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Abstract

Despite the remarkable progresses made in deep-

learning based depth map super-resolution (DSR), how to

tackle real-world degradation in low-resolution (LR) depth

maps remains a major challenge. Existing DSR model is

generally trained and tested on synthetic dataset, which is

very different from what would get from a real depth sensor.

In this paper, we argue that DSR models trained under this

setting are restrictive and not effective in dealing with real-

world DSR tasks. We make two contributions in tackling

real-world degradation of different depth sensors. First, we

propose to classify the generation of LR depth maps into

two types: non-linear downsampling with noise and inter-

val downsampling, for which DSR models are learned cor-

respondingly. Second, we propose a new framework for

real-world DSR, which consists of four modules : 1) An

iterative residual learning module with deep supervision to

learn effective high-frequency components of depth maps

in a coarse-to-fine manner; 2) A channel attention strategy

to enhance channels with abundant high-frequency com-

ponents; 3) A multi-stage fusion module to effectively re-

exploit the results in the coarse-to-fine process; and 4) A

depth refinement module to improve the depth map by TGV

regularization and input loss. Extensive experiments on

benchmarking datasets demonstrate the superiority of our

method over current state-of-the-art DSR methods.

1. Introduction

Depth maps have been widely embraced as a new tech-

nology by providing complementary information in many

applications [12][23][41][42][43][44]. However, depth sen-
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Figure 1. Results of different methods using different types of LR

depth maps as input (×4). (a) input, (b) SRFBN [22], (c) DVS [40]

and (d) Ours. The first row shows the results under non-linear (bi-

cubic) down-sampling degradation, while the second row shows

the results under interval down-sampling degradation.

sors, such as Microsoft Kinect and Lidar, can only provide

depth maps of limited resolutions. Hence, depth map super-

resolution (DSR) draws more and more attentions. As a

fundamental low-level vision problem, DSR aims at super-

resolving a high-resolution (HR) depth map from a low-

resolution (LR) depth map input [9][18][33][39][40][46],

which is a challenging task due to the great information

loss in the down-sampling process. Besides, depth maps

generally contain less textures and more sharp boundaries,

and are usually degraded by noise due to the imprecise con-

sumer depth cameras, which further increase the challenge.

Recently, significant progress has been made in super-

resolution by using convolutional neural networks (CNNs)

in regression ways, both in color image super-resolution

(CSR) and DSR [6][9][16][18][22][24][46]. These meth-

ods usually apply bi-cubic downsampling as the degrada-

tion model and add noise to simulate the generation of LR

images. Besides, [10] and [49] propose to estimate the

down-sampling kernels to estimate the degradation of LR
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images. However, bi-cubic degradation model and degrada-

tion kernels are insufficient to describe the process of depth

map down-sampling.

Depth map exists in different types in real world, which

can be classified into two types: (1). depth maps with

smoothed surfaces, such as depth maps generated by stereo

matching [1][28][31] and depth maps captured by low-cost

sensors (Kinect); (2). depth maps with sharp boundaries,

such as depth maps captured by Lidar. For (1), depth maps

are always smooth, thus, non-linear downsampling degra-

dation model and down-sampling kernels can be used to

simulate the generation of LR depth maps. For (2), depth

maps captured by Lidar are generated from 3D points of real

world. They are always with sharp boundaries. Imaging the

projection process of 3D points onto a 2D image, when two

3D points are projected to a same 2D coordinates in a depth

map, it should reserve the 3D point with smaller depth z due

to occlusion. Interpolation (bi-cubic or degradation kernel)

is not suitable in such process, hence we argue that bi-cubic

degradation and blur kernels are not reasonable, and we pro-

pose to use interval down-sampling degradation to describe

the down-sampling progress. Fig. 1 (a) illustrates the two

types of LR depth maps, where interval down-sampling and

non-linear degradation have quite different manifestations.

