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Abstract

Exploring the intrinsic interconnections between the

knowledge encoded in PRe-trained Deep Neural Networks

(PR-DNNs) of heterogeneous tasks sheds light on their mu-

tual transferability, and consequently enables knowledge

transfer from one task to another so as to reduce the training

effort of the latter. In this paper, we propose the DEeP At-

tribution gRAph (DEPARA) to investigate the transferability

of knowledge learned from PR-DNNs. In DEPARA, nodes

correspond to the inputs and are represented by their vec-

torized attribution maps with regards to the outputs of the

PR-DNN. Edges denote the relatedness between inputs and

are measured by the similarity of their features extracted

from the PR-DNN. The knowledge transferability of two PR-

DNNs is measured by the similarity of their corresponding

DEPARAs. We apply DEPARA to two important yet under-

studied problems in transfer learning: pre-trained model

selection and layer selection. Extensive experiments are

conducted to demonstrate the effectiveness and superior-

ity of the proposed method in solving both these problems.

Code, data and models reproducing the results in this paper

are available at https://github.com/zju-vipa/

DEPARA.

1. Introduction

Driven by massive labeled data [5] and the developing

advanced deep models [9], the field of artificial intelligence

has made remarkable progress in recent years. However, in

real-world scenarios we often encounter the dilemma where

limited labeled training data are available for addressing our

problems at hand. The common practice in this situation is

transferring the pre-trained models, which are open sourced

by dedicated researchers or industries, to solve our own

problems. Yet, along this road comes up another problem:

faced with countless PR-DNNs of various layers, which

model and which layer of it should be transferred to ben-

∗Equal contribution.

efit the target task most? Currently the model selection is

usually done blindly by adopting the ImageNet pre-trained

models [21, 15] and the layer selection is usually conducted

heuristically. However, the ImageNet pre-trained models

will not always produce satisfactory performances for all

the tasks, especially when the task is significantly different

from the one defined by ImageNet [2, 28]. Likewise, the

heuristically selected layer may also perform sub-optimally,

as the optimal layer for being transferred depends on vari-

ous factors such as task relatedness and the amount of the

target data.

To tackle the aforementioned problems, we need to ex-

plore and reveal the underlying transferability among deep

knowledge from PR-DNNs of heterogeneous tasks. Re-

cently, Zamir et al. [33] did the pioneering work towards

this direction. They proposed a fully computational ap-

proach, termed taskonomy, to measure the task transfer-

ability. However, there are three unneglected limitations in

taskonomy tremendously hampering its real-world applica-

tion. The first is its prohibitively expensive cost in compu-

tation. For computing the pairwise relatedness for a given

task dictionary, the computation cost will grow quadrati-

cally with the number of the tasks, which will be exces-

sively expensive when the number of tasks becomes large.

The second limitation is that it adopts transfer learning to

model the relatedness between tasks, which still requires a

moderately large amount of labeled data to train the transfer

models. Lastly, taskonomy only consider the transferability

across different models or tasks while ignoring the transfer-

ability across different layers, which we argue is also im-

portant for a transfer to be successful.

The main obstacle standing in the way of measuring

the transferability learned from different PR-DNNs is the

“black-box” nature of deep models. As the knowledge (e.g.,

features) learned from different PR-DNNs is unexplainable

and actually in different embedding space, it is very tricky

to compute the transferability directly. In this paper, to de-

rive the transferability of knowledge encoded in PR-DNNs,

we propose the DEeP Attribution gRAph (DEPARA) to rep-

resent the knowledge learned in PR-DNNs. In DEPARA,
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nodes correspond to the inputs and are represented by their

vectorized attribution maps [25, 3, 24] with regards to the

outputs of the PR-DNN. Edges denote the relatedness be-

tween inputs and are measured by their similarity in the em-

bedding space of the PR-DNN (as seen in Figure 1). As the

DEPARAs of different PR-DNNs are defined on the same

set of inputs, they are actually in the same embedding space

and thus the knowledge transferability of two PR-DNNs is

directly measured by the similarity of their corresponding

DEPARAs. More similar DEPARAs indicate that more cor-

related knowledge is learned from different PR-DNNs, thus

the knowledge transferability to each other is higher.

The proposed method requires no human annotations,

imposes no constraints on architectures and is several-

magnitude times faster than taskonomy. Meanwhile, be-

yond model selection, it can also be easily adopted to the

layer selection problem in transfer learning. Extensive ex-

periments conducted demonstrate the effectiveness of DE-

PARA for quantifying the deep knowledge transferability.

