This CVPR 2020 paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

HybridPose: 6D Object Pose Estimation under Hybrid Representations

Chen Song®, Jiaru Song*, Qixing Huang
The University of Texas at Austin

song@cs.utexas.edu, jiarus@cs.utexas.edu, huanggx@cs.utexas.edu

Abstract

We introduce HybridPose, a novel 6D object pose esti-
mation approach. HybridPose utilizes a hybrid intermedi-
ate representation to express different geometric informa-
tion in the input image, including keypoints, edge vectors,
and symmetry correspondences. Compared to a unitary
representation, our hybrid representation allows pose re-
gression to exploit more and diverse features when one type
of predicted representation is inaccurate (e.g., because of
occlusion). Different intermediate representations used by
HybridPose can all be predicted by the same simple neural
network, and outliers in predicted intermediate represen-
tations are filtered by a robust regression module. Com-
pared to state-of-the-art pose estimation approaches, Hy-
bridPose is comparable in running time and is significantly
more accurate. For example, on Occlusion Linemod [3]
dataset, our method achieves a prediction speed of 30 fps
with a mean ADD(-S) accuracy of 79.2%, representing a
67.4% improvement from the current state-of-the-art ap-
proach. The implementation of HybridPose is available at
https://github.com/chensong1995/HybridPose.

1. Introduction

Estimating the 6D pose of an object from an RGB im-
age is a fundamental problem in 3D vision and has diverse
applications in object recognition and robot-object inter-
action. Advances in deep learning have led to significant
breakthroughs in this problem. While early works typi-
cally formulate pose estimation as end-to-end pose classifi-
cation [39] or pose regression [ 16, 42], recent pose estima-
tion methods usually leverage keypoints as an intermediate
representation [38, 34], and align predicted 2D keypoints
with ground-truth 3D keypoints. In addition to ground-truth
pose labels, these methods incorporate keypoints as an in-
termediate supervision, facilitating smooth model training.
Keypoint-based methods are built upon two assumptions:
(1) a machine learning model can accurately predict 2D
keypoint locations; and (2) these predictions provide suf-
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Figure 1. HybridPose predicts keypoints, edge vectors, and sym-
metry correspondences. In (a), we show the input RGB image, in
which the object of interest (driller) is partially occluded. In (b),
red markers denote predicted 2D keypoints. In (c), edge vectors
are defined by a fully-connected graph among all keypoints. In (d),
symmetry correspondences connect each 2D pixel on the object
to its symmetric counterpart. For illustrative purposes, we only
draw symmetry correspondences of 50 random samples from 5755
detected object pixels in this example. The predicted pose (f) is
obtained by jointly aligning all predictions with the 3D template,
which involves solving a non-linear optimization problem.

ficient constraints to regress the underlying 6D pose. Both
assumptions easily break in many real-world settings. Due
to object occlusions and representational limitations of the
prediction network, it is often impossible to accurately pre-
dict 2D keypoint coordinates from an RGB image alone.

In this paper, we introduce HybridPose, a novel 6D
pose estimation approach that leverages multiple interme-
diate representations to express the geometric information
in the input image. In addition to keypoints, HybridPose
integrates a prediction network that outputs edge vectors
between adjacent keypoints. As most objects possess a
(partial) reflection symmetry, HybridPose also utilizes pre-
dicted dense pixel-wise correspondences that reflect the un-
derlying symmetric relations between pixels. Compared
to a unitary representation, this hybrid representation en-
joys a multitude of advantages. First, HybridPose integrates
more signals in the input image: edge vectors encode spa-
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cial relations among object parts, and symmetry correspon-
dences incorporate interior details. Second, HybridPose of-
fers more constraints than using keypoints alone for pose
regression, enabling accurate pose prediction even if a sig-
nificant fraction of predicted elements are outliers (e.g., be-
cause of occlusion). Finally, it can be shown that symmetry
correspondences stabilize the rotation component of pose
prediction, especially along the normal direction of the re-
flection plane (details are provided in the supp. material).

Given the intermediate representation predicted by the
first module, the second module of HybridPose performs
pose regression. In particular, HybridPose employs train-
able robust norms to prune outliers in predicted intermedi-
ate representation. We show how to combine pose initial-
ization and pose refinement to maximize the quality of the
resulting object pose. We also show how to train Hybrid-
Pose effectively using a training set for the pose prediction
module, and a validation set for the pose regression module.

