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Abstract

Convolutional neural networks (CNNs) have shown dra-

matic improvements in single image super-resolution (SISR)

by using large-scale external samples. Despite their re-

markable performance based on the external dataset, they

cannot exploit internal information within a specific im-

age. Another problem is that they are applicable only

to the specific condition of data that they are supervised.

For instance, the low-resolution (LR) image should be

a “bicubic” downsampled noise-free image from a high-

resolution (HR) one. To address both issues, zero-shot

super-resolution (ZSSR) has been proposed for flexible in-

ternal learning. However, they require thousands of gra-

dient updates, i.e., long inference time. In this paper,

we present Meta-Transfer Learning for Zero-Shot Super-

Resolution (MZSR), which leverages ZSSR. Precisely, it is

based on finding a generic initial parameter that is suitable

for internal learning. Thus, we can exploit both external

and internal information, where one single gradient update

can yield quite considerable results. (See Figure 1). With

our method, the network can quickly adapt to a given image

condition. In this respect, our method can be applied to a

large spectrum of image conditions within a fast adaptation

process.

1. Introduction

SISR, which is to find a plausible HR image from its

counterpart LR image, is a long-standing problem in low-

level vision area. Recently, the remarkable success of CNNs

brought attention to the research community, and hence nu-

merous CNN-based SISR methods have exhibited large per-

formance leap [15, 17, 21, 47, 2, 45, 36, 20, 12, 13]. Most

of the recent state-of-the-art (SotA) CNN-based methods

are based on a large number of external training dataset

and self-supervised settings with known degradation model,

e.g., “bicubic” downsampling. Impressively, the recent

SotA CNNs show significant PSNR gains compared to the

conventional large size of models for the noise-free “bicu-

bic” downsampling condition. However, in real-world sit-

(a) LR (b) ZSSR [34]

2,850 updates

(c) Fine-tuning

2,000 updates

(d) MZSR (Ours)

One update

Figure 1: Super-resolved results (×2) of “img050” in Ur-

ban100 [14]. The blur kernel of the LR image is an isotropic

Gaussian kernel with width 2.0. Result of (c) is fine-tuned

from a pre-trained model. Our MZSR outperforms other

methods within just one single gradient descent update.

uations, when the LR image has distant statistics in down-

sampling kernels and noises, the recent methods produce

undesirable artifacts and show inferior results due to the do-

main gap. Moreover, their number of parameters and mem-

ory overheads are usually too large to be used in real appli-
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cations.

Besides, non-local self-similarity in scale and across

multi-scale, which is the internal recurrence of information

within a single image, is one of the strong natural image

priors. Therefore it has long been used in image restora-

tion tasks, including image denoising [5, 6] and super-

resolution [24, 14]. Additionally, the powerful image prior

of non-local property is embedded into network architecture

[19, 22, 46] by implicitly learning such priors to boost the

performance of the networks further. Also, some works to

learn internal distribution have been proposed [34, 32, 33].

Moreover, there have been many studies to combine the

advantages of external and internal information for image

restoration [26, 43, 42, 41].

Recently, ZSSR [34] has been proposed for zero-shot

super-resolution, which is based on the zero-shot setting to

exploit the power of CNN but can be easily adapted to the

test image condition. Interestingly, ZSSR learns the inter-

nal non-local structure of the test image, i.e., deep internal

learning. Thus it outperforms external-based CNNs in some

regions where the recurrences are salient. Also, ZSSR is

highly flexible that it can address any blur kernels, and thus

easily adapted to the conditions of test images.

However, ZSSR has a few limitations. First, it requires

thousands of backpropagation gradient updates at test time,

which requires considerable time to get the result. Also,

it cannot fully exploit the large-scale external dataset, and

rather it depends only on internal structure and patterns,

which lacks in the number of total examples. Eventually,

this leads to inferior results in most of the regions with gen-

eral patterns compared to the external-based methods.

