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Abstract

We introduce HybridPose, a novel 6D object pose esti-

mation approach. HybridPose utilizes a hybrid intermedi-

ate representation to express different geometric informa-

tion in the input image, including keypoints, edge vectors,

and symmetry correspondences. Compared to a unitary

representation, our hybrid representation allows pose re-

gression to exploit more and diverse features when one type

of predicted representation is inaccurate (e.g., because of

occlusion). Different intermediate representations used by

HybridPose can all be predicted by the same simple neural

network, and outliers in predicted intermediate represen-

tations are filtered by a robust regression module. Com-

pared to state-of-the-art pose estimation approaches, Hy-

bridPose is comparable in running time and is significantly

more accurate. For example, on Occlusion Linemod [3]

dataset, our method achieves a prediction speed of 30 fps

with a mean ADD(-S) accuracy of 79.2%, representing a

67.4% improvement from the current state-of-the-art ap-

proach. The implementation of HybridPose is available at

https://github.com/chensong1995/HybridPose.

1. Introduction

Estimating the 6D pose of an object from an RGB im-

age is a fundamental problem in 3D vision and has diverse

applications in object recognition and robot-object inter-

action. Advances in deep learning have led to significant

breakthroughs in this problem. While early works typi-

cally formulate pose estimation as end-to-end pose classifi-

cation [39] or pose regression [16, 42], recent pose estima-

tion methods usually leverage keypoints as an intermediate

representation [38, 34], and align predicted 2D keypoints

with ground-truth 3D keypoints. In addition to ground-truth

pose labels, these methods incorporate keypoints as an in-

termediate supervision, facilitating smooth model training.

Keypoint-based methods are built upon two assumptions:

(1) a machine learning model can accurately predict 2D

keypoint locations; and (2) these predictions provide suf-
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Figure 1. HybridPose predicts keypoints, edge vectors, and sym-

metry correspondences. In (a), we show the input RGB image, in

which the object of interest (driller) is partially occluded. In (b),

red markers denote predicted 2D keypoints. In (c), edge vectors

are defined by a fully-connected graph among all keypoints. In (d),

symmetry correspondences connect each 2D pixel on the object

to its symmetric counterpart. For illustrative purposes, we only

draw symmetry correspondences of 50 random samples from 5755

detected object pixels in this example. The predicted pose (f) is

obtained by jointly aligning all predictions with the 3D template,

which involves solving a non-linear optimization problem.

ficient constraints to regress the underlying 6D pose. Both

assumptions easily break in many real-world settings. Due

to object occlusions and representational limitations of the

prediction network, it is often impossible to accurately pre-

dict 2D keypoint coordinates from an RGB image alone.

In this paper, we introduce HybridPose, a novel 6D

pose estimation approach that leverages multiple interme-

diate representations to express the geometric information

in the input image. In addition to keypoints, HybridPose

integrates a prediction network that outputs edge vectors

between adjacent keypoints. As most objects possess a

(partial) reflection symmetry, HybridPose also utilizes pre-

dicted dense pixel-wise correspondences that reflect the un-

derlying symmetric relations between pixels. Compared

to a unitary representation, this hybrid representation en-

joys a multitude of advantages. First, HybridPose integrates

more signals in the input image: edge vectors encode spa-
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cial relations among object parts, and symmetry correspon-

dences incorporate interior details. Second, HybridPose of-

fers more constraints than using keypoints alone for pose

regression, enabling accurate pose prediction even if a sig-

nificant fraction of predicted elements are outliers (e.g., be-

cause of occlusion). Finally, it can be shown that symmetry

correspondences stabilize the rotation component of pose

prediction, especially along the normal direction of the re-

flection plane (details are provided in the supp. material).

