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Figure 1: PREDICT & CLUSTER: Unsupervised action recognition from body keypoints. See additional examples in the

supplementary video.

Abstract

We propose a novel system for unsupervised skeleton-
based action recognition. Given inputs of body-keypoints
sequences obtained during various movements, our system
associates the sequences with actions. Our system is based
on an encoder-decoder recurrent neural network, where the
encoder learns a separable feature representation within its
hidden states formed by training the model to perform the
prediction task. We show that according to such unsuper-
vised training, the decoder and the encoder self-organize
their hidden states into a feature space which clusters simi-
lar movements into the same cluster and distinct movements
into distant clusters. Current state-of-the-art methods for
action recognition are strongly supervised, i.e., rely on pro-
viding labels for training. Unsupervised methods have been
proposed, however, they require camera and depth inputs
(RGB+D) at each time step. In contrast, our system is fully
unsupervised, does not require action labels at any stage
and can operate with body keypoints input only. Further-
more, the method can perform on various dimensions of
body-keypoints (2D or 3D) and can include additional cues
describing movements. We evaluate our system on three ac-
tion recognition benchmarks with different numbers of ac-
tions and examples. Our results outperform prior unsuper-
vised skeleton-based methods, unsupervised RGB+D based
methods on cross-view tests and while being unsupervised

have similar performance to supervised skeleton-based ac-
tion recognition.

1. Introduction

Robust action recognition, especially human action
recognition, is a fundamental capability in ubiquitous com-
puter vision and artificial intelligence systems. While re-
cent methods have shown remarkable success rates in rec-
ognizing basic actions in videos, current methods rely on
strong supervision with large number of training examples
accompanied with action labels. Collection and annota-
tion of large scale datasets is implausible for various types
of actions and applications. Furthermore, annotation is a
challenging problem by itself since it is often up to the in-
terpretation of the annotator to assign a meaningful label
for a given sequence. This is particularly the case in sit-
uations where it is unclear what is the ground truth label,
e.g., annotation of animal movements. Indeed, annotations
challenges are common in different contextual information
sources of movement, such as video (RGB), depth (+D) and
keypoints tracked over time. On the one hand, keypoints
include much less information compared to RGB+D data
and can be challenging to work with. On the other hand,
however, focusing on keypoints can often isolate the actions
and provide more robust unique features for them. For hu-
man action recognition, time-series of body joints (skele-

9631



ton) tracked over time are indeed known as effective de-
scriptors of actions. Here we focus on 3D skeleton time-
sequences and propose an unsupervised system to learn fea-
tures and assign actions to classes according to them. We
call our system PREDICT & CLUSTER (P&C) since it is
based on training an encoder-decoder type network to si-
multaneously predict and cluster skeleton sequences such
that the network learns an effective hidden feature repre-
sentation of the actions. Indeed, an intuitive replacement
of a classification supervised task by a non-classification
unsupervised task is to attempt to continue (predict) or re-
produce (re-generate) the given sequence such that it leads
the hidden states to capture key features of the actions. In
the encoder-decoder architecture, the prediction task is typ-
ically implemented as follows: given an action sequence as
the encoder input, the decoder continues or generates the
encoder input sequence. Since inputs are sequences, both
the decoder and the encoder are recurrent neural networks
(RNN) containing cells with hidden variables for each time
sample in a sequence. The final hidden state of the encoder
is typically being utilized to represent the action feature.
While the encoder contains the final action feature, since the
gradient during training flows back from the decoder to the
encoder, it turns out that the decoder training strategies sig-
nificantly determine the effectiveness of the representation.
Specifically, there are two types of decoder training strate-
gies proposed for such prediction/re-generation task [26].
The first strategy is a conditional strategy, where the out-
put of the previous time-step of the decoder is used as the
input to the current time-step. With such strategy, the out-
put of the decoder is expected to be continuous. In con-
trast, the unconditional strategy assigns a zero input into
each time-step of the decoder. Previous work showed that
unconditional training of the decoder is expected to have
better prediction performance since it effectively weakens
the decoder and thus forces the encoder to learn a more in-
formative representation.