In this paper, to effectively tackle the two types of

depth maps (non-linear degradation with noise and interval

down-sampling degradation), we adopt an iterative residual

learning framework with deep supervision (coarse-to-fine),

which guarantees that each sub-module can gradually ob-

tain the high-frequency components of depth maps step by

step. Besides, in each sub-module, channel attention strat-

egy is utilized to enhance the channels with more effective

information, thus, obtains better results. What’s more, the

inter-media results obtained by different sub-modules are

fused to provide effective information to tackle different

types of depth maps. Total Generalized Variation (TGV)

term and input loss are utilized to further refine the ob-

tained HR depth maps. Any support of HR color infor-

mation is not needed and weight sharing between different

sub-modules can effective reduce the number of parame-

ters, which makes our proposed approach much more flex-

ible. The proposed framework is trained in an end-to-end

manner, and experiments on various benchmarking datasets

demonstrate the superiority of our method over state-of-the-

art super-resolution methods, including both DSR and CSR

methods.

Our main contributions are summarized as:

• To tackle real world degradation in low-resolution

depth maps, we propose to classify the generation

of LR depth maps into two types: non-linear down-

sampling with noise and interval downsampling, for

which DSR models are learned correspondingly.

• We propose an iterative residual learning based frame-

work for real world DSR, where channel attention,

multi-stage fusion, weight sharing and depth refine-

ment are employed to learn HR depth maps in a coarse-

to-fine manner.

• Extensive experiments on various benchmarking

datasets demonstrate the superiority of our proposed

framework over current state-of-the-art DSR methods.

2. Related work

In this section, we briefly review related work in both

color image super-resolution (CSR) and depth map super-

resolution (DSR).

2.1. DCNN based CSR

In CSR, bi-cubic down-sampling degradation are com-

monly used down-sampling methods to generate LR color

images. Methods, such as [6][20][45][34], have proven that

CNN outperformed conventional learning approaches with

large margin. These methods regard super-resolution as an

LR color image to HR color image regression problem, and

generate an end-to-end mapping between LR and HR im-

age. Besides, residual architectures, such as [3][16][32][51]

are commonly used in solving CSR. HR color images are

generated by learning the residuals between LR images

and groundtruth. Recently, back projection strategy, such

as [5][13][22][24], are proved to have well performance

by representing the LR and HR feature residuals in more

efficient ways. Meanwhile, attention based model is also

utilized in CSR. To obtain more discriminative representa-

tions, [4][50] propose to use attention strategy to enhance

feature representation. Kernel based methods [10] [49] [52]

are also utilized in CSR, which estimate a blur kernel to

simulate the generation of LR color images. Besides, [26]

exploits pixel to pixel transfer techonolgy in solving the

problem of CSR.

2.2. Depth Map Superresolution

2.2.1 Conventional Learning based DSR

To solve the problem of DSR, prior information is used

as useful guidance to generate HR depth maps from LR

depth maps. Using prior information learned from addi-

tional depth map datasets, [15][27][48] propose to use

MRF method to solve the problem of DSR. Meanwhile,

other learning based methods, such as sparse representation

and dictionary learning, are utilized in DSR. [8] proposes to

exploit sparse coding strategy and Total Generalized Varia-

tion (TGV) to effectively generate HR depth edges, which

are used as useful guidance in the generation of HR depth

maps. Besides, using HR color image as effective guid-

ance, [7] utilizes an anisotropic diffusion tensor to solve the

problem of DSR. What’s more, a bimodal co-sparse analy-

sis model generated from color images are utilized in [19]
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to generate an HR depth map from an LR depth map. Addi-

tionally, [30] proposes to compute local tangent planes us-

ing HR color images in the process of DSR, since it can

provide auxiliary information. Besides, the consistency in-

formation between color images and depth maps is used to

generate HR depth maps in [25].

2.2.2 DCNN based DSR

The success of DCNN in high-level computer vision tasks

has been extended to DSR. Using SRCNN [6] as the map-

ping unit, [39] proposes an effective DCNN based learn-

ing method to generate a HR depth map from an LR depth

map. Meanwhile, [33] proposed a ATGV-Net which com-

bines DCNN with total variations to generate HR depth

maps. The total variations are expressed by layers with

fixed parameters. Besides, a novel DCNN based method

is proposed in [9], which combines a DCNN with a non-

local variational method. Note that corresponding HR color

images and up-sampled LR depth maps are regarded as in-

put to feed into the network in [9][33][39]. What’s more, a

multi-scale fusion strategy is utilized in [18], which uses a

multi-scale guided convolutional network for DSR with and

without the guidance of the color images. Besides, [40] pro-

poses a novel framework by using view synthesis to explain

the generation of LR depth maps. [46] used rendering of

3D surfaces to measure the quality of obtained depth maps.

