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Abstract

We present ALFRED (Action Learning From Realistic

Environments and Directives), a benchmark for learning

a mapping from natural language instructions and ego-

centric vision to sequences of actions for household tasks.

ALFRED includes long, compositional tasks with non-

reversible state changes to shrink the gap between research

benchmarks and real-world applications. ALFRED con-

sists of expert demonstrations in interactive visual environ-

ments for 25k natural language directives. These direc-

tives contain both high-level goals like “Rinse off a mug

and place it in the coffee maker.” and low-level language

instructions like “Walk to the coffee maker on the right.”

ALFRED tasks are more complex in terms of sequence

length, action space, and language than existing vision-

and-language task datasets. We show that a baseline model

based on recent embodied vision-and-language tasks per-

forms poorly on ALFRED, suggesting that there is signif-

icant room for developing innovative grounded visual lan-

guage understanding models with this benchmark.

1. Introduction

A robot operating in human spaces must learn to con-

nect natural language to the world. This symbol ground-

ing [21] problem has largely focused on connecting lan-

guage to static images. However, robots need to understand

task-oriented language, for example “Rinse off a mug and

place it in the coffee maker,” as illustrated in Figure 1.

Platforms for translating language to action have become

increasingly popular, spawning new test-beds [3, 12, 14,

41]. These benchmarks include language-driven navigation

and embodied question answering, which have seen dra-

matic improvements in modeling thanks to environments

like Matterport 3D [3, 11], AI2-THOR [25], and AI Habi-

tat [44]. However, these datasets ignore complexities aris-

ing from describing task-oriented behaviors with objects.

We introduce ALFRED, a new benchmark for con-
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Figure 1: ALFRED consists of 25k language directives

corresponding to expert demonstrations of household tasks.

We highlight several frames corresponding to portions of

the accompanying language instruction. ALFRED in-

volves interactions with objects, keeping track of state

changes, and references to previous instructions.

necting human language to actions, behaviors, and objects

in interactive visual environments. Planner-based expert

demonstrations are accompanied by both high- and low-

level human language instructions in 120 indoor scenes in

AI2-THOR 2.0 [25]. These demonstrations involve partial

observability, long action horizons, underspecified natural

language, and irreversible actions.

ALFRED includes 25,743 English language directives

describing 8,055 expert demonstrations averaging 50 steps

each, resulting in 428,322 image-action pairs. Motivated

by work in robotics on segmentation-based grasping [36],

agents in ALFRED interact with objects visually, specify-

ing a pixelwise interaction mask of the target object. This

inference is more realistic than simple object class pre-

diction, where localization is treated as a solved problem.

Existing beam-search [17, 47, 52] and backtracking solu-

tions [24, 28] are infeasible due to the larger action and state

spaces, long horizon, and inability to undo certain actions.
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— Language — — Virtual Environment — — Inference —

# Human
Granularity

Visual Movable State
Vis. Obs. Navigation Interaction

Annotations Quality Objects Changes

TACoS [42] 17k+ High&Low Photos ✗ ✗ – – –

R2R [3]; Touchdown [14] 21k+; 9.3k+ Low Photos ✗ ✗ Ego Graph ✗

EQA [15] ✗ High Low ✗ ✗ Ego Discrete ✗

Matterport EQA [54] ✗ High Photos ✗ ✗ Ego Discrete ✗

IQA [20] ✗ High High ✗ ✓ Ego Discrete Discrete

VirtualHome [41] 2.7k+ High&Low High ✓ ✓ 3rd Person ✗ Discrete

VSP [57] ✗ High High ✓ ✓ Ego ✗ Discrete

ALFRED 25k+ High&Low High ✓ ✓ Ego Discrete
Discrete

+ Mask

Table 1: Dataset comparison. ALFRED is the first interactive visual dataset to include high-level goal and low-level

natural language instructions for object and environment interactions. TACoS [42] provides detailed high- and low-level text

descriptions of cooking videos, but does not facilitate task execution. For navigation, ALFRED enables discretized, grid-

based movement, while other datasets use topological graph navigation or avoid navigation altogether. ALFRED requires an

agent to generate spatially located interaction masks for action commands. By contrast, other datasets only require choosing

from a discrete set of available interactions and object classes or offer no interactive capability.