Given the intermediate representation predicted by the

first module, the second module of HybridPose performs

pose regression. In particular, HybridPose employs train-

able robust norms to prune outliers in predicted intermedi-

ate representation. We show how to combine pose initial-

ization and pose refinement to maximize the quality of the

resulting object pose. We also show how to train Hybrid-

Pose effectively using a training set for the pose prediction

module, and a validation set for the pose regression module.

We evaluate HybridPose on two popular benchmark

datasets, Linemod [12] and Occlusion Linemod [3]. In

terms of accuracy (under the ADD(-S) metric), Hybrid-

Pose leads to considerable improvements from all state-

of-the-art methods that merely utilize keypoints. On Oc-

clusion Linemod [3], HybridPose achieves an accuracy

of 79.2%, which represents a 67.4% improvement from

DPOD [44], the current state-of-the-art method on this

benchmark dataset.

Despite the gain in accuracy, our approach is efficient

and runs at 30 frames per second on a commodity worksta-

tion. Compared to approaches which utilize sophisticated

network architecture to predict one single intermediate rep-

resentation (such as Pix2Pose [30]), HybridPose achieves

considerably better performance by using a relative simple

network to predict hybrid representations.

2. Related Works

Intermediate representation for pose. To express the ge-

ometric information in an RGB image, a prevalent inter-

mediate representation is keypoints, which achieves state-

of-the-art performance [34, 32, 36]. The corresponding

pose estimation pipeline combines keypoint prediction and

pose regression initialized by the PnP algorithm [18]. Key-

point predictions are usually generated by a neural network,

and previous works use different types of tensor descrip-

tors to express 2D keypoint coordinates. A common ap-

proach represents keypoints as peaks of heatmaps [28, 48],

which becomes sub-optimal when keypoints are occluded,

as the input image does not provide explicit visual cues

for their locations. Alternative keypoint representations in-

clude vector-fields [34] and patches [14]. These representa-

tions allow better keypoint predictions under occlusion, and

eventually lead to improvement in pose estimation accuracy.

However, keypoints alone are a sparse representation of the

object pose, whose potential in improving estimation accu-

racy is limited.

Besides keypoints, another common intermediate rep-

resentation is the coordinate of every image pixel in the

3D physical world, which provides dense 2D-3D corre-

spondences for pose alignment, and is robust under oc-

clusion [3, 4, 30, 20]. However, regressing dense object

coordinates is much more costly than keypoint prediction.

They are also less accurate than keypoints due to the lack

of corresponding visual cues. In addition to keypoints and

pixel-wise 2D-3D correspondences, depth is another alter-

native intermediate representation in visual odometry set-

tings, which can be estimated together with pose in an un-

supervised manner [47]. In practice, the accuracy of depth

estimation is limited by the representational power of neural

networks.

Unlike previous approaches, HybridPose combines mul-

tiple intermediate representations, and exhibits collabora-

tive strength for pose estimation.

Multi-modal input. To address the challenges for pose es-

timation from a single RGB image, several works have con-

sidered inputs from multiple sensors. A popular approach

is to leverage information from both RGB and depth im-

ages [47, 40, 42]. In the presence of depth information, pose

regression can be reformulated as the 3D point alignment

problem, which is then solved by the ICP algorithm [42].

Although HybridPose utilizes multiple intermediate rep-

resentations, all intermediate representations are predicted

from an RGB image alone. HybridPose handles situations

in which depth information is absent.

Edge features. Edges are known to capture important im-

age features such as object contours [2], salient edges [23],

and straight line segments [45]. Unlike these low-level im-

age features, HybridPose leverages semantic edge vectors

defined between adjacent keypoints. This representation,

which captures correlations between keypoints and reveals

underlying structure of object, is concise and easy to pre-

dict. Such edge vectors offer more constraints than key-

points alone for pose regressions and have clear advantages

under occlusion. Our approach is similar to [5], which

predicts directions between adjacent keypoints to link key-

points into a human skeleton. However, we predict both the

direction and the magnitude of edge vectors, and use these

vectors to estimate object poses.