It demonstrates that a simple visual appearance based loss

yields significantly improved 3D shapes.

However, most of conventional learning based DSR and

DCNN based DSR exploit bi-cubic degradation to gener-

ate LR depth maps, which are not enough to describe the

generation of LR depth maps in real world.

3. Our approach

3.1. Overview

To tackle with different types of LR depth maps in DSR,

including non-linear degradation with noise and interval

down-sampling degradation, we adopt an iterative residual

learning framework. As shown in Fig. 2, it contains sev-

eral sub-modules, and the input of each sub-module is the

output the previous sub-module, which guarantees that the

residual between the input and groundtruth can be learned

step by step. Besides, as the network goes deeper, strong

supervision from groundtruth is added in each sub-module

to release gradient vanishing. In the last sub-module, high-

frequency components obtained by previous sub-modules

are fused as input, which re-exploits cause-to-fine high-

level information to further improve the performance of the

proposed framework. In each sub-module, residual learning

strategy is used, and it contains two indispensable blocks:

feature extraction block and channel attention based recon-

struction block. Besides, except the loss between output

and groundtruth, if it is well recovered, the down-sampled

version of obtained depth maps should be same with the

input DL, hence, we use such input loss to constrain the

framework. What’s more, to maintain sharp boundaries, to-

tal generalized variation (TGV) term is utilized to further

refine the obtained HR depth maps.

3.2. Network structure

As shown in Fig. 2, our network can be unfolded to

K sub-modules. We utilize a residual connection for sub-

modules and calculate loss between each sub-module’s out-

put and groundtruth to alleviate gradient vanishing. The loss

function is defined in Sec. 3.5. Each sub-module contains

two parts: feature extraction block (FE) and channel atten-

tion based reconstruction block (CAR).

For the k-th (k ∈ [1,K]) sub-module, its input and out-

put is defined as Ik and O
k, respectively. The operation of

learning high-frequency component Ok

CAR is given by:

O
k

FE = FFE

(

I
k
)

O
k

CAR = FCAR

(

O
k

FE

)

,
(1)

where FFE(·) and FCAR(·) are feature extraction and chan-

nel attention based reconstruction operation, respectively.

The output of k-th sub-module O
k is given by:

O
k = O

k

CAR + I
k. (2)

Combing Eq. (1) and (2), the operation of k-th sub-

module can be summarized as:

O
k = Sk

(

I
k
)

, (3)

where Sk(·) denotes the operation of k-th sub-module. The

output of k-th sub-module is taken as the input of the next

sub-module, i.e. Ok = I
k+1.

For the last sub-module K, the input is the concatenation

of O
1 to O

K−1, dubbed Fconcat

(

O
1, · · ·,OK−1

)

, where

Fconcat(·) is the concatenation operation, and the operation

of last sub-module K is given by:

O
k = Sk

(

Fconcat

(

O
1, · · ·,OK−1

))

. (4)

For the first sub-module, the input is the up-sampled ver-

sion of LR depth maps D
L (↑ λ times, where λ is the up-

sampling factor). We use bi-cubic up-sample kernel for sim-

plicity.

3.3. Feature extraction block

A convolutional layer is dubbed as Conv (m,n), where

m is the kernel size and n is the number of kernels. In

feature extraction block, it contains l convolutional layers

with ReLU as activation function. We set m = 3, n = 64
and l = 8 in this paper.
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Figure 2. The figure shows the pipeline of the proposed framework. We show the residual of the output between each sub-module and

groundtruth. From blue to red means value from 0 to ∞.

Figure 3. The figure shows the pipeline of channel attention.

3.4. Channel attention based reconstruction

Inspired by [24], we proposed to use attention strategy in

DSR, and the proposed channel attention based reconstruc-

tion block provides imperative information to learn high-

frequency components of depth maps. It contains two steps:

channel attention and reconstruction.

Channel attention: Each sub-module FCAR(·) takes the

output of feature extraction block O
k
FE as input. For Ok

FE

with tensor size of (c× h× w), FCAR(·) first converts Ok
FE

to three components P
(

O
k
FE

)

, Q
(

O
k
FE

)

and V
(

O
k
FE

)

via

encoding operations P (·), Q (·) and V (·), respectively.

The tensor size of P
(

O
k
FE

)

, Q
(

O
k
FE

)

and V
(

O
k
FE

)

is

(c× h× w), (c× hw) and (hw × c), respectively.

