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Abstract

Pose tracking is an important problem that requires iden-

tifying unique human pose-instances and matching them

temporally across different frames of a video. However,

existing pose tracking methods are unable to accurately

model temporal relationships and require significant com-

putation, often computing the tracks offline. We present

an efficient multi-person pose tracking method, KeyTrack,

that only relies on keypoint information without using any

RGB or optical flow information to track human keypoints

in real-time. Keypoints are tracked using our Pose Entail-

ment method, in which, first, a pair of pose estimates is sam-

pled from different frames in a video and tokenized. Then,

a Transformer-based network makes a binary classification

as to whether one pose temporally follows another. Fur-

thermore, we improve our top-down pose estimation method

with a novel, parameter-free, keypoint refinement technique

that improves the keypoint estimates used during the Pose

Entailment step. We achieve state-of-the-art results on the

PoseTrack’17 and the PoseTrack’18 benchmarks while us-

ing only a fraction of the computation required by most

other methods for computing the tracking information.

1. Introduction

Multi-person Pose Tracking is an important problem for

human action recognition and video understanding. It oc-

curs in two steps: first, estimation, where keypoints of in-

dividual persons are localized; second, the tracking step,

where each keypoint is assigned to a unique person. Pose

tracking methods rely on deep convolutional neural net-

works for the first step [48, 47, 57, 52], but approaches in

the second step vary. This is a challenging problem because

tracks must be created for each unique person, while over-

coming occlusion and complex motion. Moreover, individ-

uals may appear visually similar because they are wear-

ing the same uniform. It is also important for tracking

to be performed online. Commonly used methods, such
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Figure 1. They look alike, how do we decide who's who? In

the Pose Entailment framework, given a video frame, we track

individuals by comparing pairs of poses, using temporal motion

cues to determine who’s who. Using a novel tokenization scheme

to create pose pair inputs interpretable by Transformers [49], our

network divides its attention equally between both poses in match-

ing pairs, and focuses more on a single pose in non-matching pairs

because motion cues between keypoints are not present. We visu-

alize this above; bright red keypoints correspond to high attention.

as optical flow and graph convolutional networks (GCNs)

are effective at modeling spatio-temporal keypoint relation-

ships [45], [35], but are dependent on high spatial resolu-

tion, making them computationally costly. Non-learning

based methods, such as spatial consistency, are faster than

the convolution-based methods, but are not as accurate.

To address the above limitations, we propose an efficient

pose tracking method, KeyTrack, that leverages temporal

relationships to improve multi-person pose estimation and

tracking. Hence, KeyTrack follows the tracking by detec-

tion approach by first localizing humans, estimating human

pose keypoints and then encoding the keypoint informa-

tion in a novel entailment setting using transformer build-

ing blocks [49]. Similar to the textual entailment task where

one has to predict if one sentence follows one another, we

propose the Pose Entailment task, where the model learns

to make a binary classification if two keypoint poses tem-

porally follow or entail each other. Hence, rather than ex-

tracting information from a high-dimensional image repre-

sentation using deep CNNs, we extract information from a

sentence of 15 tokens, and each token corresponds to a key-
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point on a pose. Similar to how BERT tokenizes words [14],

we propose an embedding scheme for pose data that cap-

tures spatio-temporal relationships and feed our transformer

network these embeddings. Since these embeddings contain

information beyond spatial location, our network outper-

forms convolution-based approaches in terms of accuracy

and speed, particularly at very low resolutions.

Additionally, in order to improve the keypoint estimates

used by the transformer network, we propose a Temporal

Object Keypoint Similarity (TOKS) method. TOKS refines

the pose estimation output by augmenting missed detec-

tions and thresholding low quality estimates using a key-

point similarity metric. TOKS adds no learned parameters

to the estimation step, and is superior to existing bounding

box propagation methods that often rely on NMS and opti-

cal flow. KeyTrack makes the following contributions:

1. KeyTrack introduces Pose Entailment, where a binary

classification is made as to whether two poses from differ-

ent timesteps are the same person. We model this task in a

transformer-based network which learns temporal pose re-

lationships even in datasets with complex motion. Further-

more, we present a tokenization scheme for pose informa-

tion that allows transformers to outperform convolutions at

low spatial resolutions when tracking keypoints.

