-resolution performance. Note that SSEN can easily

be attached to any existing super-resolution architecture.

The reference features extracted from the SSEN are

fused with the input feature at the mid-level, after which the

fused features are processed further at reconstruction net-

work before they are up-sampled (c.f ., Fig. 2). In addition,

a global skip connection between the input and output lay-

ers is adopted to ensure that our network focuses on residual

feature learning. All feature manipulations are conducted at

one-quarter of the size of the input spatial dimensions for

efficient computation.

Self-Similarity SR If no appropriate reference image is

available, the SSEN can be utilized in a self-reference man-

ner. As shown in Fig. 4, the feature to be referenced is

extracted from the same input image. In this situation, the

proposed module is expected to exploit cues from the in-

put image (i.e., cues from itself), which can be helpful to

minimize the reconstruction loss.

For the reconstruction network, we adopt RCAN [37] as

our baseline network, which shows the best performance in

SISR without a self-ensemble scheme. RCAN is designed

with a residual-in-residual structure, which consists of sev-

eral residual blocks with short skip connections. In addi-

tion, it adopts a channel attention mechanism to consider

inter-dependencies among channels. The performance of

SISR can be improved by seamlessly inserting the SSEN

into a baseline network.

3.5. Training Objective

For the objective function, we adopt the Charbonnier

penalty function [16] as the final training objective, which is

known to help with the handling of outliers to improve the

performance. The Charbonnier penalty is defined as fol-

lows:

Lrec =

√

‖ IHR − ISR ‖
2
+ ε2, (4)

where IHR and ISR denote the ground truth and the output

from the proposed algorithm, respectively. ε is set to 1e−6.

Moreover, perception-oriented objectives [12, 11] can be

incorporated together to generate rich and realistic textures.

For instance, PatchGAN judges realism at the scale of the

image patches and shows performance superior to those of

other GAN classifiers [11].

The objective of the PatchGAN is defined as follows:

Ladv = minGmaxDEIHR
∼Pr

[logD(IHR)]

+ EISR
∼Pg

[log(1−D(ISR))], (5)

where G denotes the generator which generates ISR, and

D stands for the discriminator. Pr and Pg are the real data

distribution and the model distribution, respectively.

4. Experimental Results

4.1. Dataset

We use the CUFED dataset [31] which contains 1883

albums that describe daily life events, to train the network

for RefSR. For the RefSR task, there is the assumption that

reference images contain contents similar to those of the

input low-resolution images. To guarantee this assumption,

Zhang et al. [40] reorganize the CUFED dataset into 13,761

image pairs scored based on the number of SIFT [22] cor-

respondence matches. Furthermore, to evaluate the RefSR

methods, the authors propose the CUFED5 dataset with 126

groups. Each high-resolution image is paired with five dif-

ferent reference images with five different levels of simi-

larity. We adopt a random 90◦ rotation for augmentation

during the training process.

For self-similarity SR, we utilize the DIV2K

dataset [27], which has been widely used as a bench-

mark dataset in SR tasks. We augment the training data

with random cropping with a patch size of 192× 192 and a

random 90◦ rotation. For the evaluation, the Urban100 [9],

Set5 [1], Set14 [36], and B100 [23] datasets are utilized.

4.2. Training Details

All experiments are conducted with a scaling factor of

×4 between the LR and HR images. The network is trained

with an initial learning rate of 1e−4 using the ADAM op-

timizer with β1 = 0.9 and β2 = 0.999. We use PyTorch

to implement the model on an NVIDIA 1080Ti GPU. For

the training of the network with Ladv , we initially pre-train

the network only with the reconstruction loss, after which

we fine-tune the network with the GAN loss attached to
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SISR PSNR SSIM

Bicubic 24.18 0.684

SRCNN [5] 25.33 0.745

LapSRN [16] 24.92 0.730

MDSR [18] 25.93 0.777

SRGAN [17] 24.40 0.702

ENet [24] 24.24 0.695

Baseline 26.36 0.779

(a) SISR

RefSR PSNR SSIM

Landmark [35] 24.91 0.718

CrossNet [42] 25.48 0.764

SRNTT [40] 25.61 0.764

SRNTT-ℓ2 [40] 26.24 0.764

Ours 26.78 0.791

(b) RefSR

Table 1: PSNR / SSIM comparisons with other SR methods

on the CUFED5 dataset. We group methods by (a) SISR

and (b) RefSR. The best performances are written in bold.

the training objective. We train the network for 100K it-

erations with a batch size of 32 and adopt a cosine learning

rate schedule scheme [21] with γ = 0.9.

4.3. Quantitative and Qualitative Evaluations

RefSR We compare the quantitative and qualitative results

to those of other GAN-based SISR and RefSR methods

to demonstrate the superior performance of the proposed

method. Figure 5 shows comparisons of our method with

other SISR and RefSR methods in terms of the visual qual-

ity. Overall, our method shows better visual quality with

less noise, clear contents, and greater relevancy with the

ground truth.