P(·) is data pre-processing and it contains α convolu-

tional layer. Q(·) and V(·) are convolution with reshape

operations. The number of convolutional layers are β and

γ, respectively. Q(·) and V(·) are defined for learning

channel attention parameters. Q
(

O
k
FE

)

and V
(

O
k
FE

)

are

dot-producted (elementwise multiplication), and fed to a

softmax operation to regress channel attention weights θ.

P
(

O
k
FE

)

and θ are dot-producted to obtain the output of

channel attention O
k

CAR. Fig. 3 shows the pipeline of the

proposed channel attention. The above operations can be

defined as following:

θ = softmax
(

Q
(

O
k

FE

)

⊙ V
(

O
k

FE

)T
)

,

O
k

CAR = θ ⊙ P
(

O
k

FE

)

.
(5)

The channel attention can be understood as non-local

convolution process, which aims to enhance the channels

with much more effective information. The non-local op-

eration in the proposed channel attention based reconstruc-

tion can obtain effective attention weights for each chan-

nel by exploiting all the position information of the feature

maps. Q
(

O
k
FE

)

⊙ V
(

O
k
FE

)T

can be regarded as a form of

covariance of the input data. It provides an effective score

to describe the tendency of two feature maps at different

channels.

Reconstruction: Based on O
k

CAR, we can obtain its

reconstruction result Ok by using η convolutional layers.

In this paper, we set α = β = γ = η = 1, and

use Conv (3, 64) in channel attention stage and Conv (3, 1)
in reconstruction stage. The effectiveness of the pro-

posed channel attention based reconstruction block will be

demonstrated in the experiment section.

3.5. Loss Function

We use the L1 loss to optimize the proposed framework.

3.5.1 Sub-module loss

For the k-th sub-module, the loss is defined as:

Lk = ||Ok −D
G||

1
, (6)

where Lk is the loss between the output of k-th sub-module

and the groundtruth.
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Our framework can obtain K HR depth maps with LR

depth maps as input. Generally, one will pay more atten-

tion on the output of the last sub-module, hence different

weights are set for losses at different sub-modules, and the

loss weight increases as the network goes deeper. The final

loss for sub-modules is defined as following:

Ls =
K
∑

k=1

k

N
Lk, (7)

where N =
∑K

k=1
k = K(K + 1)/2.

3.5.2 Input loss and TGV term

The HR depth map is well recovered, the down-sampled

version (same degradation model) of the finally obtained

depth maps should be the same as the original LR input

D
L. Hence, we use the input loss to further constrain the

obtained HR depth map, which is defined as:

Linput = ||Fdown

(

O
K
)

−D
L||

1
, (8)

where Fdown(·) is the degradation model, with output tensor

of the same size as DL.

Besides, depth maps usually contain sharp boundaries,

hence, the total generalized variation TGV
(

O
K
)

is ex-

ploited to refine the final obtained HR depth maps.

The final loss of our proposed framework is defined as:

L = Ls + ξ1Linput + ξ2TGV(O
K), (9)

where ξ1 and ξ2 are weights for input loss and total variation

term. We set ξ1 = 0.1 and ξ2 = 0.05 in this paper.

3.6. Implementation

We employed Adam [21] as the optimizer to optimize the

parameters, and the learning rate varies from 0.1 to 0.0001
by multiplying 0.1 for every 25 epochs. Adjustable gradi-

ent clipping strategy [20] is used. The proposed framework

converged after 100 epochs.

4. Experiment

In this section, we evaluate the performance our method

against different state-of-the-art (SOTA) methods on diverse

publicly available datasets using different types of LR depth

maps as input, including non-linear degradation with noise

and interval down-sampling degradation.