2. KeyTrack introduces a temporal method for improv-

ing keypoint estimates. TOKS is more accurate than bound-

ing box propagation, faster than a detector ensemble, and

does not require learned parameters.

Using the above methods, we develop an efficient multi-

person pose tracking pipeline which sets a new SOTA on the

PoseTrack test set. We achieve 61.2% tracking accuracy on

the PoseTrack’17 Test Set and 66.6% on the PoseTrack’18

Val set using a model that consists of just 0.43M parameters

in the tracking step. This portion of our pipeline 500X more

efficient than than the leading optical flow method [45]. Our

training is performed on a single NVIDIA 1080Ti GPU. Not

reliant on RGB or optical flow information in the tracking

step, our model is suitable to perform pose tracking using

other non-visual pose estimation sensors that only provide

15 keypoints for each person [3].

2. Related Work

We are inspired by related work on pose estimation and

tracking methods, and recent work on applying the trans-

former network to video understanding.

Pose estimation Early work on pose estimation uses

graphical models to learn spatial correlations and inter-

actions between various joints [5, 16]. These models

often perform poorly due to occlusions and long range

temporal relationships, which need to be explicitly mod-

eled [12, 42, 51]. More recent work involves using convolu-

tional neural networks (CNNs) to directly regress cartesian

Method Estimation Detection Improvement Tracking

Ours HRNet Temporal OKS Pose Entailment

HRNet [45] HRNet BBox Prop. Optical Flow

T
o
p
-D

o
w

n

POINet [40] VGG, T-VGG - Ovonic Insight Net

MDPN [20] MDPN Ensemble Optical Flow

LightTrack [35] Simple Baselines Ensemble/BBox Prop. GCN

ProTracker [19] 3D Mask RCNN - IoU

Affinity Fields [38] VGG/STFields - STFields

B
o
tt

o
m

-U
p

STEmbeddings [28] STEmbeddings - STEmbeddings

JointFlow Siamese CNN - Flow Fields

Table 1. How different approaches address each step of the Pose

Tracking problem. Our contributions are in bold.

coordinates of the joints [48] or to generate heatmaps of

the probability of a joint’s location [47, 57, 52]. A major-

ity of the convolutional approaches can be classified into

top-down and bottom-up methods – the top-down meth-

ods use a separate detection step to identify person can-

didates [21, 37, 10, 24, 37]. The single person pose esti-

mation step is then performed on these person candidates.

Bottom-up methods calculate keypoints from all candidates

and then correlate these keypoints into individual human

joints [53, 25]. The latter method is more efficient since

all keypoints are calculated in a single step; however, the

former is more accurate since the object detection step lim-

its the regression boundaries. However, top-down methods

work poorly on small objects and recent work (HRNet) [45]

uses parallel networks at different resolutions to maximize

spatial information. PoseWarper [8] uses a pair of labeled

and unlabeled frames to predict human pose by learning

the pose-warping using deformable convolutions. Finally,

since the earliest applications of deep learning to pose esti-

mation [48], iterative predictions have improved accuracy.

Pose estimation has shown to benefit from cascaded predic-

tions [10] and pose-refinement methods [17, 34] refine the

pose estimation results of previous stages using a separate

post-processing network. In that spirit, our work, KeyTrack

relies on HRNet to generate keypoints and refines keypoint

estimates by temporally aggregating and suppressing low

confidence keypoints with TOKS instead of commonly used

bounding box propagation approaches.

Pose tracking Methods Pose tracking methods assign

unique IDs to individual keypoints, estimated with tech-

niques described in the previous subsection, to track them

through time [4, 26, 27, 1]. Some methods perform tracking

by learning spatio-temporal pose relationships across video

frames using convolutions [50, 40, 35]. [40], in an end-

to-end fashion, predicts track ids with embedded visual fea-

tures from its estimation step, making predictions in mul-

tiple temporal directions. [35] uses a GCN to track poses

based on spatio-temporal keypoint relationships. These net-

works require high spatial resolutions. In contrast, we cre-

ate keypoint embeddings from the keypoint’s spatial loca-

tion and other information making our network less reliant
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Figure 2. a) Keypoints are estimated with HRNet. b) TOKS improves detection accuracy. c) Pose pairs are collected from multiple past

timesteps. Poses of the same color have the same track id, the color black indicates the track id is unknown. d) Each pair is tokenized

independently from the other pairs. e) Our Transformer Matching Network calculates match scores independently for each pair. f) The

maximum match score is greedily chosen and the corresponding track id is assigned.

on spatial resolution, and thus more efficient. We can also

model more fine-grained spatio-temporal relationships.