To sum up, we made the following three main con-

tributions: (1) We introduce the challenging, important

yet under-studied deep knowledge transferability problem

where only PR-DNNs are provided without any labeled

data. (2) We propose the DEPARA, an efficient and effec-

tive method for deriving the transferability of the knowl-

edge learned from PR-DNNs. To our knowledge, this is the

first work to address the pre-trained model selection and the

layer selection problems simultaneously. (3) Extensive ex-

periments are conducted to demonstrate the effectiveness of

DEPARA in solving both the model and the layer selection

problems in transfer learning.

2. Related Work

2.1. Knowledge Transferability

Transferring PR-DNNs to new tasks is an active research

topic. Razavian et al. [20] demonstrated that features ex-

tracted from deep neural networks could be used as generic

image representations to tackle the diverse range of visual

tasks. Yosinski et al. [31] investigated the transferability

of deep features extracted from every layer of deep neural

networks. Azizpour et al. [2] studied several factors affect-

ing the transferability of deep features. Recently, the effects

of pre-training datasets for transfer learning are also stud-

ied [12, 8, 11, 28]. Albeit many heuristics are found by

these works, none of them explicitly quantify the transfer-

ability among different tasks and layers to provide a princi-

pled way for model and layer selection. Zamir et al. [33]

proposed a fully computational approach to measure the

task relatedness. Dwivedi and Roig [6] adopted representa-

tion similarity analysis for efficient task taxonomy. Song et

al. [26] utilized the similarity of attribution maps to quan-

tify the model transferability. However, the layer selection

problem is still omitted in these works. In this paper, we

propose DEPARA to address both the model and the layer

selection problems in transfer learning.

2.2. Deep Model Attribution

Attribution refers to assigning importance scores to the

inputs for a specified output. Existing attribution meth-

ods can be mainly divided into two groups, including

perturbation- [34, 35, 36] and gradient-based methods [25,

3, 24, 27, 23, 1]. Perturbation-based methods compute the

attribution of an input feature by making perturbations, e.g.,

removing, masking or altering, to individual inputs or neu-

rons and observe the impact on later neurons. In contrast,

backpropagation-based methods calculate the attributions

for all input features in one or few forward and backward

pass through the network, which renders them more effi-

cient. In this paper, we directly adopt existing attribution

methods for transferability. Devising more advanced attri-

bution method for our problem is left to future work.

2.3. Deep Knowledge Representation

How to represent the knowledge encoded in PR-DNNs is

vital for knowledge reusing. Hinton et al. [10] viewed the

soft predictions of a trained teacher model as the knowl-

edge for knowledge distillation. Following their work,

some other forms of knowledge are proposed to facilitate

student learning. For example, Romero et al. [22] pro-

posed to adopt intermediate representations learned by the

teacher as hints to improve the final performance of the

student. Zagoruyko and Komodakis [32] utilized the at-

tention of the teacher model to guide the learning of the

student. Recently, the relation of input instances learned

from the trained deep models is also found a kind of useful

knowledge [4, 16, 14, 29, 17]. For example, Chen et al. [4]

utilized cross sample similarities to accelerate deep metric

learning. Park et al. [16] leveraged mutual relations of data

examples for knowledge distillation. In this paper, we pro-

pose DEPARA to represent the deep knowledge, which en-

ables us easily quantify the knowledge transferability.

3. Deep Knowledge Transferability

3.1. Notation and Problem Setup

Assume there are N PR-DNNs available, denoted by

M = {m1,m2, ...,mN}. Each model in M can be viewed

to be composed of a number of nonlinear functions: mi :=
f i
Li

◦ · · · ◦ (f i
2 ◦ f i

1), where f denotes the basic nonlin-

ear function, Li denotes the number of nonlinear functions

in mi, and the symbol ◦ denotes the function composi-

tion operation. Note that no constraints are imposed on

the architectures of models in M , so the number of non-

linear functions in these PR-DNNs may be different. The

task handled by mi is denoted by ti, and all the tasks in-
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volved in M are collectively denoted by the task dictionary

T , T = {t1, t2, ..., tN}. For task ti, we adopt Pi(x, y) to

denote the joint data distribution of the corresponding data

domain. In this paper, the term deep knowledge refers to

the embedding space learned by PR-DNNs. The embedding

space produced after f i
k in mi is denoted by F i

k. Given M

without any labeled data, we investigate the transferability,

which is defined in the next section, between different Fs

for facilitating task selection and layer selection in transfer

learning.