4.1. Datasets

We used 6 different datasets in this paper: (1). Middle-

bury dataset [14][35][36][37], which provides high-quality

depth maps for complex real-world scenes; (2). The

Laserscan dataset [27], which is captured by laser sen-

sors and provides accurate depth measurements; (3). Sin-

tel dataset [2], ICL dataset [11] and synthetic New Tsukuba

input 1s 2s

3s 4s 5s

5s+tgv final

non attention

attention

(a) (b)

Figure 4. (a) shows the results of average RMSE of the proposed

framework with different number of sub-modules. 1s to 5s are

number of sub-modules from 1 to 5 respectively. 5s+ tgv means

5 sub-modules with TGV refinement and final means 5 sub-

modules with input loss and TGV refinement. (b) shows the aver-

age RMSE results of attention and non-attention respectively.

dataset [29], which are synthesized datasets and contain lots

of depth details and high quality depth maps; (4). SUN

RGBD dataset [38], which contains images captured with

different consumer-level RGBD cameras, such as Microsoft

Kinect, and provides low-quality depth maps for complex

real-world scenes; and (5). Apolloscape dataset [17][47],

which contains high-quality depth maps captured by Lidar

in real traffic scenes.

Training dataset: To effectively training the proposed

framework, we follow DVS [40] to prepare our training

dataset. 115 depth maps are collected from the Middle-

bury dataset [14][36][37], the Sintel dataset [2] and the syn-

thetic New Tsukuba dataset [29]. Using these depth maps,

the input LR depth maps D
L are obtained by D

L =↓λ
D

G, where λ is the down-sampling factor. To simulate

the generation of real LR depth maps, non-linear degrada-

tion with noise and interval down-sampling degradation are

used. Besides, bi-cubic downsampling is commonly used

in DSR [39][40][48], hence, we use bi-cubic degradation to

evaluate the performance of non-linear degradation.

Evaluation: To effectively evaluate the performance

of our proposed framework, depth maps (Motorcycle,

Playtable, Flowers and Jadeplant) from Middlebury

2014 dataset [35] are chosen as the testing depth maps. Be-

sides, to further evaluate the generalization performance of

the proposed framework, we also evaluate depth maps cho-

sen from ICL dataset [11] (Plant and Room), Laser-Scan

dataset [27] (ls21, ls30 and ls42), SUN RGBD dataset [38]

(0100 and 0400) and Apolloscape dataset [17][47](road01,

road05, road10 and road17). Note that models are trained

with depth maps from Middlebury dataset, sintel dataset and

synthetic New Tsukuba dataset.

Baseline Methods: Our propose method is compared

with the following three categories of methods: (1).

Standard interpolation approaches: Bi-cubic and Near-

est Neighbour (Nearest); (2). State-of-the-art CNN

based DSR approaches: EG [48], MS-Net [18], DVS et
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×4 P lant Room 0100 0400 Motorcycle P laytable F lowers Jadeplant ls21 ls30 ls42
Bi-cubic 1.2340 1.5448 3.0922 1.3039 4.9046 2.9967 4.6655 4.1660 2.8441 2.6544 5.4735

Nearest 1.4102 1.7558 3.4003 1.5271 5.6645 3.4443 5.4189 4.8238 3.3306 3.1039 6.3581

ABPN [24] 1.1588 1.2605 2.8357 1.1167 4.6597 2.7904 4.4472 4.0635 2.5961 2.5063 5.1318

SRFBN [22] 1.1039 1.3029 2.8254 1.0808 4.3934 2.5663 4.0677 3.6864 2.4516 2.2565 4.9645

SAN [4] 1.2297 1.3813 2.9248 1.1987 4.4938 2.6558 4.2388 3.9288 2.5027 2.3519 5.0777

IKC [10] 1.2048 1.3240 2.9011 1.1324 4.4215 2.6078 4.1846 3.8026 2.4865 2.3028 4.9981

EG [48] 1.4253 1.7250 3.3987 1.5038 5.4685 3.3261 5.2067 4.6162 3.2764 6.0576 6.4288

MS-Net [18] 1.1952 1.5116 3.1302 3.6576 5.0119 2.9683 4.7982 4.2426 2.7356 2.6127 5.8623

DVS [40] 0.8494 1.1682 2.8914 0.9601 3.2553 2.0168 3.0409 2.9407 1.8188 1.8079 3.2001

AIRws(ours) 0.7300 1.0952 2.8028 0.7531 3.1025 1.9024 2.9520 2.8004 1.6252 1.5930 2.9528

AIR(ours) 0.7278 1.0639 2.7800 0.7611 3.0968 1.8626 2.8873 2.7740 1.6048 1.5668 2.9332

Table 1. Comparison of RMSE results under up-sampling factor of ×4 (interval down-sampling degradation). AIRws means results

obtained by weights sharing among different sub-modules and AIR means non weights sharing. The best result is highlighted and the

second best is underlined.