We evaluate HybridPose on two popular benchmark
datasets, Linemod [12] and Occlusion Linemod [3]. In
terms of accuracy (under the ADD(-S) metric), Hybrid-
Pose leads to considerable improvements from all state-
of-the-art methods that merely utilize keypoints. On Oc-
clusion Linemod [3], HybridPose achieves an accuracy
of 79.2%, which represents a 67.4% improvement from
DPOD [44], the current state-of-the-art method on this
benchmark dataset.

Despite the gain in accuracy, our approach is efficient
and runs at 30 frames per second on a commodity worksta-
tion. Compared to approaches which utilize sophisticated
network architecture to predict one single intermediate rep-
resentation (such as Pix2Pose [30]), HybridPose achieves
considerably better performance by using a relative simple
network to predict hybrid representations.

2. Related Works

Intermediate representation for pose. To express the ge-
ometric information in an RGB image, a prevalent inter-
mediate representation is keypoints, which achieves state-
of-the-art performance [34, 32, 36]. The corresponding
pose estimation pipeline combines keypoint prediction and
pose regression initialized by the PnP algorithm [18]. Key-
point predictions are usually generated by a neural network,
and previous works use different types of tensor descrip-
tors to express 2D keypoint coordinates. A common ap-
proach represents keypoints as peaks of heatmaps [28, 48],
which becomes sub-optimal when keypoints are occluded,
as the input image does not provide explicit visual cues
for their locations. Alternative keypoint representations in-
clude vector-fields [34] and patches [14]. These representa-
tions allow better keypoint predictions under occlusion, and
eventually lead to improvement in pose estimation accuracy.
However, keypoints alone are a sparse representation of the

object pose, whose potential in improving estimation accu-
racy is limited.

Besides keypoints, another common intermediate rep-
resentation is the coordinate of every image pixel in the
3D physical world, which provides dense 2D-3D corre-
spondences for pose alignment, and is robust under oc-
clusion [3, 4, 30, 20]. However, regressing dense object
coordinates is much more costly than keypoint prediction.
They are also less accurate than keypoints due to the lack
of corresponding visual cues. In addition to keypoints and
pixel-wise 2D-3D correspondences, depth is another alter-
native intermediate representation in visual odometry set-
tings, which can be estimated together with pose in an un-
supervised manner [47]. In practice, the accuracy of depth
estimation is limited by the representational power of neural
networks.

Unlike previous approaches, HybridPose combines mul-
tiple intermediate representations, and exhibits collabora-
tive strength for pose estimation.

Multi-modal input. To address the challenges for pose es-
timation from a single RGB image, several works have con-
sidered inputs from multiple sensors. A popular approach
is to leverage information from both RGB and depth im-
ages [47, 40, 42]. In the presence of depth information, pose
regression can be reformulated as the 3D point alignment
problem, which is then solved by the ICP algorithm [42].
Although HybridPose utilizes multiple intermediate rep-
resentations, all intermediate representations are predicted
from an RGB image alone. HybridPose handles situations
in which depth information is absent.

Edge features. Edges are known to capture important im-
age features such as object contours [2], salient edges [23],
and straight line segments [45]. Unlike these low-level im-
age features, HybridPose leverages semantic edge vectors
defined between adjacent keypoints. This representation,
which captures correlations between keypoints and reveals
underlying structure of object, is concise and easy to pre-
dict. Such edge vectors offer more constraints than key-
points alone for pose regressions and have clear advantages
under occlusion. Our approach is similar to [5], which
predicts directions between adjacent keypoints to link key-
points into a human skeleton. However, we predict both the
direction and the magnitude of edge vectors, and use these
vectors to estimate object poses.