To evaluate our approach quantitatively, we measure the

PSNR and SSIM (structural similarity) [32] as a means

of distortion-oriented measurements. As shown in Tab. 1,

our method is compared with various methods, including

SISR and RefSR methods. The SISR methods are SR-

CNN [5], LapSRN [16], MDSR [18], SRGAN [17], and

ENet [24], and the RefSR methods are Landmark [35],

CrossNet [42], SRNTT [40], and SRNTT-ℓ2. The differ-

ence between SRNTT and SRNTT-ℓ2 is the presence of per-

ceptual and adversarial losses during the training. SRNTT-

ℓ2 is trained only with the reconstruction loss to acheive

a higher PSNR. All methods are trained with the CUFED

dataset and are tested on the CUFED5 dataset. Our method

achieves the highest PSNR and outperforms all previous

methods by a large margin (see Tab. 1). We emphasize that

the effectiveness of the proposed algorithm is caused by less

noisy outputs, the clearer boundaries, and the relevant tex-

tures softly transferred from the reference (see Fig. 5).

Self-Similarity SR For a fair comparison with the SISR

methods, we utilize SSEN in a self-reference manner. As

depicted in Fig. 4, the overall network is modified to enable

the self-reference capability. In this variant, a LR input im-

age is fed into the baseline and the SSEN simultaneously

to extract self-reference features from the input image. Our

method is mainly tested on the Urban100 [9] dataset, which

contains structured scenes and rich textures to be utilized

for self-similarity SR.

Figure 6 shows a qualitative comparison between models

with and without the SSEN on the Urban100 dataset. We

Methods Urban100 Set5 Set14 B100

Bicubic 23.14/0.657 28.42/0.810 26.00/0.702 25.96/0.667

SRCNN [5] 24.52/0.722 30.48/0.862 27.50/0.751 26.90/0.710

VDSR [14] 25.18/0.754 31.35/0.883 28.02/0.768 27.29/0.072

LapSRN [16] 25.21/0.756 31.54/0.885 28.19/0.772 27.32/0.727

MemNet [25] 25.50/0.763 31.74/0.889 28.26/0.772 27.40/0.728

EDSR [18] 26.64/0.803 32.46/0.896 28.80/0.787 27.71/0.742

RDN [39] 26.61/0.802 32.47/0.899 28.81/0.787 27.72/0.741

RCAN [37] 26.82/0.808 32.63/0.900 28.87/0.788 27.77/0.743

Baseline 26.61/0.802 32.46/0.898 28.79/0.787 27.69/0.740

Ours 26.71/0.808 32.48/0.899 28.84/0.788 27.72/0.742

Table 2: PSNR / SSIM comparisons with other SISR meth-

ods on benchmark datasets.

Methods XH H M L XL

SRNTT 25.17/0.734 25.13/0.729 25.06/0.728 25.07/0.720 25.14/0.729

SRNTT-ℓ2 26.06/0.765 25.97/0.760 25.90/0.758 25.88/0.758 25.87/0.757

Baseline 26.36/0.779

Ours 26.78/0.791 26.52/0.783 26.48/0.782 26.42/0.781 26.41/0.780

Ours (GAN+) 25.35/0.742 25.05/0.732 24.99/0.730 24.95/0.729 24.98/0.730

Table 3: PSNR / SSIM comparisons with five different lev-

els of similarity. The best numbers for each level of similar-

ity are written in bold.

confirm that our method successfully recovers structured

and recurring details by transferring finer textures from dis-

tant pixels. Relevant reference features extracted from dis-

tant pixels are well aligned by the SSEN, and this leads to

more accurate and visually pleasing reconstruction results.

Table 2 shows quantitative comparisons with other SISR

methods. SRCNN [5], VDSR [14], LapSRN [16], Mem-

Net [25], EDSR [18], RDN [39], and RCAN [37] are

compared with our self-similarity SR method. We mainly

demonstrate the effectiveness of our module by verifying

the performance improvement when the SSEN is attached

during the training process. Note that while we reproduce

our baseline with the RCAN [37] network unit, we achieve

a slightly lower PSNR than the result reported in an earlier

paper [37]. However, a PSNR improvement of 0.1dB is ob-

served with our module on the Urban100 dataset. This con-

firms the effectiveness of the SSEN in self-similarity SR.

4.4. Ablation Studies

Robustness to Irrelevancy In this section, we compare

the robustness to irrelevancy of the proposed method and

SRNTT [40] at five different similarity levels. In Tab. 3,

XH, H, M, L, and XL denote very-high, high, middle,

low, and very-low similarities, respectively. In a percep-

tual quality-oriented training condition (i.e., SRNTT and

ours (GAN+)), our method outperforms at the very-high

similarity level. Note that the performance of the proposed

method with GAN for the other similarity levels can be im-

proved by adjusting the weights for Lrec and Ladv . In a

reconstruction-oriented training condition (i.e., SRNTT-ℓ2
and ours), our method shows superior robustness at every
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GT Baseline SRGAN [17] SRNTT-ℓ2 [40] SRNTT [40] Ours Ours (GAN+)

Figure 5: Qualitative comparisons with other SR methods on the CUFED5 dataset.

level of similarity compared to SRNTT-ℓ2. Robustness can

be strongly proven given that our method consistently out-

performs the baseline, which means that even a reference

image with a low level of similarity is still quite effectively

utilized by our method.