3.2. Definition of Transferability

An intuitive description of transferability is “how well

a deep ConvNet representation can be transferred to the

target task” [31, 2]. Here we introduce a more rigorous

definition to facilitate addressing the model and the layer

selection problems in transfer learning. Assume there is a

deep knowledge pool denoted by Ω = {F (1),F (2), ...}1.

Note that in this pool any two knowledge items F (i) and

F (j) may be produced from different models or layers. The

transferability of F (i) to task tj , denoted by TF(i)→tj
, is de-

fined as the ascending rank of F (i) among Ω for solving the

target task. Here the rank is computed based on the stan-

dard empirical risk. Formally, let D be the target data ran-

domly sampled from Pj , i.e., D = {(x1, y1), (x2, y2), ...}.

F (i)(D) denotes the embeddings of D in F (i), then

TF(i)→tj
(Ω, D) := ascending rank(RPj

(hF(i)(D)); Ω).
(1)

hF(i)(D) is the hypothesis produced on F (i)(D). R denotes

the standard expected risk:

RPj
(h) := Ex,y∼Pj

[ℓj(h(x), y)], (2)

where ℓj is the objective function of task tj . Detailed de-

scriptions of ascending rank is provided in the supple-

mentary material. If the transferability of every F in Ω to

task tj is known, we can directly select the F which ranks

first for solving the target task tj . Note that when every

F in Ω comes from a different PR-DNN, the definition of

transferability can be used for model selection. If all Fs in

Ω come from different layers of the same PR-DNN, the def-

inition can be used for layer selection in transfer learning.

The transferability defined above is intuitively straight-

forward. However, the computation is expensive for mea-

suring the transferability between every pair of tasks in the

task dictionary. What is worse, it needs labeled data for all

the tasks involved. To bypass these problems, We propose

DEPARA to approximate the defined transferability without

any labeled data. We argue two factors must be considered

simultaneously for computing the transferability:

1Note that we use F(i) to denote the i-th item in Ω, and F i to denote

the knowledge produced by mi.

1. Inclusiveness: for a transfer to be successful, F pro-

duced by the PR-DNN of the source task should be

inclusive of sufficient information for solving the tar-

get task. Inclusiveness is an intuitively straightforward

and fundamental ingredient of transferability. How-

ever, since F is highly nonlinear and unexplainable, it

is very challenging to directly measure the inclusive-

ness of F for solving the target task.

2. Accessibility: F should be sufficiently abstracted and

easily re-purposed to the target task so that the target

task can be well solved with limited human supervi-

sion. Without the requirement of accessibility, F pro-

duced by shallower layers will be more likely of higher

transferability as F from shallower layers tend to be

of higher inclusiveness than that from higher layers.

Measuring the accessibility of F is also a challenging

problem due to the black-box nature of deep models.

3.3. Deep Attribution Graph

An illustrative diagram of the DEPARA is depicted in

Figure 1. Formally, assume there is a set of randomly sam-

pled unlabeled data points Dp = {x1, x2, ..., xn}. Dp is

called probe data in this paper. The probe data are first

fed to the PR-DNN to obtain their features, i.e., the outputs

of the specific layer, after a forward pass. Then the attri-

bution maps are produced by a backward pass. The back-

propagation rule depends on the adopted attribution meth-

ods [1]. In DEPARA, each node corresponds to a data point

in probe data and its feature is the vectorized attribution map

of this data point. The edge between two nodes denotes the

relatedness of the two data points and are measured by their

similarity in the embedding space of the PR-DNN. For F i
k

from mi, a DEPARA symbolized by Gi
k(Dp) = (Vi

k, E
i
k)

can be obtained, where V and E denote the nodes and the

edges, respectively. Gi
k(Dp) indicates the DEPARA is de-

fined on Dp. More detailed descriptions of the nodes and

the edges are provided as follows.

3.3.1 Nodes

The nodes in Gi
k are collectively denoted by Vi

k =
{vik,1, v

i
k,2, ..., v

i
k,n}, where vik,m is the attribution of xm

with regards to F i
k(xm). In this paper, we adopt Gradi-

ent*Input [24] for attribution. Gradient*Input refers to a

first-order Taylor approximation of how the output would

change if the input was set to zero, which implies the im-

portance of the input w.r.t the output. Mathematically, for

the i-th element x(i) in x, its attribution score v(i) with re-

spect to F is computed as:

v(i) := x(i) ∗
∂‖F(x)‖2

∂x(i)
, (3)

where ‖ · ‖ denotes ℓ2 norm.
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Probe Data Forward

Similarity
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Generating Attribution Maps

Deep Attribution Graph

PR-DNN

Figure 1. The illustrative diagram of the procedure for constructing the deep attribution graph.

