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Abstract

The “shared head for classification and localization”

(sibling head), firstly denominated in Fast RCNN [9], has

been leading the fashion of the object detection commu-

nity in the past five years. This paper provides the obser-

vation that the spatial misalignment between the two ob-

ject functions in the sibling head can considerably hurt the

training process, but this misalignment can be resolved by

a very simple operator called task-aware spatial disentan-

glement (TSD). Considering the classification and regres-

sion, TSD decouples them from the spatial dimension by

generating two disentangled proposals for them, which are

estimated by the shared proposal. This is inspired by the

natural insight that for one instance, the features in some

salient area may have rich information for classification

while these around the boundary may be good at bounding

box regression. Surprisingly, this simple design can boost

all backbones and models on both MS COCO and Google

OpenImage consistently by ∼3% mAP. Further, we propose

a progressive constraint to enlarge the performance mar-

gin between the disentangled and the shared proposals, and

gain ∼1% more mAP. We show the TSD breaks through the

upper bound of nowadays single-model detector by a large

margin (mAP 49.4 with ResNet-101, 51.2 with SENet154),

and is the core model of our 1st place solution on the

Google OpenImage Challenge 2019.

1. Introduction

Since the breakthrough of object detection performance

has been achieved by seminal R-CNN families [10, 9, 30]

and powerful FPN [21], the subsequent performance en-

hancement of this task seems to be hindered by some con-

cealed bottlenecks. Even the advanced algorithms bol-

stered by AutoML [8, 38] have been delved, the perfor-

mance gain is still limited to an easily accessible improve-

ment range. As the most obvious distinction from the
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Figure 1. Illustration of the task spatial misalignment. The first

column is the sensitive location for classification and the second

column is the sensitive location for localization. The third column

is the 3D visualization of the sensitivity distribution.

generic object classification task, the specialized sibling

head for both classification and localization comes into fo-

cus and is widely used in most of advanced detectors in-

cluding single stage family [25, 33, 12], two-stage fam-

ily [5, 18, 40, 26, 19] and anchor free family [17]. Con-

sidering the two different tasks share almost the same pa-

rameters, a few works become conscious about the conflict

between the two object functions in the sibling head and try

to find a trade-off way.

IoU-Net [15] is the first to reveal this problem. They

find the feature which generates a good classification score

always predicts a coarse bounding box. To handle this prob-

lem, they first introduce an extra head to predict the IoU as

the localization confidence, and then aggregate the localiza-

tion confidence and the classification confidence together to

be the final classification score. This approach does reduce

the misalignment problem but in a compromise manner –

the essential philosophy behind it is relatively raising the

confidence score of a tight bounding box and reduce the

score of a bad one. The misalignment still exists in each

spatial point. Along with this direction, Double-Head R-

CNN [35] is proposed to disentangle the sibling head into

11563



two specific branches for classification and localization, re-

spectively. Despite of elaborate design of each branch, it

can be deemed to disentangle the information by adding a

new branch, essentially reduce the shared parameters of the

two tasks. Although the satisfactory performance can be ob-

tained by this detection head disentanglement, conflict be-

tween the two tasks still remain since the features fed into

the two branches are produced by ROI Pooling from the

same proposal.

In this paper, we meticulously revisit the sibling head

in the anchor-based object detector to seek the essence of

the tasks misalignment. We explore the spatial sensitivity

of classification and localization on the output feature maps

of each layer in the feature pyramid of FPN. Based on the

commonly used sibling head (a fully connected head 2-fc),

we illustrate the spatial sensitive heatmap in Figure.1. The

first column is the spatial sensitive heatmap for classifica-

tion and the second column is for localization. The warmer

the better for the color. We also show their 3D visualiza-

tions in the third column. It’s obvious that for one instance,

the features in some salient areas may have rich informa-

tion for classification while these around the boundary may

be good at bounding box regression. This essential tasks

misalignment in spatial dimension greatly limits the perfor-

mance gain whether evolving the backbone or enhancing

the detection head. In other words, if a detector try to infer

the classification score and regression result from a same

spatial point/anchor, it will always get an imperfect trade-

off result.