×4 P lant Room 0100 0400 Motorcycle P laytable F lowers Jadeplant ls21 ls30 ls42
Bi-cubic 0.7300 0.9613 2.2028 0.8189 3.0434 1.8108 2.9092 2.6154 1.6278 1.5801 3.3351

Nearest 0.8841 1.1528 2.3911 1.0324 3.7067 2.2046 3.5688 3.1795 2.1406 2.0200 4.2166

ABPN [24] 0.6561 0.8476 1.5899 0.8005 2.0048 1.2335 1.7998 1.7204 1.3236 1.1814 1.7379

SRFBN [22] 0.7068 0.8727 1.4063 0.7885 1.8300 1.1699 1.6949 1.6797 1.2107 1.1710 1.6175

SAN [4] 0.6651 0.7238 1.7139 0.7588 2.0501 1.4477 1.9034 1.8425 1.4803 1.3692 1.8232

Meta-SR [16] 0.6467 0.8026 1.5319 0.8005 1.9938 1.2517 1.7581 1.7065 1.3016 1.1645 1.7158

IKC [10] 0.6815 0.7523 1.4652 0.7630 2.0812 1.3420 1.8351 1.8092 1.3521 1.2021 1.7956

EG [48] 0.7740 0.9972 2.1337 0.8874 2.9183 1.6414 2.6186 2.5365 1.7593 1.6318 3.3086

MS-Net [18] 0.4675 0.6453 1.0524 0.5760 2.0554 1.3518 1.9564 1.9218 1.4324 1.4087 1.7569

DVS [40] 0.4565 0.5903 0.9826 0.5387 1.9718 1.2588 1.8532 1.8458 1.3800 1.3424 1.7212

AIRws(ours) 0.4101 0.5196 0.9692 0.4996 1.7923 1.1655 1.7324 1.6781 1.1456 1.0788 1.4875

AIR(ours) 0.4004 0.5351 0.9588 0.4986 1.7764 1.1622 1.7005 1.6765 1.1393 1.0633 1.4877

Table 2. Comparison of the RMSE results under up-sampling factor of ×4 (bi-cubic degradation with noise). AIRws means weights

sharing among different sub-modules and AIR means non weights sharing. The best result is highlighted and the second best is underlined.

Figure 5. The feature maps of high-frequency component before

and after channel attention. Purple and green areas shows the fea-

ture maps before and after channel attention block respectively.

From blue to red means value from to 0 to ∞. Best viewed on

screen.

al. [40]; (3). State-of-the-art CNN based color image

super-resolution approaches: SRFBN [22], Meta-SR [16],

SAN [4], ABPN [24] and IKC [10]. Besides, all the meth-

ods are retrained with the same depth maps.

Error metrics: Root Mean Squared Error (RMSE) is

used to evaluate the performance obtained by our method

and other state-of-the-art methods. Specifically, RMSE =

×4 road01 road05 road10 road17
Bi-cubic 18.5311 33.6010 20.5177 19.1795

Nearest 21.2863 38.6045 23.4327 22.1853

ABPN [24] 16.9054 28.4027 18.2029 17.3051

SRFBN [22] 15.9080 27.9377 17.1010 16.0810

SAN [4] 16.1057 29.2059 18.5678 17.2564

IKC [10] 16.0557 28.3142 17.5034 16.4750

EG [48] 27.7714 49.5420 31.0133 34.4618

MS-Net [18] 19.0029 31.8750 21.1448 20.1059

DVS [40] 16.0110 26.4482 17.0613 16.0500

AIRws(ours) 15.6305 25.9282 16.6152 15.8423

AIR(ours) 15.6239 25.9109 16.5906 15.7792

Table 3. Comparison of RMSE results under up-sampling fac-

tor of ×4 (interval down-sampling degradation). AIRws means

weights sharing among different sub-modules and AIR means

non weights sharing. The best result is highlighted and the sec-

ond best is underlined.
√

∑N

i=1
(Oi −DG

i
)2/N , where O and DG are the obtained

HR depth map and ground truth respectively, N is the num-

ber of pixels in the HR depth map.