The nodes are devised for measuring the inclusiveness of

F . The intuition is that for F i(xm) and Fj(xm) of the same

input xm but produced by two PR-DNNs mi and mj , if they

produce more similar attributions (i.e., they focus on the

more similar regions on the input), they are more likely to

contain correlated information and be transformed to each

other. Otherwise, they focus on different input dimensions

so that being less correlated to each other.

3.3.2 Edges

The edges in Gi
k are collectively denoted by E i

k =
{eik,11, e

i
k,12, ..., e

i
k,nn}, where eik,pq is the edge of the p-th

node and the q-th node and denotes the similarity of corre-

sponding inputs in the embedding space F i
k. Formally,

eik,pq := cosine sim(F i
k(xp),F

i
k(xq)). (4)

We adopt cosine similarity to define the edge because it is

insensitive to the length of F(·). Note that we assume there

exists an edge between every pair of nodes in Vi
k, so that Gi

k

is actually a fully connected graph. Furthermore, as Gi
k is

devised to be undirected, eik,pq = eik,qp for any p and q.

The edges are devised to uncover the accessibility of

transferability. If the embedding space F i
k produced after

f i
k of mi can be easily transferred (i.e., of high accessibility)

to another embedding space Fj
l produced after f

j
l of mj ,

F i
k and Fj

l should be similar in topological structure. Oth-

erwise, it will consume a large amount of labeled data and

training time to rebuild the embedding space Fj
l on top of

F i
k, which violates the definition of high accessibility. The

edges in G can be viewed as a representation of the topo-

logical structure in the embedding space. Two embedding

spaces of the similar topological structure should produce

similar edges in G for the same set of probe data.

3.4. Task Transferability

Here we adopt DEPARAs to quantify the transferabil-

ity among different tasks in T , a goal similar to taskon-

omy [33]. However, in our problem only PR-DNNs of cor-

responding tasks are provided. We assume no labeled data

are available for any task.

Before constructing DEPARAs for the tasks in T , two is-

sues must be resolved. The first is that for task ti, which em-

bedding space F (i.e., layer) of mi should we choose to best

represent the knowledge needed for task ti. In this paper,

we viewed all PR-DNNs in an encoder-decoder architec-

ture. The encoder extracts compact features and the decoder

makes predictions using the features from the decoder. We

adopt the embedding space learned by the encoder, denoted

as F i
e, to represent the knowledge of ti. Thus the knowledge

pool can be denoted by Ω = {F1
e ,F

2
e , ...,F

N
e }. The second

is that we need a set of probe data which are shared among

all the tasks for probing the topological structure of F and

constructing the DEPARAs. In this paper, the probe data are

randomly sampled. More details about how the probe data

are obtained are provided in the experiment section and the

supplementary material.

According to Eq. (3) and (4), for each task t in T , a DE-

PARA Ge is obtained on the probe data Dp. The transfer-

ability of F i
e to task tj is approximated by the descending

rank of F i
e in Ω based on the graph similarity:

TFi
e→tj (Ω, Dp) ≈ descending rank(s(Gi

e,G
j
e); Ω, Dp),

(5)

where s(·) is the similarity function. s(Gi
e,G

j
e) =

s(Vi
e,V

j
e ) + λs(E i

e, E
j
e ). For nodes, we adopt the cosine

similarity function: s(Vi
e,V

j
e ) =

1
n

∑n

k=1

vi
e,k·v

j

e,k

‖vi
e,k

‖·‖vj

e,k
‖

. For

edges, the similarity is defined to be Spearman correlation

coefficient: s(E i
e, E

j
e ) = 1 −

6
∑

d2
k

n3−n
, where dk is the differ-

ence between the ranks of the k-th elements of E i
e and Ej

e .

λ is the trade-off hyper-parameter. Detailed descriptions of

descending rank are given in the supplementary material.

3.5. Layer Transferability

As aforementioned, deep models are usually composed

of many nonlinear functions or layers. For a PR-DNN

mi = f i
Li

◦ · · · ◦ (f i
2 ◦ f i

1), actually Li different em-

bedding spaces can be obtained, which can be denoted by
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Ωi = {F i
1,F

i
2, ...,F

i
Li
}. However, in task transferability

described above as well as taskonomy [33], only one em-

bedding space F i
e from the encoder is considered and all

other learned knowledge is ignored. It may lead to subop-

timal performance as reusing F i
e can not guarantee to be

optimal for different target tasks.