Number of Deformable Convolution Layers As shown in

Tab. 4, we conduct an ablation study to investigate the opti-

mal number of deformable convolution layers in Sec. 3.2.

We confirm that three layers of deformable convolution

are the optimal number for the best performance. Com-

pared to the performance of the baseline, adding only one

deformable convolution layer shows a great improvement,

with a PSNR of 0.23dB at the XH level, whereas the perfor-

mance rarely improves without any deformable convolution

layers. Because the output features in each layer have dif-

ferent levels of alignment, a skip connection would be in-

appropriate if added to each deformable convolution layer.

This implies that the deeper the network, the more difficult

it is to train. Hence, stacking more layers (e.g., more than

four layers) does not guarantee better performance.

Effect of Non-Local Block To validate the importance

of non-local blocks in our dynamic offset estimator in

Sec. 3.3, we compare the performance of the proposed al-

gorithm with and without non-local blocks, as shown in
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Input Ground truth Baseline Ours

PSNR / SSIM 28.93/0.959 29.31/0.961

PSNR / SSIM 18.48/0.827 18.86/0.835

PSNR / SSIM 19.27/0.683 20.07/0.711

Figure 6: Qualitative results of self-similarity SR. PSNR

and SSIM scores are shown together.

# of layers XH H M L XL

Baseline 26.36/0.779

No layers 26.42/0.779 26.40/0.779 26.39/0.779 26.39/0.778 26.39/0.778

1 layer 26.59/0.785 26.47/0.781 26.44/0.780 26.43/0.780 26.41/0.779

2 layers 26.64/0.786 26.47/0.781 26.44/0.780 26.41/0.780 26.40/0.779

3 layers 26.78/0.791 26.52/0.783 26.48/0.782 26.42/0.781 26.41/0.780

4 layers 26.70/0.789 26.45/0.781 26.43/0.781 26.40/0.780 26.38/0.779

w/o NB 26.68/0.788 26.47/0.782 26.44/0.781 26.41/0.780 26.39/0.780

w NB 26.78/0.791 26.52/0.783 26.48/0.782 26.42/0.781 26.41/0.780

Table 4: PSNR / SSIM comparisons of (top) the number of

layers and (bottom) the presence of non-local blocks (NB).

The best numbers are written in bold.

Tab. 4. The network with non-local blocks consistently out-

performs that without non-local blocks. This implies that

the non-local blocks are helpful to capture the global con-

text and the correlations of each feature, which are neces-

sary to estimate the long-range dependencies. Without non-

local blocks, we observe performance degradation of 0.1dB

at the XH level, as shown in Tab. 4.

Visualization of Offset To validate the similarity- and

relevancy-awareness of the proposed method, we visualize

offsets which are the sampling locations of deformable con-

volution. We visualize all sampling locations of a pixel of

the reference image. As the SSEN consists of three layers

of deformable convolution with a 3× 3 kernel, there are 93

sampling points in total per pixel.

As shown in Fig. 7, the sampling points in the originally

aligned regions tend to cluster near the output pixel location.

On the other hand, in the misaligned area, the sampling lo-

cations tend to be spread apart by enlarging their receptive

field. By enlarging its receptive field, the SSEN attempts

(a)

(b)

Figure 7: Offset visualization for (a) RefSR and (b) Self-

Similarity SR. Reference points are shown on the left im-

ages and their corresponding sampling points are shown on

the right images. Sampling points are drawn in colors iden-

tical to those of the reference points.

to find the best matching pairs of pixels between the input

image and the reference image. In the self-similarity SR

case, the input and reference images are previously aligned.

Therefore, the sampling points are spread out along similar

regions or structures.

Computation Time We validate the efficiency of our algo-

rithm further by comparing its computation time with those

of other algorithms on a ×4 SR task. PatchMatch [2] takes

86.3s and SS-Net [41] takes 105.6s on average on a GPU.

SRNTT [40] takes 9.053s for the patch matching process

and 2.909s for reconstruction, i.e., 11.962s in total. The

patch matching process is the bottleneck in these methods.

Our method generates a 322×550 image within 0.95s on av-

erage due to the effective feature alignment capability with-

out any patch matching process. This is highly beneficial

for many real-time applications. The inference time is mea-

sured on a machine equipped with an Intel Xeon CPU (2.10

GHz) and an NVIDIA GTX 1080 Ti GPU.

5. Conclusion

In this paper, we introduced a reference feature extrac-

tion module termed the Similarity Search and Extraction

Network (SSEN), which extracts features from reference

images in an aligned form relative to the low-resolution fea-

tures. The proposed method is the first end-to-end trainable

RefSR method that does not require heavy computation or

explicit flow estimations. Our algorithm outperforms other

RefSR methods with more robustness. Moreover, the pro-

posed module can be utilized for self-similarity SR if no

reference image is available. To deal with the long distance

similarity issue, we adopt a multi-scale structure and non-

local blocks for the dynamic offset estimator to predict a

wide range of offsets. Experimental results demonstrate that

our method achieves state-of-the-art performance quantita-

tively and qualitatively.
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