This significant observation motivates us to rethink the

architecture of the sibling head. The optimal solution for

the misalignment problem should be explored by the spatial

disentanglement. Based on this, we propose a novel opera-

tor called task-aware spatial disentanglement (TSD) to re-

solve this barrier. The goal of TSD is to spatially disentan-

gle the gradient flows of classification and localization.

To achieve this, TSD generates two disentangled proposals

for these two tasks, based on the original proposal in classi-

cal sibling head. It allows two tasks to adaptively seek the

optimal location in space without compromising each other.

With the simple design, the performance of all backbones

and models on both MS COCO and Google OpenImage

are boosted by ∼3% mAP. Furthermore, we propose a pro-

gressive constraint (PC) to enlarge the performance margin

between TSD and the classical sibling head. It introduces

the hyper-parameter margin to advocate the more confident

classification and precise regression. ∼1% more mAP is

gained on the basis of TSD. Whether for variant backbones

or different detection frameworks, the integrated algorithms

can steadily improve the performance by ∼4% and even

∼6% for lightweight MobileNetV2. Behind the outstand-

ing performance gains, only a slight increased parameter is

required, which is negligible for some heavy backbones.

To summarize, the contributions of this paper are as fol-

lows:

1) We delve into the essential barriers behind the tangled

tasks in RoI-based detectors and reveal the bottlenecks that

limit the upper bound of detection performance.

2) We propose a simple operator called task-aware spa-

tial disentanglement (TSD) to deal with the tangled tasks

conflict. Through the task-aware proposal estimation and

the detection head, it could generate the task-specific fea-

ture representation to eliminate the compromises between

classification and localization.

3) We further propose a progressive constraint (PC) to

enlarge the performance margin between TSD and the clas-

sical sibling head.

4) We validate the effectiveness of our approach on

the standard COCO benchmark and large-scale OpenImage

dataset with thorough ablation studies. Compared with the

state-of-the-art methods, our proposed method achieves the

mAP of 49.4 using a single model with ResNet-101 back-

bone and mAP of 51.2 with heavy SENet154.

2. Methods

In this section, we first describe the overall framework

of our proposed task-aware spatial disentanglement (TSD),

then detail the sub-modules in Sec. 2.2 and 2.3. Finally, we

delve into the inherent problem in sibling head and demon-

strate the advantage of TSD.

2.1. TSD

As shown in Figure.2 (a), denote a rectangular bounding

box proposal as P and the ground-truth bounding box as B
with class y, the classical Faster RCNN [30] aims to min-

imize the classification loss and localization loss based on

the shared P :

L = Lcls(H1(Fl, P ), y) + Lloc(H2(Fl, P ),B) (1)

where H1(·) = {f(·), C(·)} and H2(·) = {f(·),R(·)}. f(·)
is the feature extractor and C(·) and R(·) are the func-

tions for transforming feature to predict specific category

and localize object. Seminal work [35] thinks the shared

f for classification and localization is not optimal, and

they disentangle it to fc and fr for classification and re-

gression, respectively. Although the appropriate head-

decoupling brings a reasonable improvement, the inherent

conflict caused by the tangled tasks in the spatial dimension

is still lurking.

For this potential problem, our goal is to alleviate the

inherent conflict in sibling head by disentangling the tasks

from the spatial dimension. We propose a novel TSD head

for this goal as shown in Figure 2. In TSD, the Eq. 1 can be

written as:

L = LD
cls(H

D
1 (Fl, P̂c), y) + LD

loc(H
D
2 (Fl, P̂r),B) (2)

11564



Input image

Backbone

RPN
Sibling head

(a) TSD

P

(b) Spatial 
disentanglement

(C) PC

Classification

01 D

more precise

01 D

W/o TSD

W TSD
(d) Test results

D
P : Proposal
D : Detection result

: disentangle function

: TSD score : TSD box
: disentangled proposal

more confidential
Localization

Figure 2. Illustration of the proposed TSD cooperated with Faster RCNN [30]. Input images are first fed into the FPN backbone and then,

region proposal P is generated by RPN. TSD adopts the RoI feature of P as input and estimates the derived proposals P̂c and P̂r for

classification and localization. Finally, two parallel branches are used to predict specific category and regress precise box, respectively.

where disentangled proposals P̂c = τc(P,∆C) and P̂r =
τr(P,∆R) are estimated from the shared P . ∆C is a

pointwise deformation of P and ∆R is a proposal-wise

translation. In TSD, HD
1 (·) = {fc(·), C(·)} and HD

2 (·) =

{fr(·),R(·)}.