To establish baseline performance levels, we evaluate

a sequence-to-sequence model akin to existing vision-and-

language navigation tasks [27]. This model is not effective

on the complex tasks in ALFRED, achieving less than 5%

success rates. For analysis, we also evaluate individual sub-

goals. While performance is better for isolated sub-goals,

the model lacks the reasoning capacity for long-horizon and

compositional task planning.

In summary, ALFRED facilitates learning models that

translate from language to sequences of actions and interac-

tions in a visually and physically realistic simulation envi-

ronment. This benchmark captures many challenges present

in real-world settings for translating human language to

robot actions for accomplishing household tasks. Models

that can overcome these challenges will begin to close the

gap towards real-world, language-driven robotics.

2. Related Work

Table 1 summarizes the benefits of ALFRED relative to

other visual action datasets with language annotations.

Vision & Language Navigation. In vision-and-language

navigation tasks, either natural or templated language de-

scribes a route to a goal location through egocentric vi-

sual observations [3, 12, 13, 14, 30]. Since the proposal of

R2R [3], researchers have dramatically improved the nav-

igation performance of models [17, 24, 28, 52, 53] with

techniques like progress monitoring [27], as well as in-

troduced task variants with additional, on-route instruc-

tions [37, 38, 50]. Much of this research is limited to static

environments. By contrast, ALFRED tasks include navi-

gation, object interactions, and state changes.

Vision & Language Task Completion. There are sev-

eral existing benchmarks based on simple block worlds

and fully observable scenes [9, 33]. ALFRED provides

more difficult tasks in richer, visually complex scenes, and

uses partially observable environments. The CHAI bench-

mark [32] evaluates agents performing household instruc-

tions, but uses a generic “interact” action. ALFRED has

seven manipulation actions, such as pick up, turn on, and

open, state changes like clean versus dirty, and variation in

language and visual complexity.

Previous work in the original AI2-THOR environment

investigated the task of visual semantic planning [19, 57].

Artificial language came from templates, and environment

interaction was handled with discrete class predictions, for

example selecting apple as the target object from predefined

options. ALFRED features human language instructions,

and object selections are carried out with class-agnostic,

pixelwise interaction masks. In VirtualHome [41], pro-

grams are generated from video demonstration and natural

language instructions, but inference does not involve ego-

centric visual and action feedback or partial observability.

There is an extensive literature on language-based in-

struction following in the natural language processing com-

munity. There, research has focused on mapping instruc-

tions to actions [5, 13, 31, 35, 48], but these works do not

involve visual, interactive environments.

Embodied Question Answering. Existing datasets for

visual question answering in embodied environments use

templated language or static scenes [15, 20, 54, 56]. In AL-

FRED, rather than answering a question, the agent must

complete a task specified using natural language, which re-

quires both navigation and interaction with objects.

Instruction Alignment. Language annotations of videos

enable discovering visual correspondences between words
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item(s)
receptacle
scene #

expert
demonstration

Book
Desk
Bedroom 14

Fork (in) Cup
Counter Top
Kitchen 10

Spray Bottle
Toilet Tank
Bathroom 2

Credit Card
Desk Lamp
Bedroom 24

Potato Slice
Counter Top
Kitchen 8

Egg
Side Table
Kitchen 21

Dish Sponge
Cart
Bathroom 1

Annotation # 1 Annotation # 2 Annotation # 3
Goals

Instructions

Pick
& Place

Stack
& Place

Pick Two
& Place

Examine
in Light

Heat
& Place

Cool
& Place

Clean
& Place

Place a clean sponge on the drying rack

Turn around and walk over to the bathtub
on the left. Grab the sponge out of the
bathtub. Turn around and walk to the sink
ahead. Rinse the sponge out in the sink.
Move to the left a bit and face the drying
rack in the corner of the room. Place the
sponge on the drying rack.

Put a clean sponge on a metal rack.

Go to the left and face the faucet side of
the bath tub. Pick up left most green
sponge from the bath tub. Turn around
and go to the sink. Put the sponge in the
sink. Turn on then turn off the water. Take
the sponge from the sink. Go to the metal
bar rack to the left. Put the sponge on the
top rack to the left of the lotion bottle.