In our system, we extend such strategies to enhance the
encoder representation. This results in enhanced clustering
and organization of actions in the feature space. In par-
ticular, we propose two decoder training strategies, Fixed
Weights and Fixed States to further penalize the decoder.
The implementation of these strategies guides the encoder
to further learn the feature representation of the sequences
that it processes. In fact, in both strategies, the decoder is
a ‘weak decoder’, i.e., the decoder is effectively not be-
ing optimized and serves the role of propagating the gra-
dient to the encoder to further optimize its final state. Com-
bining these two strategies together we find that the net-
work can learn a robust representation and our results show
that this strategy can achieve significantly enhanced perfor-
mance than unsupervised approaches trained without them.
We demonstrate the effectiveness and the generality of our

proposed methodology by evaluating our system on three
extensive skeleton-based and RGB+D action recognition
datasets. Specifically, we show that our P&C unsuper-
vised system achieves high accuracy performance and out-
performs prior methods.

2. Related Work

The objective of action recognition is to assign a class la-
bel to a sequence of frames with context information on the
action performed, Fig. 1. Numerous approaches have been
introduced particularly for human movement action recog-
nition. Such approaches use video frames (RGB), and/or
depth (RGB+D) and/or skeleton data, i.e. tracking of body
joints (keypoints). Performing exclusive skeleton-based ac-
tion recognition is especially advantageous since requires
much less data, it is relatively easy to acquire and there-
fore has the potential to be performed in real-time. Fur-
thermore, skeleton data can be used to understand the ex-
clusive features of the actions in contrast to videos and
depth that include unrelated features such as background.
Indeed, in recent years, various supervised and unsuper-
vised approaches have been introduced for human skeleton-
based action recognition. Most of the skeleton-based ap-
proaches have been supervised where an annotated set of
actions and labels should be provided for training. In an un-
supervised setup, the problem of action recognition is much
more challenging. Only a few unsupervised skeleton-based
approaches have been proposed and several unsupervised
approaches have been developed to use more information
such as video frames and depth, i.e., unsupervised RGB+D.
We review these prior approaches below and compare our
results with them.

For supervised skeleton-based action recognition, prior
to deep learning methods, classical approaches were pro-
posed to map the actions from Lie group to its Lie alge-
bra and to perform classification using a combination of
dynamic time warping, Fourier temporal pyramid represen-
tation and linear SVM (e.g. LARP [28]). Deep learning
approaches have been developed to classify skeleton data
as well, in particular, models based on RNN designed to
work with sequences. For example, Du et al. [3] used hi-
erarchical RNN (HBRNN-L) for action classification and
Shahroudy et al. [21] proposed the Part-aware LSTM (P-
LSTM) as the baseline for large scale skeleton action recog-
nition with NTU RGB+D dataset. Since skeleton data is
noisy, largely due to variance in camera views, prior works
proposed a view-adaptive RNN (VA-RNN) which learns
a transformation from original skeleton data to a general
pose [35]. CNN based approaches for supervised skeleton
based recognition have been proposed as well. Such ap-
proaches require a representation of body joints that can be
processed by CNN. Spatio-temporal skeleton sequence can
be represented as a matrix in which each column vector rep-
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Figure 2: PREDICT & CLUSTER system summary. A: System overview. B: Encoder-Decoder architecture.

resents an instant in time and elements of the vector are the
coordinates of the joints. Such a matrix can be then con-
verted to an image on which CNN is trained for classifica-
tion [2]. In addition, enhanced skeleton visualization meth-
ods have been developed in conjunction with CNN classi-
fication for view invariant human action recognition [13].
Recently, Graph Neural Networks (GNN) gained popular-
ity in skeleton-based action recognition. The data structure
in these networks is a graph which corresponds to the hu-
man skeleton, i.e., vertices correspond to joints and edges
to bones. With the graph structure, the network learns rep-
resentations constrained by the human skeleton anatomy.
In the supervised action recognition setup, GNNs are im-
plemented using Graph Convolutional Networks (GCN).
In particular, Spatio-Temporal GCN was designed to learn
both spatial and temporal patterns from skeleton data [33].
A recent extension of the approach showed that directed
GCN with two streams can encode skeleton representa-
tion and adaptively learn the graph [22, 23]. Furthermore,
Actional-Structural GCN which incorporates a prediction
module was proposed to enhance action recognition [ 1].
While recent supervised approaches show robust perfor-
mance on action recognition, the unsupervised setup is ad-
vantageous since it does not require labeling of sequences
and may not require re-training when additional actions not
included in the initial training set are introduced. Unsu-
pervised methods typically aim to obtain an effective fea-
ture representations by predicting future frames of input ac-
tion sequences or by re-generating the sequences. Unsuper-
vised approaches were mostly proposed for videos of ac-
tions or videos with additional information such as depth or
optical flow. Specifically, Srivastava et al. [26] proposed a
recurrent-based sequence to sequence (Seq2Seq) model as
an autoencoder to learn the representation of a video. Such
an approach is at the core of our method for body joints
input data. However, as we show, the approach will not
be able to achieve efficient performance without particular
training strategies that we develop to weaken the decoder
and strengthen the encoder. Subsequently, Luo et al. [14]
developed a convolutional LSTM to use depth and optical