Symmetry detection from images. Symmetry detection
has received significant attention in computer vision. We
refer readers to [22, 27] for general surveys, and [, 41] for
recent advances. Traditional applications of symmetry de-
tection include face recognition [3 1], depth estimation [21],
and 3D reconstruction [13, 43]. In the context of object
pose estimation, people have studied symmetry from the
perspective that it introduces ambiguities for pose estima-
tion (c.f. [25, 36, 42]), since symmetric objects with differ-
ent poses can have the same appearance in image. Several
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Figure 2. Approach overview. HybridPose consists of intermediate representation prediction networks and a pose regression module.
The prediction networks take an image as input, and output predicted keypoints, edge vectors, and symmetry correspondences. The pose
regression module consists of a initialization sub-module and a refinement sub-module. The initialization sub-module solves a linear
system with predicted intermediate representations to obtain an initial pose. The refinement sub-module utilizes GM robust norm and

optimizes (9) to obtain the final pose prediction.

works [36, 42, 6, 25, 30] have explored how to address such
ambiguities, e.g., by designing loss functions that are invari-
ant under symmetric transformations.

Robust regression. Pose estimation via intermediate rep-
resentation is sensitive to outliers in predictions, which are
introduced by occlusion and cluttered backgrounds [37, 32,
40]. To mitigate pose error, several works assign different
weights to different predicted elements in the 2D-3D align-
ment stage [34, 32]. In contrast, our approach additionally
leverages robust norms to automatically filter outliers in the
predicted elements.

Besides the reweighting strategy, some recent works pro-
pose to use deep learning-based refiners to boost the pose
estimation performance [19, 26, 44]. [44, 19] use point
matching loss and achieve high accuracy. [26] predicts pose
updates using contour information. Unlike these works, our
approach considers the critical points and the loss surface of
the robust objective function, and does not involve a fixed
pre-determined iteration count used in recurrent network
based approaches.

3. Approach

The input to HybridPose is an image I containing an
object in a known class, taken by a pinhole camera with
known intrinsic parameters. Assuming that the class of ob-
jects has a canonical coordinate system X (i.e. the 3D point
cloud), HybridPose outputs the 6D camera pose (R; €
SO(3),t; € R3) of the image object under X, where Ry
is the rotation and ¢; is the translation component.

3.1. Approach Overview

As illustrated in Figure 2, HybridPose consists of a pre-

diction module and a pose regression module.
Prediction module (Section 3.2). HybridPose utilizes
three prediction networks f§°, f§, and f2 to estimate a set
of keypoints K = {p,}, a set of edges between keypoints
& = {v.}, and a set of symmetry correspondences between
image pixels S = {(q,1,952)}. K, &, and S are all ex-
pressed in 2D. 6, ¢, and ~ are trainable parameters.

The keypoint network féc employs an off-the-shelf pre-
diction network [34]. The other two prediction networks,
f g ,and f¢, are introduced to stabilize pose regression when
keypoint predictions are inaccurate. Specifically, qu pre-
dicts edge vectors along a pre-defined graph of keypoints,
which stabilizes pose regression when keypoints are clut-
tered in the input image. f:f predicts symmetry correspon-
dences that reflect the underlying (partial) reflection sym-
metry. A key advantage of this symmetry representation
is that the number of symmetry correspondences is large:
every image pixel on the object has a symmetry correspon-
dence. As aresult, even with a large outlier ratio, symmetry
correspondences still provide sufficient constraints for esti-
mating the plane of reflection symmetry for regularizing the
underlying pose. Moreover, symmetry correspondences in-
corporate more features within the interior of the underlying
object than keypoints and edge vectors.

Pose regression module (Section 3.3). The second mod-
ule of HybridPose optimizes the object pose (R, t) to fit
the output of the three prediction networks. This module
combines a trainable initialization sub-module and a train-
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able refinement sub-module. In particular, the initialization
sub-module performs SVD to solve for an initial pose in
the global affine pose space. The refinement sub-module
utilizes robust norms to filter out outliers in the predicted
elements for accurate object pose estimation.

Training HybridPose (Section 3.4). We train HybridPose
by splitting the dataset into a training set and a validation
set. We use the training set to learn the prediction module,
and the validation set to learn the hyper-parameters of the
pose regression module. We have tried training HybridPose
end-to-end using one training set. However, the difference
between the prediction distributions on the training set and
testing set leads to sub-optimal generalization performance.

3.2. Hybrid Representation

This section describes three intermediate representations

used in HybridPose.
Keypoints. The first intermediate representation consists
of keypoints, which have been widely used for pose estima-
tion. Given the input image I, we train a neural network
f(I) € R?*IX to predict 2D coordinates of a pre-defined
set of || keypoints. In our experiments, HybridPose in-
corporates an off-the-shelf architecture called PVNet [34],
which is the state-of-the-art keypoint-based pose estimator
that employs a voting scheme to predict both visible and
invisible keypoints.