Put a rinsed out sponge on the drying rack

Walk forwards a bit and turn left to face
the bathtub. Grab a sponge out of the
bathtub. Turn around and walk forwards
to the sink. Rinse the sponge out in the
sink and pick it up again. Turn left to walk
a bit, then face the drying rack. Put the
sponge on the drying rack.t 8= t 24= t 42=

Figure 2: ALFRED annotations. We introduce 7 different task types parameterized by 84 object classes in 120 scenes.

An example of each task type is given above. For the Clean & Place demonstration, we also show the three crowdsourced

language directives. Please see the supplemental material for example demonstrations and language for each task.

and concepts [1, 45, 42, 55, 58]. ALFRED requires per-

forming tasks in an interactive setting as opposed to learn-

ing from recorded videos.

Robotics Instruction Following. Instruction following is a

long-standing topic of interest in robotics [7, 10, 29, 34, 39,

40, 46, 51]. Lines of research consider different tasks such

as cooking [10], table clearing [39], and mobile manipula-

tion [29]. In general, they are limited to a few scenes [34],

consider a small number of objects [29], or use the same

environment for training and testing [7]. In contrast, AL-

FRED includes 120 scenes, many object classes with di-

verse appearances, and a test set of unseen environments.

3. The ALFRED Dataset

The ALFRED dataset comprises 25,743 language direc-

tives corresponding to 8,055 expert demonstration episodes.

Each directive includes a high-level goal and a set of step-

by-step instructions. Each expert demonstration can be de-

terministically replayed in the AI2-THOR 2.0 simulator.

3.1. Expert Demonstrations

Expert demonstrations are composed of an agent’s ego-

centric visual observations of the environment and what ac-

tion is taken at each timestep as well as ground-truth in-

teraction masks. These demonstrations are generated by a

planner [23] using metadata not available to the agent at in-

ference time. Navigation actions move the agent or change

its camera orientation, while manipulation actions include

picking and placing objects, opening and closing cabinets

and drawers, and turning appliances on and off. Interactions

can involve multiple objects, such as using a knife to slice

an apple, cleaning a mug in the sink, and heating a potato in

the microwave. Manipulation actions are accompanied by a

ground truth segmentation of the target object.

Figure 2 gives examples of the high-level agent tasks in

ALFRED, like putting a cleaned object at a destination.

These tasks are parameterized by the object of focus, the

destination receptacle (e.g., table top), the scene in which

to carry out the task, and in the case of Stack & Place, a

base object (e.g., plate). ALFRED contains expert demon-

strations of these seven tasks executed using combinations

of 58 unique object classes and 26 receptacle object classes

across 120 different indoor scenes. For object classes like

potato slice, the agent must first pick up a knife and find

a potato to create slices. All object classes contain mul-

tiple visual variations with different shapes, textures, and

colors. For example, there are 30 unique variants of the ap-

ple class. Indoor scenes include different room types: 30

each of kitchens, bathrooms, bedrooms, and living rooms.

For 2,685 combinations of task parameters, we gener-

ate three expert demonstrations per parameter set, for a

total of 8,055 unique demonstrations with an average of

50 action steps. The distributions of actions steps in AL-

FRED demonstrations versus related datasets is given in

Figure 3. As an example, for task parameters {task: Heat

& Place, object: potato, destination: counter top, scene:

KITCHEN-8}, we generate three different expert demonstra-

tions by starting the agent and objects in randomly chosen

locations. Object start positions have some commonsense,

class-specific constraints, for example a fork can start inside

a drawer, but an apple cannot.

Contrasting navigation-only datasets where expert

demonstrations can come from an A∗ planner, our state

space includes object positions and state changes. Thus, to

generate expert demonstrations we encode the agent and ob-

ject states, as well as high-level environment dynamics, into

Planning Domain Definition Language (PDDL) rules [18].

We then define task-specific PDDL goal conditions, for ex-

ample that a heated potato is resting on a table top. Note
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Train Validation Test

Seen Unseen Seen Unseen

# Annotations 21,023 820 821 1,533 1,529

# Scenes 108 88 4 107 8

Table 2: ALFRED Data Splits. All expert demonstrations

and associated language directives in the validation and test

folds are distinct from those in the train fold. The validation

and test sets are split into seen and unseen folds. Scenes in

the seen folds of validation and test data are subsets of those

in the train fold. Scenes in the unseen validation and test

folds are distinct from the train folds and from each other.

that the planner encodes the environment as fully observ-

able and has perfect knowledge about world dynamics. For

training and testing agent models, however, the environment

is partially observable: it is only viewed through the agent’s

egocentric vision as actions are carried out.