On the other hand, meta-learning or learning to learn

fast has recently attracted many researchers. Meta-learning

aims to address a problem that artificial intelligence is hard

to learn new concepts quickly with a few examples, unlike

human intelligence. In this respect, meta-learning is jointly

merged with few-shot learning, and many methods with

this approach have been proposed [35, 39, 38, 28, 25, 8,

10, 18, 37]. Among them, Model-Agnostic Meta-Learning

(MAML) [8] has shown great impact, showing SotA per-

formance by learning the optimal initial state of the model

such that the base-learner can fast adapt to a new task within

a few gradient steps. MAML employs the gradient update

as meta-learner, and the same author analyzed that gradient

descent can approximate any learning algorithm [9]. More-

over, Sun et al. [37] have jointly utilized MAML with trans-

fer learning to exploit large-scale data for few-shot learning.

Inspired by the above-stated works and ZSSR, we

present Meta-Transfer Learning for Zero-Shot Super-

Resolution (MZSR), which is kernel-agnostic. We found

that simply employing transfer learning or fine-tuning from

a pre-trained network does not yield plausible results. As

ZSSR only has a meta-test step, we additionally adopt a

meta-training step to make the model adapt fast to new blur

kernel scenarios. Additionally, we adopt transfer learning

in advance to fully utilize external samples, further lever-

aging the performance. In particular, transfer learning with

the help of a large-scale synthetic dataset (“bicubic” degra-

dation setting) is first performed for the external learning

of natural image priors. Then, meta-learning plays a role

in learning task-level knowledge with different downsam-

pling kernels as different tasks. At the meta-test step, sim-

ple self-supervised learning is conducted to learn image-

specific information within a few gradient steps. As a re-

sult, we can exploit both external and internal information.

Also, by leveraging the advantages of ZSSR, we may use a

lightweight network, which is flexible to different degrada-

tion conditions of LR images. Furthermore, our method is

much faster than ZSSR, i.e., it quickly adapts to new tasks

within a few gradient steps, while ZSSR requires thousands

of updates.

In summary, our overall contribution is three-fold:

• We present a novel training scheme based on meta-

transfer learning, which learns an effective initial

weight for fast adaptation to new tasks with the zero-

shot unsupervised setting.

• By using external and internal samples, it is possible to

leverage the advantages of both internal and external

learning.

• Our method is fast, flexible, lightweight and unsuper-

vised at meta-test time, hence, eventually can be ap-

plied to real-world scenarios.

2. Related Work

2.1. CNN­based Super­Resolution

SISR is based on the image degradation model as

IkLR = (IHR ∗ k) ↓s +n, (1)

where IHR, IkLR, k, ∗, ↓s, and n denote HR, LR image, blur

kernel, convolution, decimation with scaling factor of s, and

white Gaussian noise, respectively. It is notable that diverse

degraded conditions can be found in real-world scenes, with

various unknown k, ↓s, and n.

Recently, numerous CNN-based networks have been

proposed to super-resolve LR image with known downsam-

pling kernel [15, 17, 21, 12, 47, 2, 36, 20, 13]. They show

extreme performances in “bicubic” downsampling scenar-

ios but suffer in non-bicubic cases due to the domain gap.

To cope with multiple degradation kernels, SRMD [44] has

been proposed. With additional inputs of kernel and noise

information, SRMD outperforms other SISR methods in

non-bicubic conditions. Also, IKC [11] has been proposed
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Figure 2: The overall scheme of our proposed MZSR. During meta-transfer learning, the external dataset is used, where

internal learning is done during meta-test time. From random initial point θ0, large-scale dataset DIV2K [1] with “bicubic”

degradation is exploited to obtain θT . Then, meta-transfer learning learns a good representation θM for super-resolution tasks

with diverse blur kernel scenarios. The figure shows N tasks for simplicity. In the meta-test phase, self-supervision within a

test image is exploited to train the model with corresponding blur kernel.

for blind super-resolution. On the other hand, ZSSR [34]

has been proposed to learn image specific internal structure

with CNN, and has shown that it can be applied to real-

world scenes due to its flexibility.

2.2. Meta­Learning

In recent years, diverse meta-learning algorithms have

been proposed. They can be categorized into three groups.