In particular, TSD tasks the RoI feature of P as input,

and then generates the disentangled proposals P̂c and P̂r for

classification and localization, respectively. Different tasks

can be disentangled from the spatial dimension via the sepa-

rated proposals. The classification-specific feature maps F̂c

and localization-specific feature maps F̂r can be generated

through parallel branches. In the first branch, F̂c is fed into

a three-layer fully connected networks for classification. In

the second branch, the RoI feature F̂r corresponding to de-

rived proposal P̂r will be extracted and fed into a similar ar-

chitecture with the first branch to perform localization task.

By disentangling the shared proposal for the classification

and localization, TSD can learn the task-aware feature rep-

resentation adaptively. TSD is applicable to most existing

RoI-based detectors. As the training procedure adopts an

end-to-end manner cooperated with the well-designed pro-

gressive constraint (PC), it is robust to the change of back-

bones and input distributions (e.g., training with different

datasets.).

2.2. Taskaware spatial disentanglement learning

Inspired by Figure.1, we introduce the task-aware spa-

tial disentanglement learning to alleviate the misalignment

caused by the shared spatial clues. As shown in Fig-

ure.2 (b), define the RoI feature of P as F , we embed the

deformation-learning manner into TSD to achieve this goal.

For localization, a three-layer fully connected network Fr

is designed to generate a proposal-wise translation on P to

produce a new derived proposal P̂r. This procedure can be

formulated as:

∆R = γFr(F ; θr) · (w, h) (3)

where ∆R ∈ R
1×1×2 and the output of Fr for each layer

is {256, 256, 2}. γ is a pre-defined scalar to modulate the

magnitude of the ∆R and (w, h) is the width and height of

P . The derived function τr(·) for generating P̂r is:

P̂r = P +∆R (4)

Eq. 4 indicates the proposal-wise translation where the co-

ordinate of each pixel in P will be translated to a new co-

ordinate with the same ∆R. The derived proposal P̂r only

focuses on the localization task and in the pooling function,

we adopt the bilinear interpolation the same as [5] to make

∆R differentiable.

For classification, given the shared P , a pointwise de-

formation on a regular grid k × k is generated to estimate

a derived proposal P̂c with an irregular shape. For (x,y)-th

grid, the translation ∆C(x, y, ∗) is performed on the sam-

ple points in it to obtain the new sample points for P̂c. This

procedure can be formulated as:

∆C = γFc(F ; θc) · (w, h) (5)

where ∆C ∈ R
k×k×2. Fc is a three-layer fully connected

network with output {256, 256, k × k × 2} for each layer

and θc is the learned parameter. The first layer in Fr and

Fc is shared to reduce the parameter. For generating feature

map F̂c by irregular P̂c, we adopt the same operation with

deformable RoI pooling [5]:

F̂c(x, y)=
∑

p∈G(x,y)

FB(p0 +∆C(x, y, 1), p1 +∆C(x, y, 2))

|G(x, y)|

(6)

where G(x, y) is the (x,y)-th grid and |G(x, y)| is the num-

ber of sample points in it. (px, py) is the coordinate of the

sample point in grid G(x, y) and FB(·) is the bilinear inter-

polation [5] to make the ∆C differentiable.
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2.3. Progressive constraint

At the training stage, the TSD and the sibling detection

head defined in Eq. 1 can be jointly optimized by Lcls and

Lloc. Beyond this, we further design the progressive con-

straint (PC) to improve the performance of TSD as shown

in Figure.2 (c). For classification branch, PC is formulated

as:

Mcls= |H1(y|Fl, P )−HD
1 (y|Fl, τc(P,∆C))+mc|+ (7)

where H(y|·) indicates the confidence score of the y-th

class and mc is the predefined margin. | · |+ is same as

ReLU function. Similarly, for localization, there are:

Mloc = |IoU(B̂,B)− IoU(B̂D,B) +mr|+ (8)

where B̂ is the predicted box by sibling head and B̂D is re-

gressed by HD
2 (Fl, τr(P,∆R)). If P is a negative proposal,

Mloc is ignored. According to these designs, the whole loss

function of TSD with Faster RCNN can be define as:

L=Lrpn+Lcls+Lloc
︸ ︷︷ ︸

classical loss

+LD
cls+LD

loc+Mcls+Mloc
︸ ︷︷ ︸

TSD loss

(9)

We directly set the loss weight to 1 without carefully ad-

justing it. Under the optimization of L, TSD can adaptively

learn the task-specific feature representation for classifica-

tion and localization, respectively. Extensive experiments

in Sec.3 indicates that disentangling the tangled tasks from

the spatial dimension can significantly improve the perfor-

mance.