Symmetry detection from images. Symmetry detection

has received significant attention in computer vision. We

refer readers to [22, 27] for general surveys, and [1, 41] for

recent advances. Traditional applications of symmetry de-

tection include face recognition [31], depth estimation [21],

and 3D reconstruction [13, 43]. In the context of object

pose estimation, people have studied symmetry from the

perspective that it introduces ambiguities for pose estima-

tion (c.f. [25, 36, 42]), since symmetric objects with differ-

ent poses can have the same appearance in image. Several
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(a) Input image
(b) Predicted keypoints, edge vectors, and symmetry 

correspondences
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Prediction networks

Initialization 
sub-module

Refinement 
sub-module

Figure 2. Approach overview. HybridPose consists of intermediate representation prediction networks and a pose regression module.

The prediction networks take an image as input, and output predicted keypoints, edge vectors, and symmetry correspondences. The pose

regression module consists of a initialization sub-module and a refinement sub-module. The initialization sub-module solves a linear

system with predicted intermediate representations to obtain an initial pose. The refinement sub-module utilizes GM robust norm and

optimizes (9) to obtain the final pose prediction.

works [36, 42, 6, 25, 30] have explored how to address such

ambiguities, e.g., by designing loss functions that are invari-

ant under symmetric transformations.

Robust regression. Pose estimation via intermediate rep-

resentation is sensitive to outliers in predictions, which are

introduced by occlusion and cluttered backgrounds [37, 32,

40]. To mitigate pose error, several works assign different

weights to different predicted elements in the 2D-3D align-

ment stage [34, 32]. In contrast, our approach additionally

leverages robust norms to automatically filter outliers in the

predicted elements.

Besides the reweighting strategy, some recent works pro-

pose to use deep learning-based refiners to boost the pose

estimation performance [19, 26, 44]. [44, 19] use point

matching loss and achieve high accuracy. [26] predicts pose

updates using contour information. Unlike these works, our

approach considers the critical points and the loss surface of

the robust objective function, and does not involve a fixed

pre-determined iteration count used in recurrent network

based approaches.

3. Approach

The input to HybridPose is an image I containing an

object in a known class, taken by a pinhole camera with

known intrinsic parameters. Assuming that the class of ob-

jects has a canonical coordinate system Σ (i.e. the 3D point

cloud), HybridPose outputs the 6D camera pose (RI ∈
SO(3), tI ∈ R

3) of the image object under Σ, where RI

is the rotation and tI is the translation component.

3.1. Approach Overview

As illustrated in Figure 2, HybridPose consists of a pre-

diction module and a pose regression module.

Prediction module (Section 3.2). HybridPose utilizes

three prediction networks fK
θ , fE

φ , and fS
γ to estimate a set

of keypoints K = {pk}, a set of edges between keypoints

E = {ve}, and a set of symmetry correspondences between

image pixels S = {(qs,1, qs,2)}. K, E , and S are all ex-

pressed in 2D. θ, φ, and γ are trainable parameters.

The keypoint network fK
θ employs an off-the-shelf pre-

diction network [34]. The other two prediction networks,

fE
φ , and fS

γ , are introduced to stabilize pose regression when

keypoint predictions are inaccurate. Specifically, fE
φ pre-

dicts edge vectors along a pre-defined graph of keypoints,

which stabilizes pose regression when keypoints are clut-

tered in the input image. fS
γ predicts symmetry correspon-

dences that reflect the underlying (partial) reflection sym-

metry. A key advantage of this symmetry representation

is that the number of symmetry correspondences is large:

every image pixel on the object has a symmetry correspon-

dence. As a result, even with a large outlier ratio, symmetry

correspondences still provide sufficient constraints for esti-

mating the plane of reflection symmetry for regularizing the

underlying pose. Moreover, symmetry correspondences in-

corporate more features within the interior of the underlying

object than keypoints and edge vectors.