4.2. Ablation analysis

Fig. 4 (a) demonstrates the average RMSE results of the

proposed method with different number of sub-modules on

Middlebury dataset (Cones, Teddy, Tsukuba and V enus)

under up-sampling factor of ×4 (bi-cubic degradation). It

can be observed that the RMSE loss drops with the num-

ber of sub-module increases, which proves that deeper net-

work with more sub-modules can obtain the residual com-

ponent effectively, from which high-frequency component
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(a) Bi-cubic (b) Nearest (c) SAN (d) ABPN (e) SRFBN (f) EG (g) MS-Net (h) DVS (i) Ours

Figure 6. Comparison on Middlebury 2014 dataset [35] (Jadeplant) under up-upsampling factor of ×4 (bi-cubic degradation with noise).

(a) Bi-cubic, (b) Nearest Neighbor, (c) SAN [4], (d) ABPN [24], (e) SRFBN [22], (f) EG [48], (g) MS-Net [18], (h) DVS [40] and (i) Our

results. The second row shows the residual between the results and groundtruth. From blue to red means 0 to ∞. Best viewed on screen.

(a) Bi-cubic (b) Nearest (c) SAN (d)ABPN (e) SRFBN (f) EG (g) MS-Net (h) DVS (i) Ours
Figure 7. Comparison on depth map captured by Kinect [38] (0100) under up-upsampling factor of ×4 (interval down-sampling degrada-

tion) on depth map captured by Kinect. (a) Bi-cubic, (b) Nearest Neighbor, (c) SAN [4], (d) ABPN [24], (e) SRFBN [22], (f) EG [48], (g)

MS-Net [18], (h) DVS [40] and (i) Our results. The second row shows the residual between the results and groundtruth. From blue to red

means 0 to ∞. Best viewed on screen.

can be recovered step by step. Generally, any number of

sub-module can be used in the proposed framework, and as

shown in Fig. 4 (a), as the number of sub-module increas-

ing, the whole framework becomes convergent. Hence, we

set the number of sub-module K = 5 in this paper. What’s

more, HR depth maps obtained by input loss and TGV
refinement get smaller RMSE, which demonstrates that

these operations can recover more useful high-frequency in-

formation and further refine the obtained HR depth maps.

Therefore, we can conclude that the all the components uti-

lized in our framework contribute positively toward the final

success of our approach.

4.3. Attention analysis

Fig. 5 shows the feature maps obtained before and after

channel attention strategy. The top 18 feature maps with

high-frequency component are shown in Fig. 5, purple and

green areas demonstrate the feature maps before and after

channel attention, respectively. And from blue to red means

value from 0 to ∞. According to Fig. 5, we can see that ef-

fective high-frequency component, such as edges, are effi-

ciently enhanced by channel attention, which can be utilized

to reconstruct better HR depth maps. Fig. 4 (b) shows the

average RMSE results of the proposed method with and

with channel attention strategy. Middlebury dataset (cones,

teddy, tsukuba and venus) under up-sampling factor of

×4 are used as input. It is obviously to find that smaller

RMSE can be obtained using channel attention strategy,

which proves that the proposed channel attention strategy

works positively in super-resolving DSR problem.

According to Fig. 5 and Fig. 4 (b), we can conclude

that channel attention can enhance the channels with use-

ful high-frequency information and improve the ability of

each sub-module to obtain the residual, thus, recover high

quality depth maps effectively.

4.4. Interval degradation

We first evaluate the performance of the proposed ap-

proach on depth maps with interval down-sampling degra-

dation. The quantitative results in terms of RMSE of up-

sampling factors of ×4 are reported in Table. 1 and Ta-

ble. 3. As indicated in Table. 1 and Table. 3, AIRws and

AIR demonstrate the results of the proposed method with

and without weights-sharing among different sub-modules,

respectively. It can be observed that the performances of

state-of-the-art on interval down-sampled LR depth maps

are not good enough (both CSR and DSR methods), and

the proposed method outperforms other DCNN based meth-

ods with smaller RMSE. Besides, Table. 3 shows the re-

sults on dense depth maps captured by Lidar on real traf-

fic scenes, which proves that the proposed framework can

tackle with real LR Lidar data effectively. Besides, we can

see that results of weights-sharing outperforms other state-

of-the-art methods, and results of non-weight-sharing ob-

tain better RMSE results because it contains more param-

eters, thus have stronger non-linear mapping abilities to re-

cover better HR depth maps.