2.4. Discussion in context of related works

In this section, we delve into the inherent conflict in tan-

gled tasks. Our work is related to previous works in dif-

ferent aspects. We discuss the relations and differences in

detail.

2.4.1 Conflict in sibling head with tangled tasks

Two core designs in classical Faster RCNN are predicting

the category for a given proposal and learning a regres-

sion function. Due to the essential differences in optimiza-

tion, classification task requires translation-agnostic prop-

erty and to the contrary, localization task desires translation-

aware property. The specific translation sensitivity property

for classification and localization can be formulated as:

C(f(Fl, P )) = C(f(Fl, P + ε)),

R(f(Fl, P )) 6= R(f(Fl, P + ε))
(10)

where ∀ε, IoU(P + ε,B) ≥ T . C is to predict category

probability and R is the regression function whose output

is (∆x̂,∆ŷ,∆ŵ,∆ĥ). f(·) is the shared feature extractor

in classical sibling head and T is the threshold to determine

whether P is a positive sample. There are entirely different

properties in these two tasks. The shared spatial clues in

Fl and feature extractor for these two tasks will become the

obstacles to hinder the learning. Different from [35, 15,

5, 43] where the evolved backbone or feature extractor is

designed, TSD decouples the classification and regression

from spatial dimension by separated P̂∗ and f∗(·).

2.4.2 Different from other methods

IoU-Net [15] first illustrates the misalignment between clas-

sification and regression. To alleviate this, it directly pre-

dicts the IoU to adjust the classification confidence via

an extra branch. Unfortunately, this approach does not

solve the inherent conflict between tangled tasks. For this

same problem, Double-Head R-CNN [35] explores the op-

timal architectures for classification and localization, re-

spectively. To learn more effective feature representation,

DCN [5] with deformable RoI pooling is proposed to ex-

tract the semantic information from the irregular region.

Whether evolving the backbone or adjusting the detection

head, performance can be improved, but the increase is lim-

ited.

In this paper, we observe that the essential problem be-

hind the limited performance is the misaligned sensitivity

in the spatial dimension between classification and local-

ization. Neither designing better feature extraction meth-

ods nor searching for the best architecture can solve this

problem. In this dilemma, TSD is proposed to decouple the

classification and localization from both the spatial dimen-

sion and feature extractor. TSD first performs spatial disen-

tanglement for classification and localization via separated

proposals and feature extractors to break the predicament.

With the further well-designed PC, it can learn the optimal

sensitive location for classification and localization, respec-

tively. Moreover, TSD is still applicable to DCN [5] al-

though deformable RoI pooling in DCN is used to assist in

estimating F̂c. By task-aware spatial disentanglement, the

simple TSD can easily achieve excellent performance for

different backbones.

3. Experiments

We perform extensive experiments with variant back-

bones on the 80-category MS-COCO dataset [23] (ob-

ject detection and instance segmentation) and 500-category

OpenImageV5 challenge dataset [16]. For COCO dataset,

following the standard protocol [27], training is performed

on the union of 80k train images and 35k subset of val im-

ages and testing is evaluated on the remaining 5k val im-

ages (minival). We also report results on 20k test-dev. For

OpenImage dataset, following the official protocol [16], the

model is trained on 1,674,979 training images and evaluated
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Figure 3. Ablation studies on variant disentanglement options. (a)-

(d) indicate disentangling the detector from stride 8, stride 16,

stride 32 and sibling head, respectively.

on the 34,917 val images. The AP.5 on public leaderboard

is also reported.

