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Figure 1: ViewAL is an active learning method that significantly reduces labeling effort: with maximum performance attained

by using 100% of the data (last column), ViewAL achieves 95% of this performance with only 7% of data of SceneNet-

RGBD [28]. With the same data, the best state-of-the-art method achieves 88% and random sampling (2nd column) yields

66% of maximum attainable performance.

Abstract

We propose ViewAL 1 , a novel active learning strategy

for semantic segmentation that exploits viewpoint consis-

tency in multi-view datasets. Our core idea is that incon-

sistencies in model predictions across viewpoints provide

a very reliable measure of uncertainty and encourage the

model to perform well irrespective of the viewpoint under

which objects are observed. To incorporate this uncertainty

measure, we introduce a new viewpoint entropy formula-

tion, which is the basis of our active learning strategy. In

addition, we propose uncertainty computations on a super-

pixel level, which exploits inherently localized signal in the

segmentation task, directly lowering the annotation costs.

This combination of viewpoint entropy and the use of su-

perpixels allows to efficiently select samples that are highly

informative for improving the network. We demonstrate that

our proposed active learning strategy not only yields the

1Source code available: https://github.com/nihalsid/ViewAL

best-performing models for the same amount of required

labeled data, but also significantly reduces labeling effort.

Our method achieves 95% of maximum achievable network

performance using only 7%, 17%, and 24% labeled data

on SceneNet-RGBD, ScanNet, and Matterport3D, respec-

tively. On these datasets, the best state-of-the-art method

achieves the same performance with 14%, 27% and 33% la-

beled data. Finally, we demonstrate that labeling using su-

perpixels yields the same quality of ground-truth compared

to labeling whole images, but requires 25% less time.

1. Introduction

With the major success of deep learning on major com-

puter vision tasks, such as image classification [22, 41, 46,

48], object detection [15, 9, 14, 34], pose estimation [53, 33,

19, 31], or semantic segmentation [25, 35, 1, 4, 58], both

network sizes and the amount of data required to train these

networks has grown significantly. This has led to a dras-
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tic increase in the costs associated with acquiring sufficient

amounts of high-quality ground truth data, posing severe

constraints on the applicability of deep learning techniques

in real-world applications. Active learning is a promising

research avenue to reduce the costs associated with labeling.

The core idea is that the system being trained actively se-

lects samples according to a policy and queries their labels;

this can lead to machine learning models that are trained

with only a fraction of the data while yielding similar per-

formance. Uncertainty sampling is one of the most popu-

lar strategies in active learning to determine which samples

to request labels for [52, 13, 2, 26, 20, 49, 45]. Here, the

model prefers samples it is most unsure about, based on an

uncertainty measure, in order to maximize model improve-

ment. Existing uncertainty sampling techniques almost ex-

clusively operate on single images, which is surprising since

many consumer-facing applications, such as robots, phones,

or headsets, use video streams or multi-view data coming

from 3D environments. As a consequence, geometric con-

straints inherently present in the real world are largely ig-

nored, but we believe these are particularly interesting for

examining the quality of network predictions; i.e., the same

surface point in a scene should receive the same label when

observed from different view points.
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Figure 2: Inconsistencies in segmentations for two views

of the same object (furniture). While in the first view the

object is predicted to be furniture, in the second view it is

predicted to be a chair.

In this work, we propose to exploit these constraints in

a novel view-consistency-based uncertainty measure. More

specifically, we propose a new viewpoint entropy formula-

tion which is based on the variance of predicted score func-

tions across multiple observations. If predictions for a given

(unlabeled) object differ across views, we assume faulty

network predictions; we then strive to obtain labels for the

most uncertain data samples. In addition, we propose uncer-

tainty computations on a superpixel level, which exploits

inherently localized signal in segmentation tasks, directly

lowering the annotation costs. This combination of view-

point entropy and the use of superpixels allows efficient se-

lection of samples that are highly informative for improving

the network. Finally, we leverage sampling-based measures

such as Monte Carlo (MC) dropout [13], and we show that

in conjunction with these measures, we can further improve

performance. In summary, our contributions are:

• A novel active learning strategy for semantic segmen-

tation that estimates model uncertainty-based on in-

consistency of predictions across views, which we re-

fer to as viewpoint entropy.