Qualitative results are illustrated in Fig. 7 (0100 ex-

tracted from SUN RGBD dataset [38]) and Fig. 8 (road01
from Apolloscape dataset [17][47]) for an up-sampling fac-

tor ×4 under interval down-sampling degradation. As

shown in Fig. 7 and Fig. 8, 0100 and road01 are depth

maps captured by Kinect and Lidar, which represent the

depth maps captured in indoor and outdoor scenes of real
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(a) Bi-cubic (b) Nearest (c) SAN (d)ABPN (e) SRFBN (f) EG (g) MS-Net (h) DVS (i) Ours
Figure 8. Comparison on Lidar data (road01 of Apolloscape dataset [17][47]) in real traffic scenes under up-upsampling factor of ×4

(interval down-sampling degradation). (a) Bi-cubic, (b) Nearest Neighbor, (c) SAN [4], (d) ABPN [24], (e) SRFBN [22], (f) EG [48], (g)

MS-Net [18], (h) DVS [40] and (i) Our results. The second row shows the residual between the results and groundtruth. From blue to red

means 0 to ∞. Best viewed on screen.

world. Obviously, the proposed method produces more

visually appealing results with smaller residual compared

with groundtruth. Boundaries generated by the proposed

method are sharper and more accurate, which demonstrate

that the structure and high-frequency component of high-

resolution depth maps can be well recovered.

4.5. Bicubic degradation

In this section, we evaluate the proposed framework on

noisy depth maps. Following [33][40], depth dependent

Gaussian noise is added to LR depth maps DLR in the form

θ(d) = N (0, δ/d), where δ = 651 and d denotes the depth

value of each pixel in D
L. Besides, to evaluate the ability of

noise handling, we also add noise on depth maps captured

by Kinect (0100 and 0400 from SUN RGBD dataset [38]).

Table 2 reports the quantitative results in terms of

RMSE for the up-sampling factor of ×4 with bi-cubic

degradation and noise as input, from which, we can clearly

see that the proposed method outperforms others, even on

raw depth maps with additional added noise (0100 and

0400). The proposed method can well eliminate the influ-

ence of noise, thus depth maps with smaller RMSE can be

obtained.

Fig. 6 illustrates the qualitative results of the proposed

method (Jadeplant from Middlebury 2014 dataset [35])

under up-sampling factor ×4 with bi-cubic degradation and

noise as input. As shown in Fig. 6, Jadeplant contains

complex textures and luxuriant details, which is hard to re-

cover a HR depth map from a LR depth map. Obviously, the

proposed method produces more visually appealing results

with sharper and more accurate boundaries, which proves

that the proposed method can effectively recover the struc-

ture of HR depth maps.

4.6. Generalization ability

As discussed in section 4.4 and section 4.5, depth maps

of ICL dataset [11], SUN RGBD dataset [38], Laserscan

dataset [27] and Apolloscape dataset [17][47] are not in-

cluded in the training data. Based on Table. 1, Table. 2,

Table. 3, Fig. 7 and Fig. 8, we can find that the proposed

approach outperforms other methods on all testing depth

maps with smaller RMSE results under non-linear (bi-

cubic) degradation with noise and interval down-sampling

degradation, which demonstrates the excellent generaliza-

tion ability of the proposed framework on both synthesis

and raw depth maps.

4.7. Weight sharing

As reported in Table. 1, Table. 2 and Table. 3, the

proposed framework with weight-sharing among different

sub-modules outperforms state-of-the-art methods, while it

gets similar results with non-weight-sharing strategy. The

last sub-module combines the outputs of previous sub-

modules as input, hence, we use weight-sharing in other

sub-modules except the last one. And the parameters of

weight-sharing are only 40% of parameters of non-weight-

sharing (K = 5), which makes the proposed framework

lightweight and more flexible in comparison with other

state-of-the-art methods.

5. Conclusions

In this paper, we have proposed an effective depth map

super-resolution method that accounts for real-world degra-

dation processes of different types of physical depth sen-

sors. We have envisaged the employment of our new

method to super-resolve depth maps captured by commod-

ity depth sensors such as Microsoft Kinect and Lidar. We

analyze two different LR depth map simulation schemes:

non-linear downsampling and interval downsampling. Fur-

thermore, we have devised a channel attention based itera-

tive residual learning framework to address real world depth

map super-resolution. Extensive experiments across differ-

ent benchmarks have demonstrated the superiority of our

proposed approach over the state-of-the-art.
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