3.1. Implementation details

We initialize weights from pre-trained models on Ima-

geNet [31] and the configuration of hyper-parameters fol-

lows existing Faster RCNN [30]. Images are resized such

that the shorter edge is 800 pixels. The anchor scale and

aspect ratio are set to 8 and {0.5, 1, 2}. We train the models

on 16 GPUs (effective mini-batch size is 32) for 13 epochs,

with a learning rate warmup strategy [11] from 0.00125 to

0.04 in the first epoch. We decrease the learning rate by

10 at epoch 8 and epoch 11, respectively. RoIAlign [13] is

adopted in all experiments, and the pooling size is 7 in both

H∗
1 and H∗

2. We use SGD to optimize the training loss with

0.9 momentum and 0.0001 weight decay. No data augmen-

tations except standard horizontal flipping are used. Syn-

chronized BatchNorm mechanism [29, 11] is used to make

multi-GPU training more stable. At the inference stage,

NMS with 0.5 IoU threshold is applied to remove duplicate

boxes. For experiments in the OpenImage dataset, class-

aware sampling is used.

3.2. Ablation studies

In this section, we conduct detailed ablation studies on

COCO minival to evaluate the effectiveness of each mod-

ule and illustrate the advance and generalization of the pro-

posed TSD. mc and mr are set to 0.2 in these experiments.

Task-aware disentanglement. When it comes to tan-

gled tasks conflict in sibling detection head, it’s natural to

think about decoupling different tasks from the backbone or

detection head. To evaluate these ideas, we conduct several

experiments to illustrate the comparison between them. As

shown in Figure.3, we design different decoupling options

including backbone disentanglement and head disentangle-

ment. Detailed performance is shown in Table.1. Decou-

pling the classification and localization from the backbone

largely degrades the performance. It clearly shows that the

Disentanglement #param AP AP.5 AP.75

ResNet-50 41.8M 36.1 58.0 38.8

ResNet-50+Ds8 81.1M 22.3 46.3 16.7

ResNet-50+ Ds16 74.0M 22.0 46.2 16.3

ResNet-50+ Ds32 59M 20.3 44.7 13.2

ResNet-50+ Dhead 55.7M 37.3 59.4 40.2

TSD w/o PC 58.9M 38.2 60.5 41.1

Table 1. Detailed performance and #parameter of different disen-

tanglement methods.

semantic information in the backbone should be shared by

different tasks. As expected, the task-specific head can sig-

nificantly improve the performance. Compared with Dhead,

TSD w/o PC can further enhance the AP with the slight in-

creased parameters, even for the demanding AP.75. When

faced with heavy backbones, a slight increased parameter is

trivial but can still significantly improve the performance.

This also substantiates the discussion in Sec. 2.4.1 that dis-

entangling the tasks from spatial dimension can effectively

alleviate the inherent conflict in sibling detection head.

Method AP AP.5 AP.75

TSD w/o PC 38.2 60.5 41.1

+ Joint training with sibling head H∗ 39.7 61.7 42.8

Table 2. Result of joint training with sibling H∗. The ResNet-50

with FPN is used as the basic detector.

Joint training with sibling head H∗. In TSD, the

shared proposal P can also be used to perform classification

and localization in an extra sibling head. We empirically

observe that the training of sibling head is complementary

to the training of TSD, and the results are demonstrated in

Table.2. This indicates that the derived proposals P̂c and P̂r

are not conflict with the original proposal P . At the infer-

ence stage, only the TSD head is retained.

Method TSD
PC

AP AP.5 AP.75Mcls Mloc

ResNet-50 X 39.7 61.7 42.8

ResNet-50 X X 40.1 61.7 43.2

ResNet-50 X X 40.8 61.7 43.8

ResNet-50 X X X 41.0 61.7 44.3

Table 3. Ablation studies on PC. All of the experiments is joint

training with sibling head H∗. mc and mr are set to 0.2.

Effectiveness of PC. In Sec. 2.3, we further propose the

PC to enhance the performance of TSD. Table.3 reports the

detailed ablations on it. We find that PC significantly im-

proves the AP.75 by 1.5 and AP.5 is barely affected. This

demonstrates that PC aims to advocate more confidential

classification and precise regression for the accurate boxes.

Even on the strict testing standards AP (IoU from 0.5:0.95),
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1.3 AP gain can also be obtained.