The first group is metric based methods [35, 38, 39], which

is to learn metric space in which learning is efficient within

a few samples. The second group is memory network-

based methods [31, 28, 25], where the network learns across

task knowledges and well generalizes to unseen tasks. The

last group is optimization based methods, where gradi-

ent descent plays a role as a meta-learner optimization

[10, 18, 9, 8]. Among them, MAML [8] has shown a

great impact on the research community, and several vari-

ants have been proposed [27, 37, 3, 30]. MAML inherently

requires second-order derivative terms, and the first-order

algorithm has also been proposed in [27]. Also, to cope

with the instability of MAML training, MAML++ [3] has

been proposed. Moreover, MAML within embedded space

has been proposed [30]. In this paper, we employ MAML

scheme for fast adaptation of zero-shot super-resolution.

3. Preliminary

We introduce self-supervised zero-shot super-resolution

and meta-learning schemes with notations, following re-

lated works [34, 8].

Zero-Shot Super-Resolution ZSSR [34] is totally unsu-

pervised or self-supervised. Two phases of training and test

are both held in runtime. In training phase, the test image

ILR is downsampled with desired kernel to generate “LR

son” denoted as Ison, and ILR becomes the HR supervi-

sion, “HR father.” Then, the CNN is trained with the LR-

HR pairs generated by a single image. The training solely

depends on the test image, thus learns specific internal in-

formation to given image statistics. In the test phase, the

trained CNN then works as a feedforward network, and the

test input image is fed to the CNN to get the super-resolved

image ISR.

Meta-Learning Meta-learning has two phases: meta-

training and meta-test. We consider a model fθ(·), which

is parameterized by θ, that maps inputs x to outputs y. The

goal of meta-training is to make the model to be able to

adapt to a large number of different tasks. A task Ti is

sampled from a task distribution p(T ) for meta-training.

Within a task, training samples are used to optimize the

base-learner with a task-specific loss LTi
and test samples

are used to optimize the meta-learner. In meta-test phase,

the model fθ(·) quickly adapts to a new task Tnew with the

help of meta-learner. MAML [8] employs a simple gradient

descent algorithm as the meta-learner and seeks to find an

initial transferable point where a few gradient updates lead

to a fast adaptation of the model to a new task.

In our case, the input x and the output y are IkLR and

ISR. Also, diverse blur kernels constitute the task distribu-

tion, where each task corresponds to the super-resolution of
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an image degraded by a specific blur kernel.

4. Method

The overall scheme of our proposed MZSR is shown in

Figure 2. As shown, our method consists of three steps:

large-scale training, meta-transfer learning, and meta-test.

4.1. Large­scale Training

This step is similar to the large-scale ImageNet [7] pre-

training for object recognition. In our case, we adopt

DIV2K [1] which is a high-quality dataset DHR. Using

known “bicubic” degradation, we first synthesized large

number of paired dataset (IHR, I
bic
LR), denoted as D. Then,

we trained the network to learn super-resolution of “bicu-

bic” degradation model by minimizing the loss,

LD(θ) = ED∼(IHR,Ibic
LR

)[||IHR − fθ(I
bic
LR)||1], (2)

which is the pixel-wise L1 loss [21, 34] between prediction

and the ground-truth.

The large-scale training has contributions within two re-

spects. First, as super-resolution tasks share similar prop-

erties, it is possible to learn efficient representations that

implicitly represent natural image priors of high-resolution

images, thus making the network ease to be learned. Sec-

ond, as MAML [8] is known to show some unstable train-

ing, we ease the training phase of meta-learning with the

help of well pre-trained feature representations.

4.2. Meta­Transfer Learning

Since ZSSR is trained with the gradient descent algo-

rithm, it is possible to introduce an optimization-based

meta-training step with the help of gradient descent algo-

rithm, which is proven to be a universal learning algorithm

[9].

In this step, we seek to find a sensitive and transferable

initial point of the parameter space where a few gradient

updates lead to large performance improvements. Inspired

by MAML, our algorithm mostly follows MAML but with

several modifications.

Unlike MAML, we adopt different settings for meta-

training and meta-test. In particular, we use the exter-

nal dataset for meta-training, whereas internal learning is

adopted for meta-test. This is because we intend our meta-

learner to more focus on the kernel-agnostic property with

the help of a large-scale external dataset.