Among non-learned tracking methods, optical flow prop-

agates poses from one frame to the next to determine which

pose they are most similar to in the next frame [45, 20]. This

improves over spatial consistency, which measures the IoU

between bounding boxes of poses from temporally adjacent

frames [19]. Other methods use graph-partitioning based

approaches to group pose tracks [26, 27, 29]. Another

method, PoseFlow [55], uses inter/intra-frame pose distance

and NMS to construct pose flows. However, our method

does not require hard-coded parameters during inference,

this limits the ability of non-learned methods to model

scenes with complex motion and requires time-intensive

manual tuning. Table 1 shows top-down methods similar

to our work as well as competitive bottom-up methods.

Transformer Models Recently, there have been success-

ful implementations of transformer-based models for image

and video input modalities often substituting convolutions

and recurrence mechanisms. These methods can efficiently

model higher-order relationships between various scene ele-

ments unlike pair-wise methods [11, 22, 41, 56]. They have

been applied for image classification [39], visual question-

answering [30, 31, 46, 60], action-recognition [23, 32],

video captioning [44, 61] and other video problems. Video-

Action Transformer [18] solves the action localization prob-

lem using transformers by learning the context and interac-

tions for every person in the video. BERT [13] uses trans-

formers by pretraining a transformer-based network in a

multi-task transfer learning scheme over the unsupervised

tasks of predicting missing words or next sentences. In-

stead, in a supervised setting, KeyTrack uses transformers

to learn spatio-temporal keypoint relationships for the vi-

sual problem of pose tracking.

3. Method

3.1. Overview of Our Approach

We now describe the keypoint estimation and tracking

approach used in KeyTrack as shown in Figure 2. For frame

F t at timestep t, we wish to assign a track id to the ith

pose pt,i P Pt. First, each of the pose’s kj P K keypoints

are detected. This is done by localizing a bounding box

around each pose with an object detector and then estimat-

ing keypoint locations in the box. Keypoint predictions are

improved with temporal OKS (TOKS). Please see 3.3 for

more details. From here, this pose with no tracking id, p
t,i
I ,

is assigned its appropriate one. This is based on the pose’s

similarity to a pose in a previous timestep, which has an id,

p
t´δ,j
id . Similarity is measured with the match score, m

t´δ,j
id ,

using Pose Entailment (3.2).

False negatives are an inevitable problem in keypoint

detection, and hurt the downstream tracking step because

poses with the correct track id may appear to be no longer

in the video. We mitigate this by calculating match scores

for poses in not just one previous frame, but multiple frames

tF1,F2, ... Fδu. Thus, we compare to each pose p
t´d,j
id

where 1 ď d ď δ and 1 ď j ď |Pt´d|. In practice, we limit

the number of poses we compare to in a given frame to the

n spatially nearest poses. This is just as accurate as com-

paring to everyone in the frame and bounds our runtime to

Opδnq. This gives us a set of match scores M, and we as-

sign p
t,i
I the track id corresponding to the maximum match

score m˚ “ maxpMq, where id˚ “ m˚
id. Thus, we assign

the tracking id to the pose, p
t,i

id˚ .

3.2. Pose Entailment

To effectively solve the multi-person pose tracking prob-

lem, we need to understand how human poses move through

time based on spatial joint configurations as well as in the

presence of multiple persons and occluding objects. Hence,

we need to learn if a pose in timestep t, can be inferred from

timestep t´1. Textual entailment provides us with a similar

framework in the NLP domain where one needs to under-

stand if one sentence can be implied from the next. More

specifically, the textual entailment model classifies whether

a premise sentence implies a hypothesis sentence in a sen-

tence pair [9]. The typical approach to this problem con-

sists of first projecting the pair of sentences to an embed-

ding space and then feeding them through a neural network

which outputs a binary classification for the sentence pair.