Here we consider the layer selection problem which is

also important in transfer learning: for a source task ti,

which layer of its PR-DNN should be choosed to benefit

the target task tj most? The layer selection problem can

be viewed as selecting F i from Ωi which benefits the tar-

get task tj most. We adopt Fj
e produced by the encoder of

mj to denote the knowledge essential to task tj , as Fj
e is

usually the most compact. The layer selection is conducted

by

k = argmax
k

s(Gi
k,G

j
e). (6)

With k computed from Eq. (6), we adopt F i
k for transferring

the PR-DNN mi to the target task tj .

4. Experiments

We first validate the proposed method for task transfer-

ability, then show its effectiveness for layer selection.

4.1. Task Transferability on Taskonomy Models

4.1.1 Pre-trained Models

Here we adopt PR-DNNs released by taskonomy [33] to

validate the effectiveness of DEPARA for task transferabil-

ity. Twenty PR-DNNs are selected in this experiment, each

of which is for a single-image task. As all taskonomy mod-

els naturally follow an encoder-decoder architecture, we di-

rectly use the output of the encoder for constructing the DE-

PARA. Taskonomy measures the task transferability by the

performance of transfer learning. We adopt its results to

evaluate our method.

4.1.2 Probe Data

Following [26], we construct the probe data by randomly

sampling 1, 000 images in the validation set of taskonomy

data. We try using more data, but no obvious improvement

in performance is observed in our experiment. Additionally,

we also adopt Indoor Scene [19] and COCO [13], which are

very different from taskonomy data, as the probe data for

computing the transferability of taskonomy tasks. For more

details, please refer to the supplementary material.

4.1.3 Evaluation Metric

We adopt two evaluation metrics, P@K and R@K, which

are widely used in information retrieval, to compare the

task transferability constructed from our method with that

from taskonomy. Each target task is viewed as a query, and

its top-5 source tasks which produce the best transferring

performances in taskonomy are regarded as relevant to the

query. We adopt the Precision-Recall (PR) curve to demon-

strate the overall performance of the proposed method.

4.1.4 Visualization Results across Tasks

Here we visualize some nodes in V and edges in E of DE-

PARA to provide a better perceptual understanding of the

proposed method. Results are shown in Figure 2. It can be

seen that some tasks produce similar attribution maps and

instance relationships, while some others not. For example,

Rgb2depth produces highly similar attribution maps and re-

lational graph with Rgb2mist. However, their results are

dissimilar with that of Autoencoder. Actually, Rgb2depth

and Rgb2mist are proved in taskonomy of high transferabil-

ity to each other, while their transferability to Autoencoder

is relatively low. Furthermore, taskonomy adopts agglom-

erative clustering to categorize the tasks into four groups:

3D, 2D, geometric, and semantic tasks. From Figure 2, we

can see that our method tends to produce relatively similar

nodes and edges within each group of tasks. Although some

exceptions may occur, the results become more credible as

we aggregate results of more nodes and edges.

4.1.5 Task Transferability Results

In this section, we evaluate the proposed method by the

task transferability obtained from taskonomy. To better un-

derstand the results, we introduce a baseline using Ran-

dom Ranking, which indicates the task transferability is

randomly determined. To make ablation study of the pro-

posed method, we introduce three variants of our method.

DEPARA-V: only the nodes in DEPARA are utilized for

task transferability; DEPARA-E : only the edges are used;

DEPARA: the full version of our method using both nodes

and edges, where λ is tuned by randomly sampling a small

subset of all the PR-DNNs. Additionally, we also intro-

duce another competitor: Representation Similarity Analy-

sis (RSA) proposed by [7]. Here we adopt PR curve to com-

pare the performance of all the aforementioned methods. To

further demonstrate the similarity between the task transfer-

ability obtained by our method and that from taskonomy,

the task similarity tree produced by DEPARA is also de-

picted in Figure 3. The task similarity tree from taskonomy

and some other more results are provided in the supplemen-

tary material. From these results, we can conclude that: (1)

The proposed method produces task transferability highly

similar to that of taskonomy. As our method is much more

efficient2 than taskonomy, it is an effectual substitute for

taskonomy when human annotations are unavailable or the

2The proposed method takes about 20 GPU hours on one Quadro

P5000 card for pre-trained taskonomy models while taskonomy takes thou-

sands of GPU hours on the cloud for 20 tasks.
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Figure 2. Visualization of some examples of the nodes and the edges of DEPARA. For the nodes, we visualize three examples from

taskonomy data, Indoor Scene and COCO, respectively. For the edges, we randomly sample 30 nodes from taskonomy data and show their

interconnections. Note that some weak connections are omitted for better visualization. Here we select two 3D tasks, three 2D tasks, two

geometric tasks, and two semantic tasks for visualization. The task similarity tree derived from taskonomy is depicted above task names.
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Figure 3. PR curve and the task similarity tree obtained on probe

data randomly sampled from taskonomy data.

task library T is large in size. (2) DEPARA outperforms

RSA [7], which demonstrates its superiority over the state-

of-the-art. Actually, DEPARA-E and RSA yield compara-

ble performance, as they are quite similar in method. (3)

DEPARA outperforms DEPARA-V and DEPARA-E by a

considerable margin, which implies the essentiality of both

the nodes and the edges in DEPARA for measuring the

knowledge transferability. For more results and interesting

observations, please refer to the supplementary material.