flow information such that the network encodes depth input
and uses the decoder to predict the optical flow of future
frames. Furthermore, Li et al. [10] proposed to employ a
generative adversarial network (GAN) with a camera-view
discriminator to assist the encoder in learning better repre-
sentations.

As in unsupervised RGB+D approaches, skeleton-based
approaches utilize the task of human motion prediction as
the underlying task to learn action feature representation.
For such a task, RNN-based Seq2Seq models [15] were
shown to achieve improved accuracy in comparison to non-
Seq2Seq RNN models such as ERD [5] and S-RNN [7].
GNN turned out to be effective network architecture as well,
e.g., unsupervised GNN was shown to effectively learn the
dynamics in real motion capture and sports tracking data
[8]. Recently, networks incorporating GANs have achieved
improved performance on this task by utilizing the predictor
network being RNN Seq2Seq and the discriminator [6].

Unsupervised approaches for skeleton-based action
recognition are scarce since obtaining effective feature rep-
resentations from coordinate positions of body joints is
challenging. Indeed, prior non-deep work have shown that
representations play a significant role in modeling and pre-
dicting 3D human skeleton movements [34, 18, 19, 1]. Re-
cently, deep approaches have been proposed for human mo-
tion prediction. In particular, Zheng et al. [36] (LongT
GAN) proposed a GAN encoder-decoder such that the de-
coder attempts to re-generate the input sequence and the dis-
criminator is used to discriminate whether the re-generation
is accurate. The feature representation used for action
recognition is taken from the final state of the encoder hid-
den representation. During training, masked ground truth
input is provided to the decoder. The method was tested on
motion-capture databases, e.g., CMU Mocap, HDMO05[ 7]
and Berkeley MHADI | 8]. Such datasets were captured by
physical sensors (markers) and thus are much cleaner than
marker-less data collected by depth cameras and do not test
for multi-view variance which significantly affects action
recognition performance. Our baseline network architec-
ture is similar to the structure of LongT GAN since we use

9633



Camera Coordinate Frame Transformed Coordinate Frame

View Invariant

v3
Transformation

“Raw Skeleton” “View Invariant Skeleton”

Figure 3: Pre-processing of body keypoints sequences ac-
cording to view-invariant transformation.

an encoder and decoder and we also use the final state of
the encoder as the feature representation of the action se-
quences. However, as we show, it is required to develop ex-
tended training strategies for the system to be applicable to
larger scale multi-view and multi-subject datasets. Specifi-
cally, instead of using the masked ground truth as an input
into the decoder, we propose methods to improve learning
of the encoder and to weaken the decoder.

3. Methods

Pre-processing of body keypoints: Body keypoints data
is a sequence XY of T frames captured from a particular
view, where each frame represents N = 3D coordinates of
J joint keypoints

XV ={z1,20,..., 27}, 2, € RN,
Action sequences are captured from different views by
depth cameras, such as Microsoft Kinect. 3D human joint
positions are extracted from a single depth image by a real-
time human skeleton tracking framework [24]. We align the
action sequences by implementing a view-invariant trans-
formation which transforms keypoints coordinates from
original coordinate system into a view-invariant coordinate
system X" — X. The transformed skeleton joint coordi-
nates are given by

] = R™Y(a] —dg),Vj e JVt e T,

where 7 € R3*! are the coordinates of the j-th joint of
the ¢-th frame, R is the rotation matrix and dp is the origin
of rotation. These are computed according to

(%1 ’ﬁz V1 X @2
R= = = dR = CCrO,Ot
[oall [llo2ll] flox x ’Uz||] ’ e
where v; = 2P'¥ — 2% is the vector perpendicular to the
hipleft __ hipright .

ground, vy = x,_ Ty~ 1 the difference vector be-
tween left and right hips joints in the initial frame of each
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Figure 4: Encoder states trajectories visualized by projec-
tion to 3 PCA space. Each color represents one type of
action (blue: donning, red: sit down, green: carry, black:
stand up). The cross symbol denotes the final state. Left:
before training; Right: after training.