Hence, we propose the Pose Entailment problem. More

formally, we seek to classify whether a pose in a timestep
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Figure 3. Orange box: Visualizations to intuitively explain our tokenization. In the Position column, the matching poses are spatially

closer together than the non-matching ones. This is because their spatial locations in the image are similar. The axis limit is 432 because

the image has been downsampled to width ˚ height “ 432. In the following column, the matching contours are similar, since the poses

are in similar orientations. The Segment axis in the last column represents the temporal distance of the pair. Green box: A series of

transformers (Tx) compute self-attention, extracting the temporal relationship between the pair. Binary classification follows.

pt´δ , i.e. the premise, and a pose in timestep pt, i.e. the

hypothesis, are the same person. To solve this problem,

instead of using visual feature based similarity that incurs

large computational cost, we use the set of human key-

points, K, detected by our pose estimator. It is computa-

tionally efficient to use these as there are a limited number

of them (in our case |K| “ 15), and they are not affected by

unexpected visual variations such as lighting changes in the

tracking step. In addition, as we show in the next section,

keypoints are amenable to tokenization. Thus, during the

tracking stage, we use only the keypoints estimated by the

detector as our pose representation.

Tokenizing Pose Pairs The goal of tokenization is to

transform pose information into a representation that facili-

tates learning spatio-temporal human pose relationships. To

achieve this goal, for each pose token, we need to provide

(i) the spatial location of each keypoint in the scene to allow

the network to spatially correlate keypoints across frames,

(ii) type information of each keypoint (i.e. head, shoulder

etc.) to learn spatial joint relationships in each human pose,

and finally (iii) the temporal location index for each key-

point within a temporal window δ, to learn temporal key-

point transitions. Hence, we use three different types of

tokens for each keypoint as shown in Figure 3. There are

2 poses, and thus 2|K| tokens of each type. Each token is

linearly projected to an embedding, E P R
2|K|,H where H

is the transformer hidden size. Embeddings are a learned

lookup table. We now describe the individual tokens in de-

tail:

Position Token: The absolute spatial location of each

keypoint is the Position token, ρ, and its values fall in the

range r1, wFhF s. In practice, the absolute spatial location

of a downsampled version of the original frame is used.

This not only improves the efficiency of our method, but

also makes it more accurate, as is discussed in 5.2. We give

a general expression for the Position tokens of poses pt and

pt´δ , where ρ
pt

j corresponds to the Position token of the jth

keypoint of pt:

tρp
t

1
, ρ

pt

2
, ... ρ

pt

|K|, ρ
pt´δ

1
, ρ

pt´δ

2
, ... ρ

pt´δ

|K| u (1)

Type Token: The Type token corresponds to the unique

type of the keypoint: e.g. the head, left shoulder, right

ankle, etc... The Type keypoints fall in the range r1, |K|s.
These add information about the orientation of the pose and

are crucial for achieving high accuracy at low resolution,

when keypoints have similar spatial locations. A general

expression for the Type tokens of poses pt and pt´δ is be-

low, where jp
t

corresponds to the Type token of the jth

keypoint of pt:

t1p
t

, 2p
t

, ... |K|p
t

, 1p
t´δ

, 2p
t´δ

, ... |K|p
t´δ

u (2)

Segment Token: The Segment token indicates the num-

ber of timesteps the pose is from the current one. The seg-

ment token is in range r1, δs, where δ is a chosen constant.

(We set δ to be 4.) This also allows our method to adapt
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to irregular frame rates. Or, if a person is not detected in

a frame, we can look back two timesteps, conditioning our

model on temporal token value of 2 instead of 1.

t1p
t

, 1p
t

, ... 1p
t

, δp
t´δ

, δp
t´δ

, ... δp
t´δ

u (3)

After each token is embedded, we sum the embeddings,

Esum “ EPosition ` EType ` ESegment, to combine the

information from each class of token. This is fed to our

Transformer Matching Network.

Transformer Matching Network: The goal of our net-

work is to learn motion cues indicative of whether a pose

pair matches. The self-attention mechanism of transform-

ers allows us to accomplish this by learning which temporal

relationships between the keypoints are representative of a

match. Transformers compute scaled dot-product attention

over a set of Queries (Q), Keys (K), and Values(V ) each of

which is a linear projection of the input Esum P R
2|K|,H .

We compute the softmax attention with respect to every

keypoint embedding in the pair, with the input to the soft-

max operation being of dimensions r2|K|, 2|K|s. In fact,

we can generate heatmaps from the attention distribution

over the pair’s keypoints, as displayed in 5.3. In practice,

we use multi-headed attention, which leads to the heads spe-

cializing, also visualized.