We split these expert demonstrations into training, vali-

dation, and test folds (Table 2). Following work in vision-

and-language navigation [3], we further split the validation

and test into two conditions: seen and unseen environments.

This split facilitates examining how well models generalize

to entirely new spaces with novel object class variations.

3.2. Language Directives

For every expert demonstration, we collect open vocab-

ulary, free-form language directives from at least three dif-

ferent annotators using Amazon Mechanical Turk (AMT),

resulting in 25k total language directives. Language direc-

tives include a high-level goal together with low-level in-

structions, as shown in Figures 1 and 2. The distribution

of language annotation token lengths in ALFRED versus

related datasets is given in Figure 3.

AMT workers are told to write instructions to tell a

“smart robot” how to accomplish what is shown in a video.

We create a video of each expert demonstration and seg-

ment it such that each segment corresponds to an instruc-

tion. We consult the PDDL plan for the expert demon-

stration to identify task sub-goals, for example the many

low-level steps to navigate to a knife, or the several steps

to heat a potato slice in the microwave once standing in

front of it. We visually highlight action sequences related

to sub-goals via colored timeline bars below the video. In

each HIT (Human Intelligence Task), a worker watches the

video, then writes low-level, step-by-step instructions for

each highlighted sub-goal segment. The worker also writes

a high-level goal that summarizes what the robot should ac-

complish during the expert demonstration.

These directives are validated through a second HIT by

at least two annotators, with a possible third tie-breaker. For

validation, we show a worker all three language directive

ALFRED
+8k

TD
+9k

VH
~3k

R2R
+7k

0

50

100

150

200

Steps in Expert Demonstration

ALFRED
+25k

TD
+9k

VH
~3k

R2R
+21k

0

100

200

300

400

500

600
Instruction Length

Figure 3: Comparison to Existing Datasets. Expert

demonstration steps and instruction tokens of ALFRED

compared to other datasets with human language for action

sequences: Touchdown (TD) [14], VirtualHome (VH) [41],

and Room-to-Room (R2R) [3]. The total number of demon-

strations or annotations is given with the dataset label.

annotations without the video. The worker selects whether

the three directives describe the same actions, and if not,

which is most different. If a directive is chosen as most dif-

ferent by a majority of validation workers, it is removed and

the demonstration is subsequently re-annotated by another

worker. Qualitatively, these rejected annotations contain in-

correct object referents (e.g., “egg” instead of “potato”) or

directions (e.g., “go left towards...” instead of “right”).

4. Baseline Models

An agent trained for ALFRED tasks needs to jointly rea-

son over vision and language input and produce a sequence

of low-level actions to interact with the environment.

4.1. SequencetoSequence Models

We model the interactive agent with a CNN-LSTM

sequence-to-sequence (SEQ2SEQ) architecture. A CNN en-

odes the visual input, a bidirectional-LSTM generates a rep-

resentation of the language input, and a decoder LSTM in-

fers a sequence of low-level actions while attending over

the encoded language. See Figure 4 for an overview and the

supplementary material for implementation details.

Supervision. We train all models using imitation learn-

ing on expert trajectories. This ensures the language direc-

tives match the visual inputs. At each timestep, the model

is trained to produce the expert action and associated inter-

action mask for manipulation actions.

We note that a DAgger-style [43] student-forcing

paradigm in ALFRED is non-trivial, even disregarding lan-

guage alignment. Obtaining expert demonstration actions

on the fly in navigation-only datasets like R2R [3] only re-

quires rerunning A∗. In ALFRED, on the fly demonstra-

tions requires re-planning. In same cases re-planning is not
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 ... counter then turn right.  Put the  cup  in the sink then fill ...

PutObject

Act
LSTM

DeConv

Reason
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ResNet Conv

Linear

RotateRight

Act
LSTM

Reason

DeConv

not used with 

nav actions
predicted 

mask
(Frozen)

    ...  Put   the   

Figure 4: Model overview. At each step, our model reweights the instruction based on the history (x̂t), and combines the

current observation features (vt) and the previously executed action (at−1). These are passed as input to an LSTM cell to

produce the current hidden state. Finally, the new hidden state (ht) is combined with the previous features to predict both the

next action (at) and a pixelwise interaction mask over the observed image to indicate an object.

possible: if during a task of {Clean & Place, apple, refrig-

erator, KITCHEN-3} a student-forcing model slices the only

apple in the scene, the action cannot be recovered from and

the task cannot be completed.