denote the vector projection of vy onto v; and the cross
product of v; and 9y, respectively. zR°% is the coordinate
of the root joint in the initial frame [9] (see Fig. 3). Since
actions can be of different lengths we down-sample each
action sequence to be of at most of a fixed length 7,4, and
pad with zeros if the sequence length is smaller than that.
Self-organization of hidden states clustering: A key
property that we utilize in our system is the recent obser-
vation that propagation of input sequences through RNN
self-organizes them into clusters within the hidden states
of the network, i.e., clusters represent features in an embed-
ding of the hidden states [4]. Such strategy is a promising
unsupervised method for multi-dimensional sequence clus-
tering such as body keypoints sequences [27]. As we show,
self-organization is inherent to any RNN architecture and
even holds for random RNN which are initialized with ran-
dom weights and kept fixed, i.e., no training is performed.
Indeed, when we input sequences of body keypoints of dif-
ferent actions into random RNN, the features in the hidden
state space turn out to be effective filters. While such strat-
egy is promising, the recognition accuracy outcome appears
to be non-optimal (Table 1 P&C Rand). We therefore im-
plement an encoder-decoder system, which we call PRE-
DICT & CLUSTER (P&C), where the encoder propagates
input sequences and passes the last hidden state to the de-
coder. The decoder is used to regenerate the encoder in-
put sequences. Furthermore, we utilize the random network
setup (which does not require training) to choose the op-
timal hyper-parameters for the network to be trained. We
describe the components of P&C below.

Motion prediction: At the core of our unsupervised
method is an encoder-decoder RNN (Seq2Seq). Such net-
work models were shown to be effective in prediction of fu-
ture evolution of multi-dimensional time-series of features
including skeleton temporal data of various actions [ 15, 6].
In these applications the typical flow in the network is uni-
directional. The encoder processes an initial sequence of
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activity and passes the last state to the decoder which in
turn, based on this state generates the evolution forward.
We extend such network structure for our method (see sys-
tem overview in Fig. 2).

We propose a bi-directional flow such that the network
can capture better long-term dependencies in the action se-
quences. Specifically, the encoder is a multi-layered bi-
directional Gated Recurrent Unit (GRU) which input is a
whole sequence of body keypoints corresponding to an ac-
tion. We denote the forward and backward directio§ hid-
den states of the last layer of encoder at time ¢ as F; and

; respectively, and the final state of the encoder as their

concatenation Er = {Er, E} The decoder is a uni-
directional GRU with hidden states at time ¢ denoted as D;.
The final state of the encoder is fed into the decoder as its
initial state, i.e., Dy = E7. In such a setup, the decoder
generates a sequence based on Ep initialization. In a typ-
ical prediction task, the generated sequence will be com-
pared with forward evolution of the same sequence (predic-
tion loss). In our system, since our goal is to perform action
recognition, the decoder is required to re-generate the whole
input sequence (re-generation loss). Specifically, for the de-
coder outputs X = {&1,&2,...,Z7} the re-generation loss
function is the error between X and X. In particular, we use
mean square error (MSE) L = & S>> (2, — #,)? or mean
absolute error (MAE) L = = Zthl |z — &4 as plausible
losses.

Hyper-parameter search: As in any deep learning sys-
tem, hyper-parameters significantly impact network perfor-
mance and require tuning for optimal regime. We utilize
the self-organization feature of random initialized RNN to
propagate the sequences through the network and use net-
work performance prior to training as an optimization for
hyper-parameter tuning. Specifically, we evaluate the ca-
pacity of the encoder by propagating the skeleton sequence
through the encoder and evaluate the performance of recog-
nition on the final encoder state. We observe that this ef-
ficient hyper-parameter search significantly reduces total
training time when an optimal network amenable for train-
ing is being selected.

Training: With optimal hyper-parameter encoder being
set, training is performed on the outputs of the decoder to
predict (re-generate) the encoder’s input action sequence.
Training for prediction is typically performed according to
one of the two approaches: (i) unconditional training in
which zeros are being fed into the decoder at each time step
or (ii) conditional in which an initial input is fed into the
first time-step of the decoder and subsequent time-steps use
the predicted output of the previous time step as their input
[26]. Based on these training strategies, we propose two
decoder configurations (i) Fixed Weights decoder (FW) or
(ii) Fixed States decoder (FS) to weaken the decoder, i.e. to
force it to perform the re-generation based upon the infor-
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Figure 5: Feature-level autoencoder and KNN Classifier

mation provided by the hidden representation of the encoder
and thus improve the encoder’s clustering performance, see
Fig. 4.