Additionally, we use an attention mask to account for

keypoints which are not visible due to occlusion. This at-

tention mask is implemented exactly as the attention mask

in [49], resulting in no attention being paid to the keypoints

which are not visible due to occlusion. The attention equa-

tion is as follows, and we detail each operation in a single

transformer in Table 5 of the Supplement:

AttentionpQ,K, V q “ softmaxpQKT

?
dk

qV (4)

After computing self-attention through a series of

stacked transformers, similar to BERT, we feed this repre-

sentation to a Pooler, which “pools” the input, by selecting

the first token in the sequence and then inputting that token

into a learned linear projection. This is fed to another linear

layer, functioning as a binary classifier, which outputs the

likelihood two given poses match. We govern training with

a binary cross entropy loss providing our network only with

the supervision of whether the pose pair is a match. See

Figure 3 for more details.

3.3. Improved MultiFrame Pose Estimation

We now describe how we improve keypoint estimation.

Top-down methods suffer from two primary classes of er-

rors from the object detector: 1. Missed bounding boxes

2. Imperfect bounding boxes. We use the box detections

from adjacent timesteps in addition to the one in the current

timestep to make pose predictions, thereby combating these

issues. This is based on the intuition that the spatial location

of each person does not change dramatically from frame to

frame when the frame rate is relatively high, typical in most

modern datasets and cameras. Thus, pasting a bounding

box for the ith person in frame, F t´1, pt´1,i, in its same

spatial location in frame F t is a good approximation of the

true bounding box for person pt,i. Bounding boxes are en-

larged by a small factor to account for changes in spatial

location from frame to frame. Previous approaches, such

as [54], use standard non-maximal suppression (NMS) to

choose which of these boxes to input into the estimator.

Though this addresses the 1st issue of missed boxes, it does

not fully address the second issue. NMS relies on the con-

fidence score of the boxes. We make pose predictions for

the box in the current frame and temporally adjacent boxes.

Then we use object-keypoint similarity (OKS) to determine

which of the poses should be kept. This is more accurate

than using NMS because we use the confidence scores of

the keypoints, not the bounding boxes. The steps of TOKS

are enumerated below:

Algorithm 1 Temporal OKS

Input: pt´1, pt,F t

1. Retrieve bounding box, B, enclosing pt´1, and dilate

by a factor, α

2. Estimate a new pose, p1t, in F t from B

3. Use OKS to determine which pose to keep, p˚ “
OKSpp1t, ptq
Output: p˚

4. Experiments

4.1. The PoseTrack Dataset

The PoseTrack 2017 training, validation, and test sets

consist of 250, 50, and 208 videos, respectively. Annota-

tions for the test set are held out. We evaluate on the Pose-

Track 17 Test set because the PoseTrack 18 Test set has yet

to be released. We use the official evaluation server on the

test set, which can be submitted to up to 4 times. [4, 1] We

conduct the rest of comparisons on the PoseTrack ECCV

2018 Challenge Validation Set, a superset of PoseTrack 17

with 550 training, 74 validation, and 375 test videos [2].

Metrics Per-joint Average Precision (AP) is used to eval-

uate keypoint estimation based on the formulation in [6].

Multi-Object Tracking Accuracy (MOTA [7], [33]) scores

tracking. It penalizes False Negatives (FN), False Positives

(FP), and ID Switches (IDSW) under the following formu-

lation for each keypoint ki, where t is the current timestep.

Our final MOTA is the average of all keypoints ki P K:

1 ´

ř

t pFN i
t ` FP i

t ` IDSW i
t q

ř

t GT i
t
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Tracking Method Detection Method
AP Ò % IDSW Ó MOTA Ò
Total Head Shou Elb Wri Hip Knee Ankl Total Total

Pose Entailment

GT Boxes, GT Keypoints 100

0.7 0.7 0.6 0.6 0.6 0.7 0.7 0.7 99.3

GCN 1.4 1.4 1.4 1.5 1.4 1.6 1.6 1.5 98.5

Optical Flow 1.1 1.2 1.2 1.2 1.2 1.3 1.4 1.2 98.7

Pose Entailment

GT Boxes, Predicted Keypoints 86.7

0.9 0.9 0.8 0.8 0.7 0.8 0.8 0.8 72.2

GCN 1.6 1.6 1.6 1.6 1.3 1.5 1.4 1.5 71.6

Optical Flow 1.2 1.2 1.2 1.1 1.0 1.1 1.1 1.1 71.8

Pose Entailment

Predicted Boxes, Predicted Keypoints 81.6

0.9 1.0 0.9 0.8 0.7 0.8 0.8 0.8 66.6

GCN 1.7 1.7 1.7 1.7 1.4 1.5 1.4 1.6 65.9

Optical Flow 1.3 1.2 1.2 1.2 1.1 1.1 1.1 1.1 66.3

Figure 4. Compares accuracy of tracking methods on the PoseTrack 18 Val set, given the same keypoints. GT stands for Ground Truth,