To investigate the effects of different types of probe

data, we also evaluate the proposed method with probe data

from Indoor Scene and COCO. The task-wise P@K and

R@K results, as well as the average results of the pro-

posed method and some competitors, are provided in Ta-

ble 1. It can be seen that although the data from Indoor

Scene and COCO are quite different from taskonomy data,

the proposed method still produces the task transferability

of which the task-wise topological structure is highly sim-

ilar to the one obtained by taskonomy. It indicates that the

proposed method is insensitive to the randomly sampled

probe data. Furthermore, the proposed method consistently

outperforms DEPARA-V , DEPARA-E and RSA on all the

datasets, which again verifies the effectiveness and superi-

ority of the proposed method.

4.2. Layer Selection in Transfer Learning

4.2.1 Experimental Settings

We adopt Syn2Real-C [18] dataset to validate the effective-

ness of DEPARA for layer selection. In Syn2Real-C, the

source and the target data are from different domains, but of

the same 12 object categories. The source domain contains

152, 397 synthetic images and the target domain consists of

55, 388 images cropped from the Microsoft COCO dataset.

In this paper, we use the data from the source and the target

domain to train two domain-specific models. The ultimate

goal is improving the performance on the target domain.

We consider two pre-trained models for being transferred

to the target: (1) the model trained on the source domain

(DNN-Source); (2) the deep model pre-trained on ImageNet

(DNN-ImageNet). We adopt the architecture of VGG-19

for both models. DNN-Source is trained from scratch. The

initial learning rate is set to be 0.01 and decayed to 0.001
after 50 epochs. We set weight decay to be 0.0005 and mo-

mentum to be 0.9. DNN-Source is trained for 80 epochs

totally. For DNN-ImageNet, we directly adopt the pre-

trained weights provided by TORCHVISION. To compute

the transferability of DNN-Source and DNN-ImageNet to

classification task on the target domain, we also trained the

DNN-Target from scratch on the target data alone.

4.2.2 Performance of DEPARA for Layer Selection

Here we show that DEPARA can pick out the layers which

yield near the highest performance when transferred to the
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Table 1. Task-wise similarity between the result from the DEPARA and that from taskonomy. The average results are shown on the right.

For a better comparison, average results of DEPARA-V , DEPARA-E and RSA are also provided.
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y P@1 1.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.88 0.71 0.82 0.82

P@5 1.0 0.6 1.0 0.4 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.8 0.8 0.8 0.8 0.4 0.8 0.75 0.68 0.75 0.73

R@5 1.0 0.6 1.0 0.4 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.8 0.8 0.8 0.8 0.4 0.8 0.75 0.68 0.75 0.73

In
d
o
o
rS

cn P@1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.00 0.82 1.00 1.00

P@5 1.0 0.6 1.0 0.6 0.6 1.0 1.0 1.0 0.8 0.8 0.8 0.8 0.8 1.0 0.8 0.6 0.6 0.81 0.72 0.78 0.79

R@5 1.0 0.6 1.0 0.6 0.6 1.0 1.0 1.0 0.8 0.8 0.8 0.8 0.8 1.0 0.8 0.6 0.6 0.81 0.72 0.78 0.79

C
O

C
O P@1 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.82 0.82 0.76 0.82

P@5 1.0 0.6 0.8 0.8 0.6 1.0 1.0 0.8 0.8 1.0 1.0 0.8 1.0 0.8 0.4 0.6 0.6 0.80 0.78 0.65 0.69

R@5 1.0 0.6 0.8 0.8 0.6 1.0 1.0 0.8 0.8 1.0 1.0 0.8 1.0 0.8 0.4 0.6 0.6 0.80 0.78 0.65 0.69

target task. To this end, we exhaustively conduct the trans-

fer learning for every layer in the pre-trained VGG-19. For

each layer transferred to the target task, the current layer

and all the layers previous to this layer are fixed and all the

layers following the current layer are fine-tuned. As trans-

fer learning usually happens when the target data is scarce,

we conduct the experiments in two modes: (1) 0.1-T: 10%
of the target data are used; (2) 0.01-T: only 1% of the tar-

get data are used. In both modes, the pre-trained VGG-

19 is further trained for 50 epochs on target data. To se-

lect the transferred layer, we simply set λ to be 1 for both

DNN-ImageNet and DNN-Source in 0.1-T mode. In 0.01-T

mode, as the target data becomes scarcer, the accessibility

becomes more important in transferability. Thus we set λ to

be 10 in 0.01-T mode.