Pose regression module (Section 3.3). The second mod-

ule of HybridPose optimizes the object pose (RI , tI) to fit

the output of the three prediction networks. This module

combines a trainable initialization sub-module and a train-
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able refinement sub-module. In particular, the initialization

sub-module performs SVD to solve for an initial pose in

the global affine pose space. The refinement sub-module

utilizes robust norms to filter out outliers in the predicted

elements for accurate object pose estimation.

Training HybridPose (Section 3.4). We train HybridPose

by splitting the dataset into a training set and a validation

set. We use the training set to learn the prediction module,

and the validation set to learn the hyper-parameters of the

pose regression module. We have tried training HybridPose

end-to-end using one training set. However, the difference

between the prediction distributions on the training set and

testing set leads to sub-optimal generalization performance.

3.2. Hybrid Representation

This section describes three intermediate representations

used in HybridPose.

Keypoints. The first intermediate representation consists

of keypoints, which have been widely used for pose estima-

tion. Given the input image I , we train a neural network

fK
θ (I) ∈ R

2×|K| to predict 2D coordinates of a pre-defined

set of |K| keypoints. In our experiments, HybridPose in-

corporates an off-the-shelf architecture called PVNet [34],

which is the state-of-the-art keypoint-based pose estimator

that employs a voting scheme to predict both visible and

invisible keypoints.

Besides outliers in predicted keypoints, another limita-

tion of keypoint-based techniques is that when the differ-

ence (direction and distance) between adjacent keypoints

characterizes important information of the object pose, in-

exact keypoint predictions incur large pose error.

Edges. The second intermediate representation, which con-

sists of edge vectors along a pre-defined graph, explicitly

models the displacement between every pair of keypoints.

As illustrated in Figure 2, HybridPose utilizes a simple net-

work fE
φ (I) ∈ R

2×|E| to predict edge vectors in the 2D im-

age plane, where |E| denotes the number of edges in the pre-

defined graph. In our experiments, E is a fully-connected

graph, i.e., |E| = |K|·(|K|−1)
2 .

Symmetry correspondences. The third intermediate repre-

sentation consists of predicted pixel-wise symmetry corre-

spondences that reflect the underlying reflection symmetry.

In our experiments, HybridPose extends the network archi-

tecture of FlowNet 2.0 [15] that combines a dense pixel-

wise flow and the semantic mask predicted by PVNet. The

resulting symmetry correspondences are given by predicted

pixel-wise flow within the mask region. Compared to the

first two representations, the number of symmetry corre-

spondences is significantly larger, which provides rich con-

straints even for occluded objects. However, symmetry cor-

respondences only constrain two degrees of freedom in the

rotation component of the object pose (c.f. [24]). It is neces-

sary to combine symmetry correspondences with other in-

termediate representations.

A 3D model may possess multiple reflection symmetry

planes. For these models, we train HybridPose to predict

symmetry correspondences with respect to the most salient

reflection symmetry plane, i.e., one with the largest number

of symmetry correspondences on the original 3D model.

Summary of network design. In our experiments, fK
θ (I),

fE
φ (I), and fS

γ are all based on ResNet [11], and the im-

plementation details are discussed in Section 4.1. Train-

able parameters are shared across all except the last convo-

lutional layer. Therefore, the overhead of introducing the

edge prediction network fE
φ (I) and the symmetry predic-

tion network fS
γ is insignificant.

3.3. Pose Regression

The second module of HybridPose takes predicted inter-

mediate representations {K, E ,S} as input and outputs a 6D

object pose (RI ∈ SO(3), tI ∈ R
3) for the input image I .

Similar to state-of-the-art pose regression approaches [35],

HybridPose combines an initialization sub-module and a re-

finement sub-module. Both sub-modules leverage all pre-

dicted elements. The refinement sub-module additionally

leverages a robust function to model outliers in the predicted

elements.