“predicted” means a neural net is used. Lower % IDSW is better, higher MOTA is better. “Total” averages all joint scores.

Our approach assigns track ids and estimates keypoints in-

dependently. This is also true of competing methods with

MOTA scores closest to ours. In light of this, we use the

same keypoint estimations to compare Pose Entailment to

competing tracking methods in 4.2. This makes the IDSW

the only component of the MOTA metric that changes, and

we calculate %IDSW i “
ř

t IDSW i
t {

ř

t GT i
t . In 4.3,

we compare our estimation method to others without evalu-

ating tracking. Finally, in 4.4, we compare our entire track-

ing pipeline to other pipelines.

4.2. Improving Tracking with Pose Entailment

We compare with the optical flow tracking method [54],

and the Graph Convolutional Network [35] (GCN) as shown

in Figure 4. We do not compare with IoU because, GCN and

optical flow [35], [54] have shown to outperform it, nor do

we compare to the network from [40] because it is trained in

an end-to-end fashion. We follow [54] for Optical Flow and

use the pre-trained GCN provided by [35]. IDSW is calcu-

lated with three sets of keypoints. Regardless of the key-

point AP, we find that KeyTrack's Pose Entailment main-

tains a consistent improvement over other methods. We in-

cur approximately half as many IDSW as the GCN and 30%

less than Optical Flow.

Our improvement over GCN stems from the fact that it

relies only on keypoint spatial locations. By using addi-

tional information beyond the spatial location of each key-

point, our model can make better inferences about the tem-

poral relationship of poses. The optical flow CNNs are not

specific to pose tracking and require manual tuning. For

example, to scale the CNN’s raw output, which is normal-

ized from -1 to 1, to pixel flow offsets, a universal constant,

given by the author of the original optical flow network (not

[54]), must be applied. However, we found that this con-

stant required adjustment. In contrast, our learned method

requires no tuning during inference.

4.3. Improving Detection with TOKS

Table 2 shows offers a greater improvement in keypoint

detection quality than other methods. In the absence of

Detection Method
AP

Head Shou Elb Wri Hip Knee Ankl Total

GT 90.2 91.4 88.7 83.6 81.4 86.1 83.7 86.7

Det. 68.8 72.8 73.1 68.4 68.0 72.4 69.8 70.4

Det. + Box Prop. 79.3 82.0 80.8 75.6 72.4 76.5 72.4 77.1

Det. + TOKS@0.3 83.6 86.6 84.9 78.9 76.4 80.2 76.2 81.1

Det. + TOKS@0.35 (ours) 84.1 87.2 85.3 79.2 77.1 80.6 76.5 81.6

Det. + TOKS@0.5 83.9 87.2 85.2 79.1 77.1 80.7 76.4 81.5

Table 2. Per-joint AP when the pose estimator is conditioned on

different boxes. GT indicates ground truth boxes are used, and

serves as an upper bound for accuracy. Det. indicates a detector

was used to estimate boxes. @OKS* is the OKS threshold used.

bounding box improvement, the AP performance is 6.6%

lower, highlighting the issue of False Negatives. The fur-

ther improvement from TOKS emphasizes the usefulness of

estimating every pose. By using NMS, bounding box prop-

agation methods miss the opportunity to use the confidence

scores of the keypoints, which lead to better pose selection.

4.4. Tracking Pipeline Comparison to the SOTA

Now that we have analyzed the benefits of Pose Entail-

ment and TOKS, we put them together and compare to other

approaches. Figure 5 shows that we achieve the highest

MOTA score. We improve over the original HRNet pa-

per by 3.3 MOTA points on the Test set. [25], nearest our

score on the 2018 Validation set, is much further away on

the 2017 Test set. Additionally, our FPS is improved over

all methods with similar MOTA scores, with many meth-

ods being offline due to their use of ensembles. (Frames per

second (FPS) is calculated by diving the number of frames

in the dataset by the runtime of the approach.) Moreover,

our method outperforms all others in terms of AP, showing

the benefits of TOKS. APT is also reported, which is the

AP score after tracking post-processing has been applied.