1.Fixed Weights decoder (FW): The input into the decoder
is unconditional in this configuration. The decoder is not
expected to learn a useful information for prediction and it
exclusively relies on the state passed by the encoder. The
weights of the decoder can thereby be assigned as random
and the decoder is used as a recurrent propagator of the se-
quences. In training for the re-generation loss such config-
uration is expected to force the encoder to learn the latent
features and represent them with the final state passed to the
decoder. This intuitive method turns out to be computation-
ally efficient since only the encoder is being trained and our
results indicate favorable performance in conjunction with
KNN action classification.

2.Fixed States decoder (FS): The external input into the de-
coder is conditional in this configuration (external input into
each time-step is the output of the previous time-step), how-
ever the internal input, typically the hidden state from pre-
vious step, is replaced by the final state of the encoder Er.
Namely, in RNN cell

hy = o(Wyzy + Wige + b1), 9t = hi—1 — Er,
yr = oc(Wyht +by),

Tt4+1 = Yt,

with x; the external input, y, the output and h; the hidden
state at time-step ¢, h;_1 terms are replaced by Er. In addi-
tion, we also add residual connection between external in-
put and output, which has been shown useful in human mo-
tion prediction [ 5]. The final output and next input will be
Ut = Y1+ and T441 = Yy, respectively. The configuration
forces the network to rely on Er, instead of the hidden state
at previous time-step and eliminates vanishing of the gradi-
ent since during back-propagation at each time-step there is
a defined gradient back to the final encoder state.

Feature level auto-encoder: After training the prediction
network we extract the final encoder state Er as the fea-
ture vector associated with each action sequence. Since the
feature vector is high-dimensional, we use a feature-level
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auto-encoder that learns the core low dimensional compo-
nents of the high-dimensional feature so it can be utilized
for classification (Fig. 5). Specifically, we implement the
auto-encoder, denoted as f to be of an encoder-decoder ar-
chitecture with parameters 6 such that

Er = fo(Br) ~ Er.

The encoder and the decoder are multi-layer FC networks
with non-linear tanh activation and we implement the fol-
lowing 1oss lgec = ’ET — ET’

K-nearest neighbors classifier: For evaluation of our
method on action recognition task we use a K-nearest neigh-
bors (KNN) classifier on the middle layer of the auto-
encoder feature vector. Specifically, we apply the KNN
classifier (with k& = 1) on the features of the trained network
on all sequences in the training set to assign classes. We
then use cosine similarity as the distance metric to perform
recognition, i.e., place each tested sequence in a class. No-
tably, KNN classifier does not require to learn extra weights
for action placement.

4. Experimental Results and Datasets

Implementation details: To train the network, all body
keypoints sequences are pre-processed according to the
view-invariant transformation and down-sampled to have
at most 50 frames (Fig. 3). The coordinates are also nor-
malized to the range of [—1, 1]. Using the hyper-parameter
search, employing random RNN propagation discussed
above, we set the following architecture: Encoder: 3-Layer
Bi-GRU with N = 1024 units in each layer. Decoder: 1-
Layer Uni-GRU with N = 2048 units such that it is com-
patible with the dimensions of the encoder final state Fr.
All GRUs are initialized with a random uniform distribu-
tion. Feature-level auto-encoder: 6 FC Layers with the
following dimensions: input feature vector(dim= 2048) —
FC(1024) — FC(512) — FC(256)— FC(512)—FC(1024)
—FC(2048). All FCs use tanh activation except the last
layer which is linear. The middle layer of the auto-encoder
outputs a vector feature of 256 elements which is used as
the final feature. We use Adam optimizer and learning rate
starting from 10~ and 0.95 decay rate at every 1000 itera-
tions. The gradients are clipped if the norm is greater than
25 to avoid gradient explosion. It takes 0.7sec per training
iteration and 0.1sec to forward propagate with a batch size
of 64 on one Nvidia Titan X GPU. Please see additional de-
tails of architectural choices in the supplementary material.
Datasets: We use three different datasets for training, eval-
uation and comparison of our P&C system with related ap-
proaches. The three data-sets include various number of
classes, types of actions, body keypoints captured from dif-
ferent views and on different subjects. In these datasets,
the body keypoints are captured by depth cameras and

also include additional data, e.g., videos (RGB) and depth
(+D). Various types of action recognition approaches have
been applied to these datasets, e.g., supervised skeleton ap-
proaches and unsupervised RGB+D approaches. We list
these types of approaches and their performance on the tests
in the datasets in Table 1. Notably, as far as we know,
our work is the first fully unsupervised skeleton based
approach applied on these extensive action recognition
tests.