In the following, we denote 3D keypoint coordinates in

the canonical coordinate system as pk, 1 ≤ k ≤ |K|. To

make notations uncluttered, we denote output of the first

module, i.e., predicted keypoints, edge vectors, and sym-

metry correspondences as pk ∈ R
2, 1 ≤ k ≤ |K|, ve ∈

R
2, 1 ≤ e ≤ |E|, and (qs,1 ∈ R

2, qs,2 ∈ R
2), 1 ≤ s ≤ |S|,

respectively. Our formulation also uses the homogeneous

coordinates p̂k ∈ R
3, v̂e ∈ R

3,q̂s,1 ∈ R
3 and q̂s,2 ∈ R

3

of pk, ve, qs,1 and qs,2 respectively. The homogeneous

coordinates are normalized by the camera intrinsic matrix.

Initialization sub-module. This sub-module leverages

constraints between (RI , tI) and predicted elements and

solves (Ri, tI) in the affine space, which are then projected

to SE(3) in an alternating optimization manner. To this

end, we introduce the following difference vectors for each

type of predicted elements:

rKR,t(pk) := p̂k × (Rpk + t), (1)

rER,t(ve,pes
) := v̂e × (Rpet

+ t) + p̂es
× (Rve) (2)

rSR,t(qs,1, qs,2) := (q̂s,1 × q̂s,2)
TRnr. (3)

where es and et are end vertices of edge e, ve = pet
−pes

∈
R

3, and nr ∈ R
3 is the normal of the reflection symmetry

plane in the canonical system.

HybridPose modifies the framework of EPnP [18] to

generate the initial poses. By combining these three con-

straints from predicted elements, we generate a linear sys-

tem of the form Ax = 0, where A is matrix and its dimen-

sion is (3|K|+3|E|+|S|)×12. x = [rT1 , r
T
2 , r

T
3 , t

T]T12×1 is

a vector that contains rotation and translation parameters in
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affine space. To model the relative importance among key-

points, edge vectors, and symmetry correspondences, we

rescale (2) and (3) by hyper-parameters αE and αS , respec-

tively, to generate A.

Following EPnP [18], we compute x as

x =

N
∑

i=1

γivi (4)

where vi is the ith smallest right singular vector of A. Ide-

ally, when predicted elements are noise-free, N = 1 with

x = v1 is an optimal solution. However, this strategy per-

forms poorly given noisy predictions. Same as EPnP [18],

we choose N = 4. To compute the optimal x, we optimize

latent variables γi and the rotation matrix R in an alternating

optimization procedure with following objective function:

min
R∈R3×3,γi

‖
4

∑

i=1

γiRi −R‖2F (5)

where Ri ∈ R
3×3 is reshaped from the first 9 elements

of vi. After obtaining optimal γi, we project the result-

ing affine transformation
∑4

i=1 γiRi into a rigid transfor-

mation. Due to space constraint, we defer details to the

supp. material.

Refinement sub-module. Although (5) combines hybrid

intermediate representations and admits good initialization,

it does not directly model outliers in predicted elements.

Another limitation comes from (1) and (2), which do not

minimize the projection errors (i.e., with respect to key-

points and edges), which are known to be effective in

keypoint-based pose estimation (c.f. [35]).

Benefited from having an initial object pose

(Rinit , tinit), the refinement sub-module performs lo-

cal optimization to refine the object pose. We introduce two

difference vectors that involve projection errors: ∀k, e, s,

rKR,t(pk) := PR,t(pk)− pk, (6)

rER,t(ve) := PR,t(pet
)− PR,t(pes

)− ve, (7)

where PR,t : R3 → R
2 is the projection operator induced

from the current pose (R, t).