Visual encoding. Each visual observation ot is encoded

with a frozen ResNet-18 [22] CNN, where we take the out-

put of the final convolution layer to preserve spatial infor-

mation necessary for grounding specific objects in the vi-

sual frame. We embed this output using two more 1×1 con-

volution layers and a fully-connected layer. During train-

ing, a set of T observations from the expert demonstration

is encoded as V = 〈v1, v2, . . . , vT 〉, where vt is the visual

feature vector at time-step t.

Language encoding. Given a natural language goal

G = 〈g1, g2, . . . gLg
〉 of Lg words, and step-by-

step instructions S = 〈s1, s2 . . . sLs
〉 of Ls words,

we append them into a single input sequence X =
〈g1, g2, . . . gLg

, <SEP>, s1, s2 . . . sLs
〉 with the <SEP> to-

ken indicating the separation between the high-level goal

and low-level instructions. This sequence is fed into a bi-

directional LSTM encoder to produce an encoding x =
{x1, x2, . . . , xLg+Ls

} for each word in X .

Attention over language. The agent’s action at each

timestep is based on an attention mechanism weighting to-

kens in the instruction. We perform soft-attention on the

language features x to compute the attention distribution αt

conditioned on the hidden state of the decoder ht−1 from

the last timestep:

zt = (Wxht−1)
⊤x,

αt = Softmax(zt),

x̂t = α⊤

t x

(1)

where Wx are learnable parameters of a fully-connected

layer, zt is a vector of scalar values that represent the at-

tention mass for each word in x, and x̂t is the weighted sum

of x over the attention distribution αt induced from zt.

Action decoding. At each timestep t, upon receiving a

new observation image ot, the LSTM decoder takes in the

visual feature vt, language feature x̂t, and the previous ac-

tion at−1, and outputs a new hidden state ht:

ut = [vt; x̂t; at−1],

ht = LSTM (ut, ht−1)
(2)

where [; ] denotes concatenation. The hidden state ht is used

to obtain the attention weighted language feature x̂t+1.

Action and mask prediction. The agent interacts with

the environment by choosing an action and producing a pix-

elwise binary mask indicating a specific object in the frame.

Although AI2-THOR supports continuous control for agent

navigation and object manipulation, we discretize the action

space. The agent chooses from among 13 actions. There

are 5 navigation actions: MoveAhead, RotateRight,

RotateLeft, LookUp, and LookDown together with

7 interaction actions: Pickup, Put, Open, Close,

ToggleOn, ToggleOff, and Slice. Interaction actions

require a pixelwise mask to denote the object of interest.1

Finally, the agent predicts a Stop action to end the episode.

We concatenate the hidden state ht with the input features

ut and train two separate networks to predict the next action

1The final object chosen by the interaction API is based on the Intersection-

over-Union (IoU) score between the predicted mask and the ground-truth

object mask from the simulator.
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at and interaction mask mt:

at = argmax (Wa [ht;ut]) ,

mt = σ (deconv [ht;ut])
(3)

where Wa are learnable parameters of a fully connected

layer, deconv is a three-layer deconvolution network, and σ
is a sigmoid activation function. Action selection is trained

using softmax cross entropy with the expert action. The

interaction masks are learned end-to-end in a supervised

manner based on ground-truth object segmentations using

binary cross-entropy loss. The mask loss is rebalanced to

account for sparsity in these dense masks in which target

objects can take up a small portion of the visual frame.

4.2. Progress Monitors

ALFRED tasks require reasoning over long sequences

of images and instruction words. We propose two auxiliary

losses (Eq. 4 & 5) that use additional temporal informa-

tion to reduce this burden and form a sequence-to-sequence

model with progress monitoring (SEQ2SEQ+PM).

Ma et al. [27] showed that agents benefit from maintain-

ing an internal estimate of their progress towards the goal

for navigation tasks. Akin to learning a value function in re-

inforcement learning, progress monitoring helps to learn the

utility of each state in the process of achieving the overall

task. Intuitively, this allows our agent to better distinguish

between visually similar states such as just before putting an

object in the microwave versus just after taking the object

out. We introduce a simple module that predicts progress,

pt ∈ [0, 1], conditioned on the decoder hidden state ht and

the concatenated input ut:

pt = σ (Wp [ht;ut]). (4)

The supervision for pt is based on normalized time-step val-

ues t/T , where t is the current time-step, and T is the total

length of the expert demonstration (trained via L2 loss).