Besides outliers in predicted keypoints, another limita-
tion of keypoint-based techniques is that when the differ-
ence (direction and distance) between adjacent keypoints
characterizes important information of the object pose, in-
exact keypoint predictions incur large pose error.

Edges. The second intermediate representation, which con-
sists of edge vectors along a pre-defined graph, explicitly
models the displacement between every pair of keypoints.
As illustrated in Figure 2, HybridPose utilizes a simple net-
work f5(I) € R?*I€] to predict edge vectors in the 2D im-
age plane, where |€| denotes the number of edges in the pre-
defined graph. In our experiments, & is a fully-connected
graph, i.e., |E| = W

Symmetry correspondences. The third intermediate repre-
sentation consists of predicted pixel-wise symmetry corre-
spondences that reflect the underlying reflection symmetry.
In our experiments, HybridPose extends the network archi-
tecture of FlowNet 2.0 [15] that combines a dense pixel-
wise flow and the semantic mask predicted by PVNet. The
resulting symmetry correspondences are given by predicted
pixel-wise flow within the mask region. Compared to the
first two representations, the number of symmetry corre-
spondences is significantly larger, which provides rich con-
straints even for occluded objects. However, symmetry cor-
respondences only constrain two degrees of freedom in the
rotation component of the object pose (c.f. [24]). It is neces-
sary to combine symmetry correspondences with other in-
termediate representations.

A 3D model may possess multiple reflection symmetry
planes. For these models, we train HybridPose to predict
symmetry correspondences with respect to the most salient
reflection symmetry plane, i.e., one with the largest number
of symmetry correspondences on the original 3D model.
Summary of network design. In our experiments, f) (1),
f(f (I), and f,‘yS are all based on ResNet [11], and the im-
plementation details are discussed in Section 4.1. Train-
able parameters are shared across all except the last convo-
lutional layer. Therefore, the overhead of introducing the
edge prediction network fg (I) and the symmetry predic-

tion network ff is insignificant.

3.3. Pose Regression

The second module of HybridPose takes predicted inter-
mediate representations {/C, £, S} as input and outputs a 6D
object pose (R; € SO(3),t; € R3) for the input image 1.
Similar to state-of-the-art pose regression approaches [35],
HybridPose combines an initialization sub-module and a re-
finement sub-module. Both sub-modules leverage all pre-
dicted elements. The refinement sub-module additionally
leverages a robust function to model outliers in the predicted
elements.

In the following, we denote 3D keypoint coordinates in
the canonical coordinate system as p;,1 < k < |[K|. To
make notations uncluttered, we denote output of the first
module, i.e., predicted keypoints, edge vectors, and sym-
metry correspondences as p;,, € R%2,1 <k < K|, ve €
R?,1<e< || and (q,; € R?* q,, € R?),1 <5 <S],
respectively. Our formulation also uses the homogeneous
coordinates p;, € R3, v, € R*,q,; € R®and q,, € R?
of py, Ve, g, and g, 5 respectively. The homogeneous
coordinates are normalized by the camera intrinsic matrix.
Initialization sub-module. This sub-module leverages
constraints between (Rj,t;) and predicted elements and
solves (R;, tr) in the affine space, which are then projected
to SE(3) in an alternating optimization manner. To this
end, we introduce the following difference vectors for each
type of predicted elements:

F)Ig,t(pk) =Py X (Bpy, +1), (D
Th4(ve,p,,) i= e X (RP,, + 1) + b, x (Rv.) (2)
Tg,t(qs,hqsg) = (g1 X qs,2)TRﬁr- 3)

where e, and e, are end vertices of edge e, v, = P, — P, €
R3, and 7, € R3 is the normal of the reflection symmetry
plane in the canonical system.

HybridPose modifies the framework of EPnP [18] to
generate the initial poses. By combining these three con-
straints from predicted elements, we generate a linear sys-
tem of the form Ax = 0, where A is matrix and its dimen-
sionis (3|/C|+3|E|+|S|) x12. & = [rT, 73, ri tT]5 . is
a vector that contains rotation and translation parameters in
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affine space. To model the relative importance among key-
points, edge vectors, and symmetry correspondences, we
rescale (2) and (3) by hyper-parameters o and g, respec-
tively, to generate A.