• A most informative view criteria based on KL di-

vergence of prediction probability distributions across

view points.

• A superpixel-based scoring and label acquisition

method that reduces the labeling effort while preserv-

ing annotation quality.

2. Related Work

A thorough review of classical literature on active learn-

ing can be found in Settles et al. [42]. As described in [56],

given a pool of unlabeled data, there are three major ways

to select the next batch to be labeled: uncertainty-based ap-

proaches, diversity-based approaches, and expected model

change. In uncertainty-based approaches, the learning al-

gorithm queries for samples it is most unsure about. For a

probabilistic model in a binary classification problem, this

would mean simply choosing the samples whose posterior

probability of being positive is nearest to 0.5 [24, 23]. For

more than two classes, entropy can be used as an uncer-

tainty measure [43, 18]. A simpler way is to select instances

with the least confident posterior probabilities [43]. An-

other strategy could be to choose samples for which the

most probable label and second most probable label have

least difference in prediction confidence [20, 36]. Yet an-

other uncertainty-based approach is querying by committee

where a committee of multiple models is trained on the la-

beled data, and unlabeled samples with least consensus are

selected for labeling [45, 27].

Uncertainty-based approaches can be prone to querying

outliers. In contrast, diversity-based approaches are de-

signed around the idea that informative instances should be

representative of the input distribution. Nguyen et. al [32]

and Xu et al. [54] use clustering for querying batches. The

last method of expected model change [44, 11, 21, 51]

queries samples that would change the current model most

if their labels were known. It has been successful for small

models but has seen little success with deep neural networks

because of computational complexity involved.

Quite a lot of the uncertainty-based approaches can be

directly used with deep neural networks. Softmax proba-

bilities have been used for obtaining confidence, margin,
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and entropy measures for uncertainty [52]. Gal et al. [13]

use multiple forward passes with dropout at inference time

(Monte Carlo dropout) to obtain better uncertainty esti-

mates. Ensemble methods [2, 6] have also been used to

improve upon uncertainty estimates, however, these can be

heavy in terms of memory and compute requirements. The

loss learning approach introduced in [56] can also be cate-

gorized as an uncertainty approach. Sener et al. [40] pro-

pose a diversity-based approach, which formulates active

learning as core-set selection - choosing a set of points such

that a model learned over the selected subset is competitive

for the remaining data points. Yang et al. [55] present a hy-

brid approach, using both uncertainty and diversity signals.

They utilize uncertainty and similarity information from a

DNN and formulate sample selection as generalized ver-

sion of the maximum set cover problem to determine the

most representative and uncertain areas for annotation.

While most of these methods [52, 2, 40] have been veri-

fied on classification tasks, they can be easily adapted to tar-

get segmentation. Sun et al. [47] investigate active learning

for probabilistic models (e.g Conditional Random Fields)

that encode probability distributions over an exponentially-

large structured output space (for instance semantic seg-

mentation). Active learning for semantic segmentation

with deep neural networks has been specifically investi-

gated in [26, 55, 16]. In [26], the authors use a regional

selection approach with cost estimates that combine net-

work uncertainty via MC dropout [12] with an effort esti-

mate regressed from ground-truth annotation click patterns.

View consistency for active learning for segmentation has

not been investigated to the best of our knowledge. The

work of [30] comes close to ours in spirit, in which the au-

thors investigate the effect of using multiple disjoint fea-

tures (views), each of which describe the target concept.

They show the effectiveness of using multiple views in ac-

tive learning for domains like web page classification, ad-

vertisement removal, and discourse tree parsing. The work

is extended in [57] for image classification tasks.

3. Method

Our ViewAL method consists of four main steps (see

Fig. 3): training the network on the current set of labeled

data, estimating the model uncertainty on the unlabeled part

of the data, selecting which super pixels to request labels

for, and finally obtaining annotations. This series of steps is

repeated until the labeling budget is reached or all the data

labeled. We now describe these steps in more detail.