We also train the agent to predict the number of sub-

goals completed so far, ct. These sub-goals represent seg-

ments in the demonstration corresponding to sequences of

actions like navigation, pickup, and heating as identified in

the PDDL plan, discussed in Section 3.2. Each segment

has a corresponding language instruction, but the alignment

must be learned. This sub-goal prediction encourages the

agent to coarsely track its progress through the language di-

rective. This prediction is also conditioned on the decoder

hidden state ht and the concatenated input ut:

ct = σ (Wc [ht;ut]). (5)

We train ct in a supervised fashion by using the normalized

number of sub-goals accomplished in the expert trajectory

at each timestep, ct/C, as the ground-truth label for a task

with C sub-goals. We again train with an L2 loss.

5. Experiments

We evaluate the baseline models in the AI2-THOR sim-

ulator. When evaluating on test folds, we run models with

the lowest validation loss. Episodes that exceed 1000 steps

or cause more than 10 failed actions are terminated. Failed

actions arise from bumping into walls or predicting action

interaction masks for incompatible objects, such as attempt-

ing to Pickup a counter top. These limitations encourage

efficiency and reliability. We assess the overall and partial

success of models’ task executions across episodes.

5.1. Evaluation Metrics

ALFRED allows us to evaluate both full task and task

goal-condition completion. In navigation-only tasks, one

can only measure how far the agent is from the goal. In AL-

FRED, we can also evaluate whether task goal-conditions

have been completed, for example that a potato has been

sliced. For all of our experiments, we report both Task Suc-

cess and Goal-Condition Success. Each Goal-Condition re-

lies on multiple instructions, for example navigating to an

object and then slicing it.

Task Success. Each expert demonstration is parameter-

ized by a task to be performed, as illustrated in Figure 2.

Task Success is defined as 1 if the object positions and state

changes correspond correctly to the task goal-conditions at

the end of the action sequence, and 0 otherwise. Consider

the task: “Put a hot potato slice on the counter”. The agent

succeeds if, at the end of the episode, any potato slice ob-

ject has changed to the heated state and is resting on any

counter top surface.

Goal-Condition Success. The goal-condition success of

a model is the ratio of goal-conditions completed at the end

of an episode to those necessary to have finished a task. For

example, in the previous Heat & Place example, there are

four goal-conditions. First, a potato must be sliced. Sec-

ond, a potato slice should become heated. Third, a potato

slice should come to rest on a counter top. Fourth, the same

potato slice that is heated should be on the counter top. If

the agent slices a potato, then moves a slice to the counter

top without heating it, then the goal-condition success score

is 2/4 = 50%. On average, tasks in ALFRED have 2.55
goal conditions. The final score is calculated as the average

goal-condition success of each episode. Task success is 1
only if goal-condition success is 1.

Path Weighted Metrics. We include a Path Weighted

version of both metrics that considers the length of the ex-

pert demonstration [2]. Expert demonstrations found via a

PDDL solver on global information are not guaranteed to be

optimal. However, they avoid exploration, use shortest path
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Validation Test

Seen Unseen Seen Unseen

Model Task Goal-Cond Task Goal-Cond Task Goal-Cond Task Goal-Cond

NO LANGUAGE 0.0 (0.0) 5.9 (3.4) 0.0 (0.0) 6.5 (4.7) 0.2 (0.0) 5.0 (3.2) 0.2 (0.0) 6.6 (4.0)

NO VISION 0.0 (0.0) 5.7 (4.7) 0.0 (0.0) 6.8 (6.0) 0.0 (0.0) 3.9 (3.2) 0.2 (0.1) 6.6 (4.6)

GOAL-ONLY 0.1 (0.0) 6.5 (4.3) 0.0 (0.0) 6.8 (5.0) 0.1 (0.1) 5.0 (3.7) 0.2 (0.0) 6.9 (4.4)

INSTRUCTIONS-ONLY 2.3 (1.1) 9.4 (6.1) 0.0 (0.0) 7.0 (4.9) 2.7 (1.4) 8.2 (5.5) 0.5 (0.2) 7.2 (4.6)