Following EPnP [18], we compute x as

N
T =Y v “)
=1

where v; is the 4;}, smallest right singular vector of A. Ide-
ally, when predicted elements are noise-free, N = 1 with
x = v; is an optimal solution. However, this strategy per-
forms poorly given noisy predictions. Same as EPnP [1§],
we choose N = 4. To compute the optimal x, we optimize
latent variables ; and the rotation matrix R in an alternating
optimization procedure with following objective function:

RER3X3 1,

4
min || > vRi - Rl|F (5)
=1

where R; € R®*3 is reshaped from the first 9 elements
of v;. After obtaining optimal ~;, we project the result-
ing affine transformation 2?21 v; R; into a rigid transfor-
mation. Due to space constraint, we defer details to the
supp. material.

Refinement sub-module. Although (5) combines hybrid
intermediate representations and admits good initialization,
it does not directly model outliers in predicted elements.
Another limitation comes from (1) and (2), which do not
minimize the projection errors (i.e., with respect to key-
points and edges), which are known to be effective in
keypoint-based pose estimation (c.f. [35]).

Benefited from having an initial object pose
(Rt ¢Mt) " the refinement sub-module performs lo-
cal optimization to refine the object pose. We introduce two
difference vectors that involve projection errors: Vk, e, s,

K1(Pr) = Pro(Br) — P (6)
r%:(ve) == Pre(P.,) — Prt(Pe,) —ve,  (7)

where Pp ¢ : R® — R? is the projection operator induced
from the current pose (R, t).

To prune outliers in the predicted elements, we consider
a generalized German-Mcclure (or GM) robust function

p(z,B8) == B7 /(85 + 2%). (8)

With this setup, HybridPose solves the following non-linear

optimization problem for pose refinement:

IK|

: K K 2
min ;p(llra,t(pk)ll7ﬁn)l\ra,t(pk)llzk

€]
K
+ gl o plreaton)l Aol I,
e=1

K| |S| s
+ S| Zp(TR,t(qs,laqs,z)vﬂs) )
s=1

where i, Bg, and Bs are separate hyper-parameters for
keypoints, edges, and symmetry correspondences. Y and
> denote the covariance information attached to the key-
point and edge predictions. |lz||4 = (7 Ax)z. When
covariances of predictions are unavailable, we simply set
Y, = X = I5. The above optimization problem is solved
by Gauss-Newton method starting from R and ¢,

In the supp. material, we provide a stability analysis of
(9), and show how the optimal solution of (9) changes with
respect to noise in predicted representations. We also show
collaborative strength among all three intermediate repre-
sentations. While keypoints significantly contribute to the
accuracy of ¢, edge vectors and symmetry correspondences
can stablize the regression of R.

3.4. HybridPose Training

This section describes how to train the prediction net-
works and hyper-parameters of HybridPose using a labeled
dataset 7 = {I,(K9", &9, 89", (RS",t9"))}. With I, K¥,
E?t, S?t, and (R?t, t?t), we denote the RGB image, labeled
keypoints, edges, symmetry correspondences, and ground-
truth object pose, respectively. A popular strategy is to train
the entire model end-to-end, e.g., using recurrent networks
to model the optimization procedure and introducing loss
terms on the object pose output as well as the intermedi-
ate representations. However, we found this strategy sub-
optimal. The distribution of predicted elements on the train-
ing set differs from that on the testing set. Even by carefully
tuning the trade-off between supervisions on predicted ele-
ments and the final object pose, the pose regression model,
which fits the training data, generalizes poorly on the testing
data.

Our approach randomly divides the labeled set 7 =
Tirain U Toar into a training set and a validation set. Tyqin
is used to train the prediction networks, and 7, trains the
hyper-parameters of the pose regression model. Implemen-
tation and training details of the prediction networks are
presented in Section 4.1. In the following, we focus on
training the hyper-parameters using 7.