This post-processing is beneficial to the MOTA score, but

lowers AP. See section A.3 for more details on this post-

processing. As we have the highest AP, but not the highest

APT it appears the effect of tracking post-processing varies

from paper to paper. Only APT is given on the test set be-

cause each paper is given 4 submissions, so these are used

to optimize MOTA, rather than AP.
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PoseTrack 2018 ECCV Challenge Val Set

No. Method Extra Data APT AP FPS MOTA

1. KeyTrack (ours) ✗ 74.3 81.6 1.0 66.6

2. MIPAL [25] ✗ 74.6 - - 65.7

3. LightTrack (offline) [35] ✗ 71.2 77.3 E 64.9

4. LightTrack (online) [35] ✗ 72.4 77.2 0.7 64.6

5. Miracle [58] ✓ - 80.9 E 64.0

6. OpenSVAI [36] ✗ 69.7 76.3 - 62.4

7. STAF [38] ✓ 70.4 - 3 60.9

8. MDPN [20] ✓ 71.7 75.0 E 50.6

PoseTrack 2017 Test Set Leaderboard

No. Method Extra Data APT FPS MOTA

1. KeyTrack (ours) ✗ 74.0 1.0 61.2

2. POINet [40] ✗ 72.5 - 58.4

3. LightTrack [35] ✗ 66.7 E 58.0

4. HRNet [45] ✗ 75.0 0.2 57.9

5. FlowTrack [54] ✗ 74.6 0.2 57.8

6. MIPAL [25] ✗ 68.8 - 54.5

7. STAF [38] ✓ 70.3 2 53.8

8. JointFlow [15] ✗ 63.6 0.2 53.1

Figure 5. Top scores on the PoseTrack leaderboards. E indicates an ensemble of detectors is used, and results in the method being offline.

A check indicates external training data is used beyond COCO and PoseTrack. A “-” indicates the information has not been made publicly

available. FPS calculations for JointFlow and FlowTrack are taken from [59]. HRNet FPS is approximated from FlowTrack since the

methods are very similar. The AP column has the best AP score. APT is the AP score after tracking post-processing.

Figure 6. Qualitative results of KeyTrackon the PoseTrack PoseTrack 17 Test Set. Additional qualitative results are in the supplement.

Efficiency: Our tracking approach is efficient, not reliant

on optical flow or RGB data. When processing an image at

our optimal resolution, 24x18, we reduce the GFLOPS re-

quired by optical flow, which processes images at full size,

from 52.7 to 0.1. [35]’s GCN does not capture higher-order

interactions over keypoints and can be more efficient than

our network with local convolutions. However, this trans-

lates to a „1ms improvement in GPU runtime. In fact, our

tracking pipeline demonstrates a 30% improvement in end-

to-end runtime over [35], shown in 4.4. We have the fastest

FPS of Top-down approaches. Also, we do not rely on op-

tical flow to improve bounding box propagation as [54, 45]

do, instead we use TOKS. This contributes to our 5x FPS

improvement over [54, 45]. Further details on the param-

eters and FLOPS of the GCN, Optical Flow Network, and

our Transformer Matching Network are in Table 6 of the

Supplement.

5. Analysis

5.1. Tracking Pipeline

Varying Tokenization Schemes and Transformer

Hyper-parameters We examine the benefits of each em-

bedding. As evident in Table 3, Segment embeddings are

crucial because they enable the network to distinguish be-

tween the Poses being matched. Token embeddings give

the network information about the orientation of a pose and

help it interpret keypoints which are in close spatial prox-

imity; i.e. keypoints that have the same or similar position

embedding. We also train a model that uses the relative

Abs. Position Type Segment Rel. Position Match % Accuracy

✓ ✓ ✗ ✗ 72.6

✓ ✗ ✓ ✗ 90.0

✓ ✓ ✓ ✗ 93.2 (ours)

✗ ✓ ✓ ✓ 91.3

✓ ✓ ✓ ✓ 92.0

Table 3. Match accuracies for various embedding schemes.

keypoint distance from the pose center rather than the ab-

solute distance of the keypoint in the entire image. We find

that match accuracy deteriorates with this embedding. This

is likely because many people perform the same activity,

such as running, in the PoseTrack dataset, leading to them

having nearly identical relative pose positions. We vary the

number of transformer blocks, the hidden size in the trans-

former block, and number of heads in Table 7. Decreasing

the number of transformer blocks, the hidden size, and at-

tention heads hurts performance.