SEQ2SEQ 2.4 (1.1) 9.4 (5.7) 0.1 (0.0) 6.8 (4.7) 2.1 (1.0) 7.4 (4.7) 0.5 (0.2) 7.1 (4.5)

+ PM PROGRESS-ONLY 2.1 (1.1) 8.7 (5.6) 0.0 (0.0) 6.9 (5.0) 3.0 (1.7) 8.0 (5.5) 0.3 (0.1) 7.3 (4.5)

+ PM SUBGOAL-ONLY 2.1 (1.2) 9.6 (5.5) 0.0 (0.0) 6.6 (4.6) 3.8 (1.7) 8.9 (5.6) 0.5 (0.2) 7.1 (4.5)

+ PM Both 3.7 (2.1) 10.0 (7.0) 0.0 (0.0) 6.9 (5.1) 4.0 (2.0) 9.4 (6.3) 0.4 (0.1) 7.0 (4.3)

HUMAN - - - - - - 91.0 (85.8) 94.5 (87.6)

Table 3: Task and Goal-Condition Success. For each metric, the corresponding path weighted metrics are given in paren-

theses. The highest values per fold and metric are shown in blue. All values are percentages.

navigation, and are generally efficient. The path weighted

score ps for metric s is given as

ps = s×
L∗

max(L∗, L̂)
(6)

where L̂ is the number of actions the model took in the

episode, and L∗ is the number of actions in the expert

demonstration. Intuitively, a model receives half-credit for

taking twice as long as the expert to accomplish a task.

5.2. SubGoal Evaluation

Completing the entire sequence of actions required to

finish a task is challenging. In addition to assessing full

task success, we study the ability of a model to accomplish

the next sub-goal conditioned on the preceding expert se-

quence. The agent is tested by first forcing it to follow the

expert demonstration to maintain a history of states leading

up to the sub-goal, then requiring it to complete the sub-goal

conditioned on the entire language directive and current vi-

sual observation. For the task “Put a hot potato slice on the

counter” for example, we can evaluate the sub-goal of nav-

igating to the potato after using the expert demonstration

to navigate to and pick up a knife. The tasks in ALFRED

contain on average 7.5 such sub-goals (results in Table 4).

6. Analysis

Results from our experiments are presented in Table 3.

We find that the initial model, without spatial or seman-

tic maps, object segmentations, or explicit object-state

tracking, performs poorly on ALFRED’s long-horizon

tasks with high-dimensional state-spaces. The SEQ2SEQ

model achieves ∼8% goal-condition success rate, show-

ing that the agent does learn to partially complete some

tasks. This headroom (as compared with humans) mo-

tivates further research into models that can perform the

complex vision-and-language planning introduced by AL-

FRED. The performance starkly contrasts other vision-and-

language datasets focused on navigation, where sequence-

to-sequence with progress monitoring performs well [27].

6.1. Random Agent

A random agent is commonly employed as a baseline

in vision-and-language tasks. In ALFRED, an agent that

chooses a uniform random action and generates a uniform

random interaction mask at each timestep achieves 0% on

all folds, even without an API failure limit.

6.2. Unimodal Ablations

Previous work established that learned agents without vi-

sual inputs, language inputs, or both performed better than

random agents and were competitive with initial baselines

for several navigation and question answering tasks [49].

These performance gaps were due to structural biases in

the datasets or issues with model capacity. We evaluate

these ablation baselines (NO LANGUAGE and NO VISION)

to study vision and language bias in ALFRED.

The unimodal ablation performances in Table 3 indicate

that both vision and language modalities are necessary to

accomplish the tasks in ALFRED. The NO LANGUAGE

model finishes some goal-conditions by interacting with fa-

miliar objects seen during training. The NO VISION model

similarly finishes some goal-conditions by following low-

level language instructions for navigation and memorizing

interaction masks for common objects like microwaves that

are centered in the visual frame.

6.3. Model Ablations

We additionally ablate the amount of language super-

vision available to the model, as language directives are

given as both a high-level goal and step-by-step instruc-

tions. Providing only high-level, underspecified goal lan-

guage (GOAL-ONLY) is insufficient to complete the tasks,

but is enough to complete some goal-conditions. Using just

low-level, step-by-step instructions (INSTRUCTIONS-ONLY
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performs similarly to using both high- and low-levels. Thus,

this simple model does not seem to exploit the goal instruc-

tion to plan out sub-goals for step-by-step execution.