Method PC P̂c P̂r AP AP.5 AP.75

TSD Point.w - 38.0 60.3 40.89

TSD Point.w Point.w 38.5 60.7 41.7

TSD Point.w Prop.w 38.2 60.5 41.1

TSD X Prop.w Prop.w 39.8 60.1 42.9

TSD X Point.w Point.w 40.7 61.8 44.4

TSD X Point.w Prop.w 41.0 61.7 44.3

Table 4. Results of different proposal learning manners for HD

∗
.

Derived proposal learning manner for HD
∗ . There

are different programmable strategies to generate the de-

rived proposal P̂r and P̂c including proposal-wise trans-

lation (Prop.w) in Eq. 4, pointwise deformation (Point.w)

such as deformable RoI pooling [5] or the tricky combi-

nation of them. To explore the differences of these learn-

ing manners, we conduct extensive experiments for COCO

minival with ResNet-50. Table.4 demonstrates the com-

parison results. These comparisons illustrate that Point.w

is beneficial to the classification task and cooperated with

PC, Prop.w performs a slight advantage on localization.

For generating the derived proposals, classification requires

the optimal local features without regular shape restrictions

and regression requires the maintenance of global geomet-

ric shape information.

Figure 4. Results of TSD with variant m∗ for PC. These experi-

ments are conducted based on ResNet-50 with FPN.

Delving to the effective PC. PC demonstrates its supe-

riority on regressing more precise bounding boxes. The

hyper-parameters mc and mr play important roles in the

training of TSD and to better understand their effects on

performance, we conduct detailed ablation studies on them.

Figure.4 reports the results and note that both of the Mlos

and Mcls can further improve the performance.

3.3. Applicable to variant backbones

Since the TSD and PC have demonstrated their outstand-

ing performance on ResNet-50 with FPN, we further delve

Method Ours AP AP.5 AP.75 runtime

ResNet-50 36.1 58.0 38.8 159.4 ms

ResNet-50 X 41.0 61.7 44.3 174.9 ms

ResNet-101 38.6 60.6 41.8 172.4ms

ResNet-101 X 42.4 63.1 46.0 189.0ms

ResNet-101-DCN 40.8 63.2 44.6 179.3ms

ResNet-101-DCN X 43.5 64.4 47.0 200.8ms

ResNet-152 40.7 62.6 44.6 191.3ms

ResNet-152 X 43.9 64.5 47.7 213.2ms

ResNeXt-101 [36] 40.5 62.6 44.2 187.5ms

ResNeXt-101 [36] X 43.5 64.5 46.9 206.6ms

Table 5. Results of TSD + PC with variant backbones. DCN means

deformable convolution. The runtime includes network forward

and post-processing (e.g., NMS for object detection). The runtime

is the averaged value on a single Tesla V100 GPU and CPU E5-

2680 v4.

into the adaptation on variant backbones. Based on Faster

R-CNN, we directly conduct several experiments with dif-

ferent backbones and Table.5 summarizes the detailed per-

formance on COCO minival. TSD can steadily improve the

performance by 3%∼5% with additional ∼10% time cost.

Note that ResNet-50+TSD with 58.9M parameter can even

outperform the ResNet-152 with 76.39M parameter. Based

on the ResNet family, TSD is a more preferred choice than

increasing backbone to improve performance. If not speci-

fied, all subsequent TSD indicates TSD+PC.

Method TSD AP.5 (Val) AP.5 (LB)

ResNet-50 64.64 49.79

ResNet-50 X 68.18 52.55

Cascade-DCN-SENet154 69.27 55.979

Cascade-DCN-SENet154 X 71.17 58.34

DCN-ResNeXt101∗ 68.70 55.05

DCN-ResNeXt101∗ X 71.71 58.59

DCN-SENet154∗ 70 57.771

DCN-SENet154∗ X 72.19 60.5

Table 6. Results of TSD on OpenImage dataset. * indicates we

expand the anchor scale to {8, 11, 14} and anchor aspect ratio

to {0.1, 0.5, 1, 2, 4, 8}. Furthermore, mult-scale test is used for

public leaderboard (LB) except for ResNet-50.