We synthesize dataset for meta-transfer learning, de-

noted as Dmeta. Dmeta consists of pairs, (IHR, I
k

LR), with

diverse kernel settings. Specifically, we used isotropic and

anisotropic Gaussian kernels for the blur kernels. We con-

sider a kernel distribution p(k), where each kernel is de-

termined by a covariance matrix Σ. it is chosen to have a

random angle Θ ∼ U [0, π], and two random eigenvalues

λ1 ∼ U [1, 2.5s], λ2 ∼ U [1, λ1] where s denotes the scaling

factor. Precisely, the covariance matrix is expressed as

Σ =

[

cos(Θ) − sin(Θ)
sin(Θ) cos(Θ)

] [

λ1 0
0 λ2

] [

cos(Θ) sin(Θ)
− sin(Θ) cos(Θ)

]

.

(3)

Eventually, we train our meta-learner based on Dmeta.

We may divide Dmeta into two groups: Dtr for task-level

training, and Dte for task-level test.

In our method, adaptation to a new task Ti with respect

to the parameters θ is one or more gradient descent updates.

For one gradient update, new adapted parameters θi is then

θi = θ − α∇θL
tr
Ti
(θ), (4)

where α is the task-level learning rate. The model parame-

ters θ are optimized to achieve minimal test error of Dmeta

with respect to θi. Concretely, the meta-objective is

argmin
θ

∑

Ti∼p(T )

Lte
Ti
(θi) (5)

=argmin
θ

∑

Ti∼p(T )

Lte
Ti
(θ − α∇θL

tr
Ti
(θ)). (6)

Meta-transfer optimization is performed using Eq. 6,

which is to learn the knowledge across task. Any gradient-

based optimization can be used for meta-transfer training.

For stochastic gradient descents, the parameter update rule

is expressed as

θ ← θ − β∇θ

∑

Ti∼p(T )

Lte
Ti
(θi), (7)

where β is the meta-learning rate.

4.3. Meta­Test

The meta-test step is exactly the zero-shot super-

resolution. As evidence in [34], this step enables our model

to learn internal information within a single image. With

a given LR image, we downsample it with corresponding

downsampling kernel (kernel estimation algorithms [24, 29]

can be adopted for blind scenario) to generate Ison and per-

form a few gradient updates with respect to the model pa-

rameter using a single pair of “LR son” and a given image.

Then, we feed a given LR image to the model to get a super-

resolved image.

4.4. Algorithm

Algorithm 1 demonstrates the process of our meta-

transfer training procedures of Section 4.1 and 4.2. Lines

3-7 is the large-scale training stage. Lines 11-14 is the in-

ner loop of meta-transfer learning where the base-learner

is updated to task-specific loss. Lines 15-16 presents the

meta-learner optimization.
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Algorithm 1: Meta-Transfer Learning

Input: High-resolution dataset DHR and blur

kernel distribution p(k)
Input: α, β: learning rates

Output: Model parameter θM
1 Randomly initialize θ

2 Synthesize paired dataset D by bicubicly

downsample DHR

3 while not done do

4 Sample LR-HR batch from D

5 Evaluate LD by Eq. 2

6 Update θ with respect to LD

7 end

8 Generate task distribution p(T ) with DHR and p(k)
9 while not done do

10 Sample task batch Ti ∼ p(T )
11 for all Ti do

12 Evaluate training loss (Dtr): Ltr
Ti
(θ)

13 Compute adapted parameters with gradient

descent: θi = θ − α∇θL
tr
Ti
(θ)

14 end

15 Update θ with respect to average test loss (Dte):

16 θ ← θ − β∇θ

∑

Ti∼p(T ) L
te
Ti
(θi)

17 end

Algorithm 2: Meta-Test

Input: LR test image ILR, meta-transfer trained

model parameter θM , number of gradient

updates n and learning rate α

Output: Super-resolved image ISR

1 Initialize model parameter θ with θM
2 Generate LR son Ison by downsampling ILR with

corresponding blur kernel.

3 for n steps do

4 Evaluate loss L(θ) = ||ILR − fθ(Ison)||1
5 Update θ ← θ − α∇θL(θ)

6 end

7 return ISR = fθ(ILR)

Algorithm 2 presents the meta-test step, which is the

zero-shot super-resolution. A few gradient updates (n) are

performed while meta-test, and the super-resolved image is

obtained with final updated parameters.