Number of Timesteps and Other Factors We find

that reducing the number of timesteps adversely effects the

MOTA score. It drops up to 0.3 points when using only a

single timestep because we are less robust to detection er-

rors. Also, in replacement of our greedy algorithm, we ex-

perimented with the Hungarian algorithm used in [19]. This

algorithm is effective with ground truth information, but is

not accurate when using detected poses.
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Num Tx Hidden Size Int. Size Num Heads Parameters (M) % IDSW

2 128 512 4 0.40 1.0

4 128 512 4 0.43 0.8

6 128 512 4 1.26 1.1

4 64 256 4 0.23 0.9

4 128 512 4 0.43 0.8

4 256 1024 4 3.31 1.1

4 128 128 4 0.43 0.8

4 128 512 4 0.86 0.8

4 128 128 2 0.43 0.9

4 128 128 4 0.43 0.8

4 128 128 6 0.43 0.8

Figure 7. Left: Transformer network hyper-parameters are varied. Right: A plot of IDSW rate vs. image resolution. The table on the left

shows the input to each method, the conv+visual input is blurry because images are downsampled.

Figure 8. Attention heatmaps from two of our network’s attention

heads are shown. These are the 0th, and 3rd heads from our final

transformer. The two pairs above the dotted line are a matching

pair, while the pair below the dotted line are not (and are also from

separate videos). t is the frame timestep.

5.2. Comparing SelfAttention to Convolutions

We compare transformers and CNNs by replacing our

Transformer Matching Network with two convolution-

based methods. One takes visual features from bounding

box pose pairs as input while the other takes only key-

points as input, where each unique keypoint is colored via

a linear interpolation, a visual version of our Type tokens.

Both approaches use identical CNNs, sharing an architec-

ture inspired by VGG [43], and have approximately 4x more

parameters than our transformer-based model because this

was required for stable training. See A.4 of the Supplement

for details.

Transformers outperform CNNs for the tracking task,

as shown in Figure 7. However, we find two areas where

CNNs can be competitive. First, at higher resolutions, trans-

formers often need a large number of parameters to match

CNN’s performance. In NLP, when using large vocabular-

ies, a similar behavior is observed where transformers need

multiple layers to achieve good performance. Second, we

also find that convolutions optimize more quickly than the

transformers, reaching their lowest number of ID Switches

within the first 2 epochs of training. Intuitively, CNNs

are more easily able to take advantage of spatial proxim-

ity. The transformers receive spatial information via the po-

sition embeddings, which are 1D linear projections of 2D

locations. This can be improved by using positional embed-

ding schemes that better preserve spatial information [18].

In summary, CNNs are accurate at high resolutions given

its useful properties such as translation invariance and loca-

tion invariance. However, there is an extra computational

cost of using them. The extra information, beyond the

spatial location of keypoints, included in our keypoint em-

beddings, coupled with the transformer’s ability to model

higher-order interactions allows it to function surprisingly

well at very low resolutions. Thus, the advantage of CNNs

is diminished and our transformer-based network outper-

forms them in the low resolution case.

5.3. Visualizing Attention Heatmaps

We visualize our network’s attention heatmaps in Fig. 8.

When our network classifies a pair as non-matching, its at-

tention is heavily placed on one of the poses over the other.

Also, we find it interesting that one of our attention heads

primarily places its attention on keypoints near the person’s

head. This specialization suggests different attention heads

are attuned to specific keypoint motion cues.

6. Conclusion

In summary, we present an efficient Multi-person Pose

Tracking method. Our proposed Pose Entailment method

achieves SOTA performance on PoseTrack datasets without

using RGB information in the tracking step. KeyTrack also

benefits from improved keypoint estimates using TOKS,

which outperforms bounding box propagation methods. Fi-

nally, we demonstrate how to tokenize and embed human

pose information in the transformer architecture that has ap-

plications to tasks such as pose-based action recognition.
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