3.4. Applicable to Mask RCNN

The proposed algorithms largely surpass the classical

sibling head in Faster R-CNN. Its inherent properties de-

termine its applicability to other R-CNN families such as

Mask R-CNN for instance segmentation. To validate this,

we conduct experiments with Mask R-CNN [13]. Perfor-

mances are shown in Table.7 and the training configuration

in Mask R-CNN is the same as the experiments in Faster

R-CNN. It’s obvious that TSD is still capable of detection

branch in Mask R-CNN. The instance segmentation mask

AP can also obtain promotion.
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Method Ours APbb APbb
.5 APbb

.75 APmask APmask
.5 APmask

.75

ResNet-50 w. FPN 37.2 58.8 40.2 33.6 55.3 35.4

ResNet-50 w. FPN X 41.5 62.1 44.8 35.8 58.3 37.7

ResNet-101 w. FPN 39.5 61.2 43.0 35.7 57.9 38.0

ResNet-101 w. FPN X 43.0 63.6 46.8 37.2 59.9 39.5

Table 7. Results of Mask R-CNN with TSD. The proposed methods are only applied on the detection branch in Mask R-CNN. APbb means

the detection performance and APmask indicates the segmentation performance.

Method backbone b&w AP AP.5 AP.75 APs APm APl

RefineDet512 [41] ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4

RetinaNet800 [22] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2

CornerNet [17] Hourglass-104 [28] 40.5 56.5 43.1 19.4 42.7 53.9

ExtremeNet [42] Hourglass-104 [28] 40.1 55.3 43.2 20.3 43.2 53.1

FCOS [34] ResNet-101 41.5 60.7 45.0 24.4 44.8 51.6

RPDet [39] ResNet-101-DCN X 46.5 67.4 50.9 30.3 49.7 57.1

CenterNet511 [6] Hourglass-104 X 47.0 64.5 50.7 28.9 49.9 58.9

TridentNet [20] ResNet-101-DCN X 48.4 69.7 53.5 31.8 51.3 60.3

NAS-FPN [8] AmoebaNet (7 @ 384) X 48.3 - - - - -

Faster R-CNN w FPN [21] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2

Auto-FPN† [38] ResNet-101 42.5 - - - - -

Regionlets [37] ResNet-101 39.3 59.8 - 21.7 43.7 50.9

Grid R-CNN [27] ResNet-101 41.5 60.9 44.5 23.3 44.9 54.1

Cascade R-CNN [2] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2

DCR [4] ResNet-101 40.7 64.4 44.6 24.3 43.7 51.9

IoU-Net† [15] ResNet-101 40.6 59.0 - - - -

Double-Head-Ext† [35] ResNet-101 41.9 62.4 45.9 23.9 45.2 55.8

SNIPER [32] ResNet-101-DCN X 46.1 67.0 51.6 29.6 48.9 58.1

DCNV2 [43] ResNet-101 X 46.0 67.9 50.8 27.8 49.1 59.5

PANet [24] ResNet-101 X 47.4 67.2 51.8 30.1 51.7 60.0

GCNet [3] ResNet-101-DCN X 48.4 67.6 52.7 - - -

TSD† ResNet-101 43.1 63.6 46.7 24.9 46.8 57.5

TSD ResNet-101 43.2 64.0 46.9 24.0 46.3 55.8

TSD∗ ResNet-101-DCN X 49.4 69.6 54.4 32.7 52.5 61.0

TSD∗ SENet154-DCN [14] X 51.2 71.9 56.0 33.8 54.8 64.2

Table 8. Comparisons of single-model results for different algorithms evaluated on the COCO test-dev set. b&w indicates training with

bells and whistles such as multi-scale train/test, Cascade R-CNN or DropBlock [7]. † indicates the result on COCO minival set.

3.5. Generalization on largescale OpenImage

In addition to evaluate on the COCO dataset, we further

corroborate the proposed method on the large-scale Open-

Image dataset. As the public dataset with large-scale boxes

and hierarchy property, it brings a new challenge to the gen-

eralization of detection algorithms. To fully delve the effec-

tiveness of the proposed algorithm, we run a number of ab-

lations to analyze TSD. Table.6 illustrates the comparison

and note that, even for heavy backbone, TSD can still give

satisfactory improvements. Furthermore, TSD is comple-

mentary to Cascade R-CNN [2] and embedding it into this

framework can also enhance the performance by a satisfac-

tory margin.