5. Experiments

5.1. Training Details

For the CNN, we adopt a simple 8-layer CNN architec-

ture with residual learning following ZSSR [34]. Its number

of parameters is 225 K. For meta-transfer training, we use

DIV2K [1] for the high-quality dataset and we set α = 0.01
and β = 0.0001 for entire training. For the inner loop,

we conducted 5 gradient updates, i.e. 5 unrolling steps, to

obtain adapted parameters. We extracted training patches

with a size of 64 × 64. To cope with gradient vanishing

or exploding problems due to the unrolling process of base

learners, we utilize the weighted sum of losses from each

step, i.e., providing supervision of additional losses to each

unrolling step [3]. At the initial point, we evenly weigh the

losses and decayed the weights except for the last unrolling

step. In the end, the weighted loss converges to our final

training task loss. We employ ADAM [16] optimizer as our

meta-optimizer. As the subsampling process (↓s) can be the

direct method [34] or the bicubic subsampling [44, 11], we

trained two models for different subsampling methods: di-

rect and bicubic.

5.2. Evaluations on “Bicubic” Downsampling

We evaluate our method with several recent SotA SISR

methods, including supervised and unsupervised methods

on famous benchmarks: Set5 [4], BSD100 [23], and Ur-

ban100 [14]. We measure PSNR and SSIM [40] in Y-

channel of YCbCr colorspace.

The overall results are shown in Table 1. CARN [2]

and RCAN [45], which are trained for “bicubic” down-

sampling condition, show extremely overwhelming perfor-

mances. Since the training scenario and the test scenario

exactly match each other, supervision on external samples

could boost the performance of CNN. On the other hands,

ZSSR [34] and our methods show improvements against

bicubic interpolation but not as good as the supervised ones,

because both methods are trained within the unsupervised

or self-supervised regime. Our methods show comparable

results to ZSSR within only one single gradient descent up-

date.

5.3. Evaluations on Various Blur Kernels

In this section, we demonstrate the results on various blur

kernel conditions. We assume four scenarios: severe alias-

ing, isotropic Gaussian, unisotropic Gaussian, and isotropic

Gaussisan followed by bicubic subsampling. Precisely, the

methods are

• gd0.2: isotropic Gaussian blur kernel with width λ =
0.2 followed by direct subsampling.

• gd2.0: isotropic Gaussian blur kernel with width λ =
2.0 followed by direct subsampling.

• gdani: anisotropic Gaussian with widths λ1 = 4.0 and

λ2 = 1.0 with Θ = −0.5 from Eq. 3, followed by

direct subsampling.

• gb1.3: isotropic Gaussian blur kernel with width λ =
1.3 followed by bicubic subsampling.
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Supervised Unsupervised

Dataset Bicubic CARN [2] RCAN [45] ZSSR [34] MZSR (1) MZSR (10)

Set5 33.64/0.9293 37.76/0.9590 38.18/0.9604 36.93/0.9554 36.77/0.9549 37.25/0.9567

BSD100 29.55/0.8427 32.09/0.8978 32.38/0.9018 31.43/0.8901 31.33/0.8910 31.64/0.8928

Urban100 26.87/0.8398 31.92/0.9256 33.30/0.9376 29.34/0.8941 30.01/0.9054 30.41/0.9092

Table 1: The average PSNR/SSIM results on “bicubic” downsampling scenario with ×2 on benchmarks. The numbers in

parenthesis in our methods stand for the number of gradient updates.

Supervised Unsupervised

Kernel Dataset Bicubic RCAN [45] IKC [11] ZSSR [34] MZSR (1) MZSR (10)

gd0.2

Set5 30.24/0.8976 28.40/0.8618 29.09/0.8786 34.29/0.9373 33.14/0.9277 33.74/0.9301

BSD100 27.45/0.7992 25.16/0.7602 26.23/0.7808 29.35/0.8465 28.74/0.8389 29.03/0.8415

Urban100 24.70/0.7958 21.68/0.7323 23.66/0.7806 28.13/0.8788 26.24/0.8394 26.60/0.8439

gd2.0

Set5 28.73/0.8449 29.15/0.8601 29.05/0.8896 34.90/0.9397 35.20/0.9398 36.05/0.9439