3.1. Network Training

We start by training a semantic segmentation network to

convergence using currently labeled dataset DL. Initially,

DL is a small randomly selected subset of the dataset for

which ground truth has been obtained.
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Figure 3: Method overview: in each round of active selec-

tion, we first train a semantic segmentation network on the

existing labeled data. Second, we use the trained network

to compute a view entropy and a view divergence score for

each unlabeled superpixel. We then select a batch of su-

perpixels based on these scores, and finally request their re-

spective labels from the oracle. This is repeated until the

labeling budget is exhausted or all training data is labeled.

In theory, any semantic segmentation network can be

used. We choose DeepLabv3+ [5] with MobileNetv2 [39]

as the backbone. We make this choice as DeepLabv3+ is

one of the top performing segmentation networks on pop-

ular semantic segmentation benchmarks [10, 7], and when

combined with the MobileNetv2 backbone, it allows fast

training, inference at low memory consumption.

The MobileNetv2 backbone is initialized with weights

from a model that was pre-trained on the ILSVRC

1000-class classification task [37]. The rest of the layers

use Kaiming initialization [17]. To prevent overfitting, we

use blur, random crop, random flip, and Gaussian noise as

data augmentations.

3.2. Uncertainty Scoring

Once the network is trained on DL, our active learning

method aims at predicting which samples from the unla-

beled part of this dataset, DU , are the most likely to be the

most informative to the current state of the network. To this

end, we introduce a new sample selection policy based on

view entropy and view divergence scores. Fig. 4 provides

an overview of these two new scoring mechanisms.
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Figure 4: Computation of the view entropy and the view divergence scores. For each unlabeled superpixel in the dataset, we

perform MC dropout [12] using 20 runs of dropout and average them to obtain class-probability maps. Next, we back-project

each pixel and their associated class-probability distribution to 3D, and re-project all of these to the unlabeled superpixel,

effectively providing multiple class-probability predictions per pixel. We then define the view entropy score as the entropy

of the average class-probability distribution at each pixel. The view divergence corresponds to the average pairwise KL

divergence between the class-distribution at any given pixel and the class-distributions projected at that pixel, effectively cap-

turing the amount of agreement between the prediction in the current view with the prediction coming from other viewpoints.

Finally, a view divergence score and a view entropy score is associated with each unlabeled superpixel by averaging the view

divergence score and view entropy score of all the pixels they contain.

3.2.1 View Entropy Score

In a nutshell, the proposed view entropy score aims at es-

timating which objects are consistently predicted the same

way, irrespective of the observation viewpoint. For each im-

age, we first calculate its pixel-wise class probability maps

using the segmentation network. To make the probability

estimates more robust to changes in the input, we use the

MC dropout method [12]. The probability for a pixel at po-

sition (u, v) in image Ii to belong to class c is given by

P
(u,v)
i (c) =

1

D

D∑

d=1

P
(u,v)
i,d (c), (1)

where D is the number of test time dropout runs of the seg-

mentation network, and P
(u,v)
i,d (c) is the softmax probability

of pixel (u, v) belonging to class c in the MC dropout run

d.

Next, using pose and depth information, all the pixels

from the dataset and their associated probability distribu-

tion are back-projected to 3D, and projected onto all im-

ages. Each pixel (u, v) in image Ii is now associated with a

set of probability distributions Ω
(u,v)
i , each coming from a

different view;

Ω
(u,v)
i = {P

(x ,y)
j , j | Ij(x, y) cross-projects to Ii(u, v)}

(2)

The mean cross-projected distribution Q
(u,v)
i can then be

calculated as

Q
(u,v)
i =

1

|Ω
(u,v)
i |

∑

P∈Ω
(u,v)
i

P (u,v) (3)

which can be seen as marginalizing the prediction proba-

bilities over the observation viewpoints. Finally, the view

entropy score VE
(u,v)
i for image Ii is given by

VE
(u,v)
i = −

∑

c

Q
(u,v)
i (c) log (Q

(u,v)
i (c)) (4)