Initialization sub-module. Let R and t"* be the out-
put of the initialization sub-module. We obtain the optimal
hyper-parameters a g and ag by solving the following opti-
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mization problem:

jmin >0 (IRF = RY 5+ 14 = ¢7]%). (10)
T€Tpose

Since the number of hyper-parameters is rather small, and
the pose initialization step does not admit an explicit ex-
pression, we use the finite-difference method to compute
numerical gradient, i.e., by fitting the gradient to samples of
the hyper-parameters around the current solution. We then
apply back-track line search for optimization.
Refinement sub-module. Let 3 = {fx, s, Bs} be the
hyper-parameters of this sub-module. For each instance
(I, (K, &9, 89, (RI',t9"))) € Toar, denote the objec-
tive function in (9) as fr(c,3), where ¢ = (¢, e")7 ¢
RY is a local parameterization of R; and %;, i.e., Ry =
exp(ex )Ry, t; = tJ' + €. c encodes the different the cur-
rent estimated pose and the ground-truth pose in SE(3).

The refinement module solves an unconstrained opti-
mization problem, whose optimal solution is dictated by
its critical points and the loss surface around the critical
points. We consider two simple objectives. The first objec-
tive forces %(0, B) = 0, or in other words, the ground-
truth is approximately a critical point. The second ob-

2
jective minimizes the condition number n(%zfc’ (0,8)) =

Amax (% (0, 5)) /Amin (% (0, 5)) . This objective reg-
ularizes the loss surface around each optimal solution, pro-
moting a large converge radius for f7 (¢, 3). With this setup,

we formulate the following objective function to optimize

B:

2
min 3 120,012+ on(G L 0.0)

dc 0%c
I€Tval

where 7 is set to 10~%. The same strategy used in (10) is
then applied to optimize (11).

4. Experimental Evaluation

This section presents an experimental evaluation of the
proposed approach. Section 4.1 describes the experimental
setup. Section 4.2 quantitatively and qualitatively compares
HybridPose with other 6D pose estimation methods. Sec-
tion 4.3 presents an ablation study to investigate the effec-
tiveness of symmetry correspondences, edge vectors, and
the refinement sub-module.

4.1. Experimental Setup

Datasets. We consider two popular benchmark datasets
that are widely used in the 6D pose estimation problem,
Linemod [12] and Occlusion Linemod [3]. In comparsion
to Linemod, Occlusion Linemod contains more examples
where the objects are under occlusion. Our keypoint anno-
tation strategy follows that of [34], i.e., we choose |K| = 8

keypoints via the farthest point sampling algorithm. Edge
vectors are defined as vectors connecting each pair of key-
points. In total, each object has |E] = w =28
edges. We further use the algorithm proposed in [8] to anno-
tate Linemod and Occlusion Linemod with reflection sym-
metry labels. On each dataset, we randomly select 80% of
the examples for training, 20 instances for validation, and
the rest for testing.

Implementation details. We use ResNet [11] with pre-
trained weights on ImageNet [7] to build the prediction net-
works fj°, f5, and fS. The prediction networks take an
RGB image I of size (3, H, W) as input, and output a ten-
sor of size (C, H, W), where (H,W) is the image resolu-
tion, and C' = 1+ 2|K|+2|€| +2 is the number of channels
in the output tensor.

The first channel in the output tensor is a binary segmen-
tation mask M. If M (z,y) = 1, then («,y) corresponds to
a pixel on the object of interest in the input image /. The
segmentation mask is trained using the cross-entropy loss.

The 2|K| channels afterwards in the output tensor give
x and y components of all |XC| keypoints. A voting-based
keypoint localization scheme [34] is applied to extract the
coordinates of 2D keypoints from this 2|K|-channel tensor
and the segmentation mask M.

The next 2|£| channels in the output tensor give the = and
y components of all |€| edges, which we denote as Edge.
Let i (0 < i < |€]) be the index of an edge. Then

Edge; = {(Edge(2i,z,y), BEdge(2i + 1,z,y))|M (z,y) = 1}

is a set of 2-tuples containing pixel-wise predictions of the
it" edge vector in Edge. The mean of Edge; is extracted
as the predicted edge.

The final 2 channels in the output tensor define the x
and y components of symmetry correspondences. We de-
note this 2-channel “map” of symmetry correspondences
as Sym. Let (x,y) be a pixel on the object of inter-
est in the input image, i.e. M(x,y) = 1. Assuming
Az = Sym(0,z,y) and Ay = Sym(1, z,y), we consider
(z,y) and (x + Az, y + Ay) to be symmetric with respect
to the reflection symmetry plane.