BSD100 26.51/0.7157 26.89/0.7394 27.46/0.8156 30.57/0.8712 30.58/0.8627 31.09/0.8739

Urban100 23.70/0.7109 24.14/0.7384 25.17/0.8169 27.86/0.8582 28.23/0.8657 29.19/0.8838

gdani

Set5 28.15/0.8265 28.42/0.8379 28.74/0.8565 33.96/0.9307 34.05/0.9271 34.78/0.9323

BSD100 26.00/0.6891 26.22/0.7062 26.44/0.7310 29.72/0.8479 28.82/0.8013 29.54/0.8297

Urban100 23.13/0.6796 23.35/0.6982 23.62/0.7239 27.03/0.8335 26.51/0.8126 27.34/0.8369

gb1.3

Set5 30.54/0.8773 31.54/0.8992 33.88/0.9357 35.24/0.9434 35.18/0.9430 36.64/0.9498

BSD100 27.49/0.7546 28.27/0.7904 30.95/0.8860 30.74/0.8743 29.02/0.8544 31.25/0.8818

Urban100 24.74/0.7527 25.65/0.7946 29.47/0.8956 28.30/0.8693 28.27/0.8771 29.83/0.8965

Table 2: The average PSNR/SSIM results on various kernels with ×2 on benchmarks. The numbers in parenthesis in our

methods stand for the number of gradient updates. The best results are highlighted in red and the second best are in blue.

The results are shown in Table 2. As the SotA method

RCAN [45] is trained on “bicubic” scenario, it shows in-

ferior performance due to domain discrepancy and lack of

flexibility.

For the case of aliasing (gd0.2), RCAN results are even

worse than a simple bicubic interpolation method due to in-

consistency between training and test condition. IKC1 [11]

is trained for bicubic subsampling, it never sees aliased im-

ages during training. Thus, it also shows a severe perfor-

mance drop. On the other hand, ZSSR2 [34] shows quite

improved results due to its flexibility. However, it requires

thousands of gradient updates, which require a large amount

of time. Also, it starts from a random initial point and thus

does not guarantee the same results for multiple tests. As

shown in Table 2, our methods are comparable to others

even with one single gradient update. Interestingly, our

MZSR never sees the kernel with λ = 0.2, but the CNN

quickly adapts to specific image condition. In other words,

compared to other methods, our method is more robust to

extrapolation.

For other cases, which are isotropic and anisotropic

1We reimplemented the code and retrained with DIV2K dataset.
2We used the official code but without gradual configuration.

Gaussian, our methods outperform others with a signifi-

cantly large gap. In these cases, other methods have per-

formance gains compared to bicubic interpolation, but the

differences are minor. Similar tendencies of aliasing cases

can be found in all other scenarios. Interestingly, RCAN

[45] shows slightly improved results compared to bicubic

interpolation. Also, as the condition between training and

test is consistent, IKC [11] shows comparable results. Our

methods also show remarkable performance in the case of

bicubic subsampling condition. From the extensive experi-

mental results, we believe that our MZSR is a fast, flexible,

and accurate method for super-resolution.

5.4. Real Image Super­Resolution

To show the effectiveness of the proposed MZSR, we

also conduct experiments on real images. Since there are

no ground-truth images for real images, we only present the

visual comparisons. Due to the page limit, all the compar-

isons on real images are presented in supplementary mate-

rial.
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Figure 3: The average PSNR on Set5 vs. number of gradient update iterations. “Meta-Learning” is trained without initializa-
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(blind model) and bicubic downsampling model, respectively. All methods except ours are optimized using ADAM [16]

while our method is optimized with gradient descent.

HR

(a) Initial point gd0.2
12.09 dB

(b) After one update g
d

0.2

30.27 dB

(c) Initial point gd2.0
16.82 dB

(d) After one update g
d

2.0

33.08 dB

(e) Initial point gd0.2
26.49 dB

(f) After one update g
d

0.2

26.87 dB

(g) Initial point gd2.0
27.43 dB

(h) After one update g
d

2.0

27.47 dB

Figure 4: Visualization of the initial point and after one iteration of each method. Upper row images are from MZSR, and

lower ones are from the pre-trained network on “bicubic” degradation.