Results are listed in Table 2. We can see that: (1) The

proposed method can successfully pick out the layers which

yield the highest performance when transferred to the tar-

get. For example, for DNN-ImageNet in 0.01-T mode,

#15, #16, #17 and #18 layers yield the highest trans-

ferring performance among all the layers. Our method suc-

cessfully picks out these layers as they produce the highest

DEPARA similarity. Actually, the average Spearman’s cor-

relation between the similarity and the accuracy is 0.913 for

all the results shown in Table 2, implying that the similar-

ity of DEPARA is a good indicator for layer selection in

transfer learning. (2) For different trained models, the lay-

ers which yield the highest transferring performance differ.

Furthermore, as the size of the target data varies, the best-

performing layer may also change. For example, in 0.1-T

mode for DNN-Source, #3, #5 and #7 layers yield the

highest performance. However, in 0.01-T mode the highest-

performing layers are #11, #12 and #13. By appropri-

ately setting λ, the proposed method can still pick out the

best layers for different amounts of target data. (3) Surpris-

ingly, DNN-ImageNet yields much higher transferring per-

formance than DNN-Source. The similarity of E in some

layers of DNN-ImageNet is significantly higher than that
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Figure 4. The test accuracy curves of different layers during the

fine-tuning period in 0.01-T mode.

of DNN-Source, which implies that the embedding space

learned on ImageNet is more suitable for solving the target

task. The DNN-Source, albeit trained on the same task as

the target, learned quite a different embedding space due to

the large difference between the source and the target do-

main. Thus it produces relatively worse performance when

transferred to the target data. (4) Trained from scratch on

the target data, VGG-19 achieves 61.74% and 32.27% ac-

curacy in 0.1-T and 0.01-T mode, respectively. Compar-

ing these figures to the results in Table 2, we can see that

some layers produce worse performance when transferred

to the target data than they are trained from scratch. This

phenomenon is known as negative transfer [30]. Negative

transfer occurs especially when the PR-DNN is trained on

a quite different domain (like DNN-Source) or for an un-

related task to the target task. For DNN-Source, most lay-

ers produce negative transfer when transferred to the tar-

get data. All these results imply the importance of both the

model selection and the layer selection in transfer learning.

Some other interesting observations from Table 2 are pro-

vided in the supplementary material.

In Figure 4, we depict the test accuracy curves of dif-

ferent layers when transferred to the target data. The re-

sults further demonstrate the layers selected by the proposed

method are more suitable for being transferred to the tar-
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Table 2. Layer-wise transferring performance of DNN-ImageNet and DNN-Source transferred to the target domain. SIM denotes the

similarity between the DEPARAs of the specific layer and the target task. ACC denotes the accuracy on target test data. For space

consideration, we omit the 2-nd, 4-th, 6-th and 8-th layers of VGG-19. Darker color indicates higher values.