To prune outliers in the predicted elements, we consider

a generalized German-Mcclure (or GM) robust function

ρ(x, β) := β2
1/(β

2
2 + x2). (8)

With this setup, HybridPose solves the following non-linear

optimization problem for pose refinement:

min
R,t

|K|
∑

k=1

ρ(‖rKR,t(pk)‖, βK)‖r
K
R,t(pk)‖

2
Σk

+
|K|

|E|

|E|
∑

e=1

ρ(‖rER,t(ve)‖, βE)‖r
E
R,t(ve)‖

2
Σe

+
|K|

|S|

|S|
∑

s=1

ρ(rSR,t(qs,1, qs,2), βS) (9)

where βK, βE , and βS are separate hyper-parameters for

keypoints, edges, and symmetry correspondences. Σk and

Σe denote the covariance information attached to the key-

point and edge predictions. ‖x‖A = (xTAx)
1

2 . When

covariances of predictions are unavailable, we simply set

Σk = Σe = I2. The above optimization problem is solved

by Gauss-Newton method starting from Rinit and tinit .

In the supp. material, we provide a stability analysis of

(9), and show how the optimal solution of (9) changes with

respect to noise in predicted representations. We also show

collaborative strength among all three intermediate repre-

sentations. While keypoints significantly contribute to the

accuracy of t, edge vectors and symmetry correspondences

can stablize the regression of R.

3.4. HybridPose Training

This section describes how to train the prediction net-

works and hyper-parameters of HybridPose using a labeled

dataset T = {I, (Kgt
I , Egt

I ,Sgt
I , (Rgt

I , tgtI ))}. With I , Kgt
I ,

Egt
I , Sgt

I , and (Rgt
I , tgtI ), we denote the RGB image, labeled

keypoints, edges, symmetry correspondences, and ground-

truth object pose, respectively. A popular strategy is to train

the entire model end-to-end, e.g., using recurrent networks

to model the optimization procedure and introducing loss

terms on the object pose output as well as the intermedi-

ate representations. However, we found this strategy sub-

optimal. The distribution of predicted elements on the train-

ing set differs from that on the testing set. Even by carefully

tuning the trade-off between supervisions on predicted ele-

ments and the final object pose, the pose regression model,

which fits the training data, generalizes poorly on the testing

data.

Our approach randomly divides the labeled set T =
Ttrain ∪ Tval into a training set and a validation set. Ttrain
is used to train the prediction networks, and Tval trains the

hyper-parameters of the pose regression model. Implemen-

tation and training details of the prediction networks are

presented in Section 4.1. In the following, we focus on

training the hyper-parameters using Tval.
Initialization sub-module. Let Rinit

I and tinitI be the out-

put of the initialization sub-module. We obtain the optimal

hyper-parameters αE and αS by solving the following opti-
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mization problem:

min
αE ,αS

∑

I∈Tpose

(

‖Rinit

I −Rgt
I ‖2F + ‖tinitI − t

gt
I ‖2

)

. (10)

Since the number of hyper-parameters is rather small, and

the pose initialization step does not admit an explicit ex-

pression, we use the finite-difference method to compute

numerical gradient, i.e., by fitting the gradient to samples of

the hyper-parameters around the current solution. We then

apply back-track line search for optimization.

Refinement sub-module. Let β = {βK, βE , βS} be the

hyper-parameters of this sub-module. For each instance

(I, (Kgt
I , Egt

I ,Sgt
I , (Rgt

I , tgtI ))) ∈ Tval, denote the objec-

tive function in (9) as fI(c, β), where c = (cT , cT )T ∈
R

6 is a local parameterization of RI and tI , i.e., RI =
exp(c×)Rgt

I , tI = t
gt
I + c. c encodes the different the cur-

rent estimated pose and the ground-truth pose in SE(3).
The refinement module solves an unconstrained opti-

mization problem, whose optimal solution is dictated by

its critical points and the loss surface around the critical

points. We consider two simple objectives. The first objec-

tive forces ∂fI
∂c

(0, β) ≈ 0, or in other words, the ground-

truth is approximately a critical point. The second ob-

jective minimizes the condition number κ(∂
2fI
∂2c

(0, β)) =

λmax

(

∂2fI
∂2c

(0, β)
)