3.6. Comparison with stateoftheArts

In this section, we evaluate our proposed method on

COCO test-dev set and compare it with other state-of-the-

art methods. mc and mr are set to 0.5 and 0.2, respec-

tively. For a fair comparison, we report the results of our

methods under different settings in Table.8. For compari-

son with Grid R-CNN [27], we extend the training epochs

for ResNet-101 to be consistent with it. For comparing with

the best single-model TridentNet∗, in TSD∗, we apply the

same configuration with it including multi-scale training,

soft-NMS [1], deformable convolutions and the 3× train-

ing scheme on ResNet-101. The best single-model ResNet-

101-DCN gives an AP of 49.4, already surpassing all of the

other methods with the same backbone. To our best knowl-

edge, for a single model with ResNet-101 backbone, our

result is the best entry among the state-of-the-arts. TSD

demonstrates its advantage on promoting precise localiza-

tion and confidential classification, especially on higher IoU

thresholds (AP.75). Furthermore, we explore the upper-

bound of TSD with a heavy backbone. Surprisingly, it can
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Figure 5. Visualization of the learnt P̂r and P̂c on examples from the COCO minival set. The first row indicates the proposal P (yellow

box) and the derived P̂r (red box) and P̂c (pink point, center point in each grid). The second row is the final detected boxes where the

white box is ground-truth. TSD deposes the false positives in the first two columns and in other columns, it regresses more precise boxes.

m
A

P

IoU criteria

ResNet-50
ResNet-50 w. TSD

Figure 6. mAP across IoU criteria from 0.5 to 0.9 with 0.1 interval.

achieve the AP of 51.2 with the single-model SENet154-

DCN on COCO test-dev set. Soft-NMS is not used in this

evaluation.

3.7. Analysis and discussion

Performance in different IoU criteria. Since TSD ex-

hibits superior ability on regressing precise localization and

predicting confidential category, we conduct several evalua-

tions with more strict IoU criteria on COCO minival. Fig-

ure.6 illustrates the comparison between TSD based Faster

R-CNN and baseline Faster R-CNN with the same ResNet-

50 backbone across IoU thresholds from 0.5 to 0.9. Obvi-

ously, with the increasing IoU threshold, the improvement

brought by TSD is also increasing.

Performance in different scale criteria. We have ana-

lyzed the effectiveness of TSD under different IoU criteria.

To better explore the specific improvement, we further test

the mAP under objects with different scales. Table.9 reports

the performance and TSD shows successes in objects with

variant scales, especially for medium and large objects.

What did TSD learn? Thanks to the task-aware spa-

tial disentanglement (TSD) and the progressive constraint

(PC), stable improvements can be easily achieved whether

for variant backbones or variant datasets. Beyond the quan-

titative promotion, we wonder what TSD learned compared

with the sibling head in Faster R-CNN. To better interpret

Criteria TSD AP.5 AP.6 AP.7 AP.8 AP.9

APsmall 38.4 33.7 26.7 16.2 3.6

APsmall X 40.0 35.6 28.8 17.7 5.3

APmedium 62.9 58.4 49.7 33.6 8.7

APmedium X 67.7 62.4 54.9 40.2 15.4

APlarge 69.5 65.5 56.8 43.2 14.8

APlarge X 74.8 71.6 65.0 53.2 27.9

Table 9. mAP across scale criteria from 0.5 to 0.9 with 0.1 interval.

this, We showcase the illustrations of our TSD compared

with sibling head as shown in Figure. 5. As expected,

through TSD, it can depose many false positives and regress

the more precise box boundary. For P̂r, it tends to translate

to the boundary that is not easily regressed. For P̂c, it tends

to concentrate on the local appearance and object context

information as it did in sibling head with deformable RoI

pooling [5]. Note that the tangled tasks in sibling head can

be effectively separated from the spatial dimension.

4. Conclusion

In this paper, we present a simple operator TSD to al-

leviate the inherent conflict in sibling head, which learns

the task-aware spatial disentanglement to bread through the

performance limitation. In particular, TSD derives two dis-

entangled proposals from the shared proposal and learn the

specific feature representation for classification and local-

ization, respectively. Further, we propose a progressive con-

straint to enlarge the performance margin between the dis-

entangled and the shared proposals, which provides addi-

tional performance gain. Without bells and whistles, this

simple design can easily boost most of the backbones and

models on both COCO and large scale OpenImage consis-

tently by 3%∼5%, and is the core model in our 1st solution

of OpenImage Challenge 2019.
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