3.2.2 View Divergence Score

Since the view entropy indicates for each pixel how incon-

sistent the predictions are across views, this score is the

same for all the pixels that are in correspondence (Fig. 5(b))

since it is calculated using probabilities marginalized over

different views (Eq. 3). At this stage we are then able to

establish the objects for which the network makes view in-

consistent predictions, but we still need to determine which

view(s) contains the largest amount of beneficial informa-

tion to improve the network. To this end, we calculate a

view divergence score for each pixel, which indicates how

predictions about a particular 3D point observed in other

views differ from the corresponding prediction in the cur-

rent image. The view divergence score VD
(u,v)
i for a pixel
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(a) Image (b) View Entropy (c) View Divergence

Figure 5: View entropy and view divergence scores. For

all score-maps, blue indicates low values, and red indicates

high values. Pixels that are in correspondence hold the same

view entropy score (b), since this score corresponds to a

measure computed on the average class-probability of com-

ing from all the pixels in correspondence. We then use the

view divergence (c) to define which is the most disagreeing

view, and send it to the oracle for annotation.

(u, v) in image Ii is given by

VD
(u,v)
i =

1

|Ω
(u,v)
i |

∑

Pj∈Ω
(u,v)
i

DKL(P
(u,v)
i ||P

(u,v)
j ), (5)

where DKL(P
(u,v)
i ||P

(u,v)
j ) is the KL Divergence be-

tween distributions P
(u,v)
i and P

(u,v)
j . A high view di-

vergence score implies that on average, the prediction in

the current view is significantly different to the predictions

coming from other views (Fig. 5).

3.3. Region Selection

To exploit the structure and locality in semantic segmen-

tation masks, we argue for selecting regions to be labeled

instead of whole images. In particular, we opt for using

superpixels since they are most of the time associated with

a single object-class and therefore lightweight to label for

the annotator. Fixed sized rectangular regions would have

been another option, but most of the time contain more than

one object-class, leading to more effort for the annotator to

precisely delineate the boundary between objects. Our im-

plementation uses the SEEDS [50] algorithm for superpixel

computation.

For each superpixel r, the two scores VE r
i and VDr

i are

computed as average of the view entropy and view diver-

(a) Image (b) Selected Superpixel (c) Acquired Labels

Figure 6: Label acquisition. We ask the oracle to label only

the superpixels selected by our method (marked red in (b)).

The remaining superpixels of the ground-truth map, shown

in black in (c), are marked with the ignore label.

gence of all the pixels in r

VE r
i =

1

|r|

∑

(u,v)∈r

VE
(u,v)
i (6)

VDr
i =

1

|r|

∑

(u,v)∈r

VD
(u,v)
i , (7)

with |r| is the number of pixels in superpixel r.

Our strategy to select the next superpixel to label consists

of two steps. First, we look for the superpixel r from image

Ii that has the highest view entropy:

(i, r) = argmax
(j,s)

VE s
j (8)

Then, we identify the set of superpixels in the dataset

whose cross-projection overlap is at least with 50% of (i, r),
including self, and denote this set as S . We then look for the

superpixel from S that has the highest view divergence as:

(k, t) = argmax
(j,s)∈S

{VDs
j | (j , s) and (i , r) overlap } (9)

All the superpixels in S are then removed from further

selection considerations. This selection process is repeated

until we select superpixels equivalent to the requested K

images.

3.4. Label Acquisition

Next, we acquire labels for superpixels selected in Sec-

tion 3.3. Instead of using a real annotator, we simulate

annotation by using the ground truth annotation of the su-

perpixels as the annotation from the oracle. These labeled

regions are then added to the labeled dataset and removed

from the unlabeled dataset. The labeled dataset therefore

is comprised of a lot of images, each with a subset of their

superpixels labeled. The unlabeled superpixels of these im-

ages are marked with the ignore label (Fig. 6).

The active selection iteration concludes with the re-

training of the network with the updated dataset DL from

scratch.
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