/λmin

(

∂2fI
∂2c

(0, β)
)

. This objective reg-

ularizes the loss surface around each optimal solution, pro-

moting a large converge radius for fI(c, β). With this setup,

we formulate the following objective function to optimize

β:

min
β

∑

I∈Tval

‖
∂fI
∂c

(0, β)‖2 + γκ
(∂2fI
∂2c

(0, β)
)

(11)

where γ is set to 10−4. The same strategy used in (10) is

then applied to optimize (11).

4. Experimental Evaluation

This section presents an experimental evaluation of the

proposed approach. Section 4.1 describes the experimental

setup. Section 4.2 quantitatively and qualitatively compares

HybridPose with other 6D pose estimation methods. Sec-

tion 4.3 presents an ablation study to investigate the effec-

tiveness of symmetry correspondences, edge vectors, and

the refinement sub-module.

4.1. Experimental Setup

Datasets. We consider two popular benchmark datasets

that are widely used in the 6D pose estimation problem,

Linemod [12] and Occlusion Linemod [3]. In comparsion

to Linemod, Occlusion Linemod contains more examples

where the objects are under occlusion. Our keypoint anno-

tation strategy follows that of [34], i.e., we choose |K| = 8

keypoints via the farthest point sampling algorithm. Edge

vectors are defined as vectors connecting each pair of key-

points. In total, each object has |E| = |K|·(|K|−1)
2 = 28

edges. We further use the algorithm proposed in [8] to anno-

tate Linemod and Occlusion Linemod with reflection sym-

metry labels. On each dataset, we randomly select 80% of

the examples for training, 20 instances for validation, and

the rest for testing.

Implementation details. We use ResNet [11] with pre-

trained weights on ImageNet [7] to build the prediction net-

works fK
θ , fE

φ , and fS
γ . The prediction networks take an

RGB image I of size (3, H,W ) as input, and output a ten-

sor of size (C,H,W ), where (H,W ) is the image resolu-

tion, and C = 1+2|K|+2|E|+2 is the number of channels

in the output tensor.

The first channel in the output tensor is a binary segmen-

tation mask M . If M(x, y) = 1, then (x, y) corresponds to

a pixel on the object of interest in the input image I . The

segmentation mask is trained using the cross-entropy loss.

The 2|K| channels afterwards in the output tensor give

x and y components of all |K| keypoints. A voting-based

keypoint localization scheme [34] is applied to extract the

coordinates of 2D keypoints from this 2|K|-channel tensor

and the segmentation mask M .
The next 2|E| channels in the output tensor give the x and

y components of all |E| edges, which we denote as Edge.
Let i (0 ≤ i < |E|) be the index of an edge. Then

Edgei = {(Edge(2i, x, y), Edge(2i+ 1, x, y))|M(x, y) = 1}

is a set of 2-tuples containing pixel-wise predictions of the

ith edge vector in Edge. The mean of Edgei is extracted

as the predicted edge.

The final 2 channels in the output tensor define the x
and y components of symmetry correspondences. We de-

note this 2-channel “map” of symmetry correspondences

as Sym. Let (x, y) be a pixel on the object of inter-

est in the input image, i.e. M(x, y) = 1. Assuming

∆x = Sym(0, x, y) and ∆y = Sym(1, x, y), we consider

(x, y) and (x+∆x, y +∆y) to be symmetric with respect

to the reflection symmetry plane.

We train all three intermediate representations using the

smooth ℓ1 loss described in [9]. Network training employs

the Adam [17] optimizer for 500 epochs. The learning rate

is 0.02 before the 200th epoch, and 0.002 after the 200th

epoch. Training weights of the segmentation mask, key-

points, edge vectors, and symmetry correspondences are

1.0, 10.0, 0.1, and 0.1, respectively.