CONVOLUTIONAL LAYERS FC LAYERS

#1 #3 #5 #7 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18

D
N

N
-I

m
ag

eN
et

SIM

V 0.45 0.45 0.48 0.52 0.55 0.55 0.55 0.55 0.54 0.54 0.54 0.54 0.53 0.52

E 0.16 0.01 0.20 0.03 0.35 0.32 0.14 0.15 0.50 0.43 0.77 0.78 0.81 0.81

λ = 1 0.61 0.46 0.68 0.55 0.90 0.87 0.69 0.70 1.04 0.97 1.31 1.32 1.34 1.33

λ = 10 2.05 0.55 2.48 0.82 4.05 3.75 1.95 2.05 5.54 4.84 8.24 8.34 8.63 8.62

ACC (%)
0.1-T 60.74 63.78 69.23 69.77 73.36 74.89 76.86 77.11 79.50 76.89 81.15 80.81 80.71 79.21

0.01-T 34.03 37.71 40.16 44.67 53.06 58.11 59.35 63.08 67.24 68.50 71.72 72.85 74.33 73.54

D
N

N
-S

o
u
rc

e

SIM

V 0.60 0.60 0.55 0.53 0.50 0.50 0.50 0.49 0.48 0.48 0.48 0.47 0.46 0.45

E 0.06 0.11 0.15 0.17 0.18 0.18 0.19 0.19 0.20 0.17 0.15 0.11 0.10 0.09

λ = 1 0.66 0.71 0.70 0.70 0.68 0.68 0.69 0.67 0.68 0.65 0.63 0.58 0.56 0.54

λ = 10 1.20 1.70 2.05 2.23 2.30 2.30 2.40 2.39 2.48 2.18 1.98 1.57 1.46 1.35

ACC (%)
0.1-T 49.84 61.92 62.72 62.28 59.81 60.24 58.49 54.03 54.21 52.67 52.15 48.54 41.50 36.10

0.01-T 30.58 35.49 37.20 39.47 39.64 39.63 40.07 40.11 40.37 39.04 36.88 34.13 31.40 29.13

get than other layers. From Figure 4, it can be seen that

the selected layers converge much faster than other layers

when re-trained for the target task. For example, for the

PR-DNN DNN-ImageNet, the proposed method picks out

the #15, #16, #17, #18 layers for being transferred. The

final accuracy also tends to be higher than that of other lay-

ers. Furthermore, layers in DNN-ImageNet produce more

smooth test accuracy curves than DNN-Source, which indi-

cates that the embedding space learned by DNN-ImageNet

are more easily adapted to the target task. The embedding

space learned by DNN-Source, however, is quite different

in topological structure (as indicated by the low similarity

of edges in DEPARA) from the one learned on the target

data. When adapted to the target data, it will be largely

destroyed and rebuilt for the target, thus the test accuracy

curves oscillate and the transferring performance is poor.

5. Discussions and Conclusions

In this paper, we propose the DEPARA to investigate

the transferability of knowledge encoded in PR-DNNs. We

adopt DEPARA to handle two important yet under-studied

problems in transfer learning: measuring the transferability

across tasks for pre-trained model selection, and measuring

the transferability across layers for layer selection. Exten-

sive experiments are conducted to show its effectiveness in

solving both these two problems in transfer learning. We

summarize the advantages and the limitations of the pro-

posed method. We hope it could make the contributions of

this paper clearer and inspire us to study further.

Advantages. (1) Unlike taskonomy [33] which requires

a large amount of labeled data, the proposed method quan-

tifies the task transferability with only pre-trained models

available. (2) As no training is involved, the computation

cost of the proposed method grows nearly linearly with the

size of the task dictionary, which is significantly more ef-

ficient than taskonomy. (3) The proposed method solves

not only the model selection, but also the layer selection

problem. As far as we know, we are the first to simultane-

ously tackle the model and the layer selection problems in

transfer learning. (4) The proposed method imposes no con-

straints on the model architectures and are insensitive to the

probe data. (5) This paper introduces a rigorous definition

of knowledge transferability. Meanwhile, two vital ingre-

dients, including inclusiveness and accessibility, are intro-

duced for better approximating the transferability.

Limitations. (1) This paper directly adopts the exist-

ing attribution method, Gradient*Input [24], for quantifying

transferability. However, different attribution methods may

affect the proposed method in some way. In future work,

more studies are needed to investigate the effects of differ-

ent attribution methods on the proposed method. (2) The

optimal trade-off between the nodes and the edges of DE-

PARA for knowledge transferability is proved to be depen-

dent on the probe data and the amount of the target data. In

this paper, the trade-off hyper-parameter λ is set via cross-

validation or empirically. However, more study is needed to

uncover the relationship between λ and its influencing fac-

tors. (3) The probe data used in the proposed method is ran-

domly sampled. Although different probe data are shown

to produces effective task-wise topological structures, they

still affect the final performance to some degree. More in-

vestigation is needed to study how to construct the probe

data for better measuring the transferability across different

tasks, models and layers.

Acknowledgments. This work is supported by

National Key Research and Development Program

(2018AAA0101503), National Natural Science Foundation

of China (61976186), Key Research and Development

Program of Zhejiang Province (2018C01004), and the

Major Scientific Research Project of Zhejiang Lab (No.

2019KD0AC01).

3929



References

[1] Marco B Ancona, Enea Ceolini, Cengiz Oztireli, and

Markus H. Gross. Towards better understanding of gradient-

based attribution methods for deep neural networks. In ICLR,

2018.

[2] Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan,

Atsuto Maki, and Stefan Carlsson. Factors of transferability

for a generic convnet representation. TPAMI, 38:1790–1802,

2014.

[3] Sebastian Bach, Alexander Binder, Grégoire Montavon,
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