We train all three intermediate representations using the
smooth /7 loss described in [9]. Network training employs
the Adam [17] optimizer for 500 epochs. The learning rate
is 0.02 before the 200" epoch, and 0.002 after the 200"
epoch. Training weights of the segmentation mask, key-
points, edge vectors, and symmetry correspondences are
1.0, 10.0, 0.1, and 0.1, respectively.

The architecture described above achieves good perfor-
mance in terms of detection accuracy. Nevertheless, it
should be emphasized that the framework of HybridPose
can incorporate future improvements in keypoint, edge vec-
tor, and symmetry correspondence detection techniques.
Besides, Hybridpose can be extended to handling multi-
ple objects within an image. One approach is to pre-

436



Figure 3. Pose regression results. HybridPose is able to accurately predict 6D poses from RGB images. HybridPose handles situations
where the object has no occlusion (a, d, f, h), light occlusion (b, ¢), and severe occlusion (e, g). For illustrative purposes, we only draw 50

randomly selected symmetry correspondences in each example.

dict instance-level rather than semantic-level segmentation
masks by methods such as Mask R-CNN [10]. Intermediate
representations are then extracted from each instance, and
fed to the pose regression module in 3.3.

Evaluation protocols. We use two metrics to evaluate the
performance of HybridPose:

1. ADD(-S) [12, 42] first calculates the distance between
two point sets transformed by predicted pose and ground-
truth pose respectively, and then extracts the mean distance.
When the object possesses symmetric pose ambiguity, the
mean distance is computed from the closest points between
two transformed sets. ADD(-S) accuracy is defined as the
percentage of examples whose calculated mean distance is
less than 10% of the model diameter.

2. In the ablation study, we compute and report the the an-
gular rotation error || log(Rg, Rr)

2
error ”t%dt‘”ﬂ between the predicted pose (R, tr) and the

ground-truth pose (R, t4:), where d is object diameter.

|| and the relative translation

4.2. Analysis of Results

As shown in Table 1, Table 2, and Figure 3, HybridPose
leads to accurate pose estimation. On Linemod and Occlu-
sion Linemod, HybridPose has an average ADD(-S) accu-
racy of 94.5 and 79.2, respectively. The result on Linemod
outperforms all except one state-of-the-art approaches that

object |Tekin BB8 Pix2Pose PVNet CDPN DPOD | Ours

ape 21.6 404 58.1 436 644 877 |77.6

benchvise | 81.8 91.8 91.0 999 97.8 985 [99.6

cam 36.6 557 60.9 86.9 91.7 96.1 |95.9

can 68.8 64.1 84.4 955 959 99.7 [93.6

cat 41.8 62.6 65.0 793 838 94.7 [93.5

driller 635 744 763 96.4 962 98.8 [97.2

duck 272 443 438 52.6 668 86.3 |87.0

eggbox¥ | 69.6 57.8  96.8 99.2  99.7 999 [99.6

glueY 80.0 412 794 957 99.6 96.8 |98.7

holepuncher| 42.6 67.2 74.8 819 858 86.9 |925

iron 75.0 84.7 834 989 97.9 100.0 |98.1

lamp 71.1 76.5 82.0 993 979 96.8 |96.9

phone 477 54.0 45.0 924 90.8 94.7 |98.3

average 56.0 62.7 724 863 899 952 |945
Table 1. Quantitative evaluation: ADD(-S) accuracy on
Linemod. Baseline approaches: Tekin et al. [38], BB8 [36],
Pix2Pose [30], PVNet [34], CDPN [20], and DPOD [44]. Objects

annotated with () possess symmetric pose ambiguity.

regress poses from intermediate representations. The result
on Occlusion-Linemod outperforms all state-of-the-art ap-
proaches.

Baseline comparison on Linemod. HybridPose outper-
forms PVNet [34], the backbone model we use to predict
keypoints. The improvement is consistent across all ex-
cept one object classes, which demonstrates clear advantage
of using a hybrid as opposed to unitary intermediate rep-
resentation. HybridPose shows competitive results against
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