The architecture described above achieves good perfor-

mance in terms of detection accuracy. Nevertheless, it

should be emphasized that the framework of HybridPose

can incorporate future improvements in keypoint, edge vec-

tor, and symmetry correspondence detection techniques.

Besides, Hybridpose can be extended to handling multi-

ple objects within an image. One approach is to pre-
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Figure 3. Pose regression results. HybridPose is able to accurately predict 6D poses from RGB images. HybridPose handles situations

where the object has no occlusion (a, d, f, h), light occlusion (b, c), and severe occlusion (e, g). For illustrative purposes, we only draw 50

randomly selected symmetry correspondences in each example.

dict instance-level rather than semantic-level segmentation

masks by methods such as Mask R-CNN [10]. Intermediate

representations are then extracted from each instance, and

fed to the pose regression module in 3.3.

Evaluation protocols. We use two metrics to evaluate the

performance of HybridPose:

1. ADD(-S) [12, 42] first calculates the distance between

two point sets transformed by predicted pose and ground-

truth pose respectively, and then extracts the mean distance.

When the object possesses symmetric pose ambiguity, the

mean distance is computed from the closest points between

two transformed sets. ADD(-S) accuracy is defined as the

percentage of examples whose calculated mean distance is

less than 10% of the model diameter.

2. In the ablation study, we compute and report the the an-

gular rotation error ‖
log(RT

gtRI)

2 ‖ and the relative translation

error
‖tI−tgt‖

d
between the predicted pose (RI , tI) and the

ground-truth pose (Rgt, tgt), where d is object diameter.

4.2. Analysis of Results

As shown in Table 1, Table 2, and Figure 3, HybridPose

leads to accurate pose estimation. On Linemod and Occlu-

sion Linemod, HybridPose has an average ADD(-S) accu-

racy of 94.5 and 79.2, respectively. The result on Linemod

outperforms all except one state-of-the-art approaches that

object Tekin BB8 Pix2Pose PVNet CDPN DPOD Ours

ape 21.6 40.4 58.1 43.6 64.4 87.7 77.6

benchvise 81.8 91.8 91.0 99.9 97.8 98.5 99.6

cam 36.6 55.7 60.9 86.9 91.7 96.1 95.9

can 68.8 64.1 84.4 95.5 95.9 99.7 93.6

cat 41.8 62.6 65.0 79.3 83.8 94.7 93.5

driller 63.5 74.4 76.3 96.4 96.2 98.8 97.2

duck 27.2 44.3 43.8 52.6 66.8 86.3 87.0

eggboxy 69.6 57.8 96.8 99.2 99.7 99.9 99.6

gluey 80.0 41.2 79.4 95.7 99.6 96.8 98.7

holepuncher 42.6 67.2 74.8 81.9 85.8 86.9 92.5

iron 75.0 84.7 83.4 98.9 97.9 100.0 98.1

lamp 71.1 76.5 82.0 99.3 97.9 96.8 96.9

phone 47.7 54.0 45.0 92.4 90.8 94.7 98.3

average 56.0 62.7 72.4 86.3 89.9 95.2 94.5

Table 1. Quantitative evaluation: ADD(-S) accuracy on

Linemod. Baseline approaches: Tekin et al. [38], BB8 [36],

Pix2Pose [30], PVNet [34], CDPN [20], and DPOD [44]. Objects

annotated with (†) possess symmetric pose ambiguity.

regress poses from intermediate representations. The result

on Occlusion-Linemod outperforms all state-of-the-art ap-

proaches.

Baseline comparison on Linemod. HybridPose outper-

forms PVNet [34], the backbone model we use to predict

keypoints. The improvement is consistent across all ex-

cept one object classes, which demonstrates clear advantage

of using a hybrid as opposed to unitary intermediate rep-

resentation. HybridPose shows competitive results against

437