The two progress monitoring signals are marginally

helpful, increasing the success rate from ∼1% to ∼2%.

Progress monitoring leads to more efficient task comple-

tion, as indicated by the consistently higher path weighted

scores. They may help avoid action repetition and with the

prediction of the Stop action.

The agent takes more steps than the expert in all cases,

as indicated by the lower path weighted scores. Sometimes,

this is caused by failing to keep track of state-changes, for

example heating up an egg in the microwave multiple times.

Further, the models also do not generalize well to unseen

scenes, due to the overall visual complexity in ALFRED

arising from new scenes and novel object class instances.

6.4. Human evaluation

We obtained a human evaluation of 100 randomly sam-

pled directives from the unseen test fold. The experiment

involved 5 participants who completed 20 tasks each us-

ing a keyboard-and-mouse interface. Before the experi-

ment, the participants were allowed to familiarize them-

selves with AI2-THOR. The action-space and task restric-

tions were identical to that of the baseline models. Overall,

the participants obtained a high success rate of 91%, while

taking slightly longer than the expert with 86% path-length

weighted success rate. This indicates that the directives in

ALFRED are well-aligned with the demonstrations.

6.5. SubGoal Performance

We also examine performance of the SEQ2SEQ model

on individual sub-goals in ALFRED. For this experiment,

we use the expert trajectory to move the agent through the

episode up to the sub-task. Then, the agent begins inference

based on the language directive and current visual frame.

Table 4 presents path-length weighted success scores

for 8 sub-goals. Goto and Pickup sub-tasks with the

SEQ2SEQ+PM model achieve ∼51% and ∼32%, respec-

tively, even in seen environments. Visual semantic naviga-

tion is considerably harder in unseen environments. Simi-

larly, interaction masks for Pickup actions in unseen envi-

ronments are worse due to unfamiliar scenes and object in-

stances. Simple sub-goals like Cool, and Heat are achieved

at a high success rate of ∼90% because these tasks are

mostly object-agnostic. For example, the agent becomes

familiar with using microwaves to heat things regardless of

the object in-hand, because microwaves have little visual

diversity across kitchens. Overall, the sub-goal evaluations

indicate that models that exploit modularity and hierarchy,

or make use of pretrained object segmentation models, may

make headway on full task sequences.

Sub-Goal Ablations - Validation

Model G
o
to

P
ic

k
u
p

P
u
t

C
o
o
l

H
ea

t

C
le

an

S
li

ce

T
o
g
g
le

Avg.

S
ee

n No Lang 28 22 71 89 87 64 19 90 59

S2S 49 32 80 87 85 82 23 97 67

S2S + PM 51 32 81 88 85 81 25 100 68

U
n

se
en No Lang 17 9 31 75 86 13 8 4 30

S2S 21 20 51 94 88 21 14 54 45

S2S + PM 22 21 46 92 89 57 12 32 46

Table 4: Evaluations by path weighted sub-goal success.

All values are percentages. The highest values per fold and

task are shown in blue. We note that the NO VISION model

achieves less than 2% on all sub-goals. See supplemental

material for more.

7. Conclusions

We introduced ALFRED , a benchmark for learning to

map natural language instructions and egocentric vision to

sequences of actions. ALFRED moves us closer to a com-

munity goal of language-driven robots capable of naviga-

tion and interaction. The environment dynamics and inter-

action mask predictions required in ALFRED narrow the

gap between what is required of agents in simulation and

robots operating in the real world [36].

We use ALFRED to evaluate a sequence-to-sequence

model with progress monitoring, shown to be effective in

other vision-and-language navigation tasks [27]. While this

model is relatively competent at accomplishing some sub-

goals (e.g. operating microwaves is similar across Heat &

Place tasks), the overall task success rates are poor. The

long horizon of ALFRED tasks poses a significant chal-

lenge with sub-problems including visual semantic naviga-

tion, object detection, referring expression grounding, and

action grounding. These challenges may be approachable

by models that exploit hierarchy [8, 26], modularity [4, 16],

and structured reasoning and planning [6]. We are encour-

aged by the possibilities and challenges that the ALFRED

benchmark introduces to the community.
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