6. Discussion

6.1. Number of Gradient Updates

For ablation investigation, we train several models with

different configurations. We assess the average PSNR re-

sults on Set5, which are shown in Figure 3. Interestingly,

the initial point of our method shows the worst performance,

but in one iteration, our method quickly adapts to the im-

age condition and shows the best performance among the

compared methods. Other methods sometimes show a slow

increase in performance. In other words, they are not as

flexible as ours in adapting to new image conditions.

We visualized the result at the initial point and after one

gradient update in Figure 4. As shown, the result of the

initial point of MZSR is weird, but within one iteration,

it is highly improved. On the other hand, the result of a

pre-trained network is more natural than MZSR, but its im-

provement after one gradient update is minor. Furthermore,

it is shown that the performance of our method increases

as the gradient descent update progresses, despite the fact

that it is trained for maximum performance after five gra-

dient steps. This result suggests that with more gradient

update iterations, we might expect more of the performance

improvements.
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PSNR (dB) gd0.2 gd2.0 gdani

Multi-scale (10) 33.33(−0.41) 35.67(−0.97) 33.95(−0.83)

Table 3: Average PSNR results of multi-scale model on

Set5 with ×2. The number in parenthesis is PSNR loss

compared to the single-scale model.

(a) Bicubic interpolation (b) MZSR (Ours)

Figure 5: MZSR results on scaling factor ×4 with blur ker-

nel gd2.0. Despite the size of LR son image is 30×20, MZSR

learns internal information. (Green boxes at the lower left

corner of MZSR image are Ison and ILR)

6.2. Multi­scale Models

We additionally trained a multi-scale model with the

scaling factors s ∈ [2.0, 4.0]. The results on×2 show worse

results comparable to single-scale model as shown in Ta-

ble 3. With multiple scaling factors, the task distribution

p(T ) becomes more complex, in which the meta-learner

struggles to capture such regions that are suitable for fast

adaptation.

Moreover, when meta-testing larger scaling factors, the

size of Ison becomes too small to provide enough informa-

tion to the CNN. Hence, the CNN rarely utilizes informa-

tion from a very small LR son image. Importantly, as our

CNN learns internal information of CNN, such images with

multi-scale recurrent patterns show plausible results even

with large scaling factors, as shown in Figure 5.

6.3. Complexity

We evaluate the overall model and time complexities for

several comparisons, and the results are shown in Table 4.

We measure time on the environment of NVIDIA Titan

XP GPU. Two fully-supervised feedforward networks for

“bicubic” degradation, CARN and RCAN, require a large

number of parameters. Even though CARN is proposed

as a lightweight network which requires one-tenth of pa-

Methods Parameters Time (sec)

CARN [2] 1,592 K 0.47

RCAN [45] 15,445 K 1.72

ZSSR [34] 225 K 142.72

MZSR (1) 225 K 0.13

MZSR (10) 225 K 0.36

Table 4: Comparisons of the number of parameters and time

complexity for super-resolution of 256×256 LR image with

scaling factor ×2.

rameters compared to RCAN, it still requires much more

parameters compared to unsupervised networks. However,

the time consumptions for both model are quite comparable,

because only feedforward computation is involved.

On the other hand, ZSSR, which is totally unsupervised,

requires much less number of parameters due to the image-

specific CNN. However, it requires thousands of forward

and backward pass to get a super-resolved image, i.e., a

large amount of time exceeding a practical extent. Our

method MZSR with a single gradient update requires the

shortest time among comparisons. Also, even with 10 iter-

ations of the backward pass, our method still shows compa-

rable time consumption against CARN.

7. Conclusion

In this paper, we have presented a fast, flexible, and

lightweight self-supervised super-resolution method by ex-

ploiting both external and internal samples. Specifically, we

adopt an optimization-based meta-learning method jointly

with transfer learning to seek an initial point that is sen-

sitive to different conditions of blur kernels. Therefore,

our method can quickly adapt to specific image conditions

within a few gradient updates. From our extensive exper-

iments, we show that our MZSR outperforms other meth-

ods, including ZSSR, which requires thousands of gradient

descent iterations. Furthermore, we demonstrate the effec-

tiveness of our method with complexity evaluation. Yet,

there are lots of parts that can be improved from our work

such as network architecture, learning strategies, and multi-

scale model, and we leave these as future works. Our code

is publicly available at https://www.github.com/

JWSoh/MZSR.
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