The datasets that we have applied our P&C system to
are (i) NW-UCLA, (ii) UWA3D, and (iii) NTU RGB+D.
The datasets include 3D body keypoints of 10, 30,60 ac-
tion classes respectively. We briefly describe them below.
North-Western UCLA (NW-UCLA) dataset [30] is cap-
tured by Kinect v1 and contains 1494 videos of 10 actions.
These actions are performed by 10 subjects repeated 1 to
6 times. There are three views of each action and for each
subject 20 joints are being recorded. We follow [13] and
[30] to use the first two views (V1,V2) for training and last
views (V3) to test cross view action recognition. UWA3D
Multiview Activity II (UWA3D) dataset [20] contains 30
human actions performed 4 times by 10 subjects. 15 joints
are being recorded and each action is observed from four
views: frontal, left and right sides, and top. The dataset
is challenging due to many views and the resulting self-
occlusions from considering only parts of them. In addition,
there is high similarity among actions, e.g., the two actions
”drinking” and “phone answering” have many keypoints
being near identical & idle and in the dynamic keypoints
there are subtle differences. NTU RGB+D dataset [21] is
a large scale dataset for 3D human activity analysis. This
dataset consists of 56880 video samples, captured from
40 different human subjects, using Microsoft Kinect v2.
NTU RGB+D(60) contains 60 action classes. We use the
3D skeleton data for our experiments such that each time-
sample contains 25 joints. We test our P&C method on both
cross-view and cross-subject protocols.

5. Evaluation and Comparison

Evaluation: In all experiments, we use the K-nearest
neighbors classifier with £ = 1 to compute the action recog-
nition accuracy and evaluate the performance of our P&C
method. We test different variants of P&C architectures
(combinations of components described in Section 3) and
report a subset of these in the paper: baseline random ini-
tialized encoder with no training (P&C-Rand), full system
with FS decoder and feature-level auto-encoder (P&C-FS-
AEC) and full system with FW decoder and feature-level
auto-encoder (P&C-FW-AEC). We report the rest of the
combinations and their results in the Supplementary mate-
rial.

Fig. 6 shows the optimization of the regeneration loss
(red) and the resulting accuracy (blue) during training for
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UWA3D (FS v.s. no FS), NTU-RGB+D Cross-View (FS v.s. no FS).

NW-UCLA UWA3D NTU RGB-D 60
Method (%) Method V3 (%) | VA(%) | | Method C-View | C-Subject
Supervised Skeleton Supervised Skeleton (%) (%)
HOPC[20] 74.2 HOJ3D[32] 15.3 28.2 Supervised Skeleton
Actionlet Ens [29] 76.0 2-layer P-LSTM[31] 27.6 24.3 HOPC[20] 52.8 50.1
HBRNN-L[3] 78.5 IndRNN (6 layers)[31] | 30.7 472 HBRNN[3] 64.0 59.1
VA-RNN-Aug[35] 90.7 IndRNN (4 layers)[31] | 34.3 54.8 2L P-LSTM[21] 70.3 62.9
AGC-LSTM[25] 93.3 SAT-GCIN[E ] i§~4 i6-i ST-LSTM[ 2] 717 69.2
0on 1. B B
Unsupervised RGBID : ZtROP[et] s[29] 49.2 438 VA-RNN-Aug[35] 87.6 79.4
Luo et al.[14] 50.7 HOPCJ[20] 527 51.8 Unsupervised RGB+D
Lietal.[10] 62.5 VA-RNN-Aug[35] 70.9 73.2 Shuffle & learn[16] 40.9 46.2
- _ Luo et al.[14] 53.2 61.4
Unsupervised Skeleton Unsupervised Skeleton Lietal[l0] 63.9 68.1
P&C Rand (Our) 72.0 P&C Rand (Our) 48.5 51.5
LongT GAN [36] 74.3 LongT GAN [36] 53.4 59.9 Unsupervised Skeleton
P&C FS-AEC (Our) 83.8 P&C FS-AEC (Our) 59.5 63.1 LongT GAN [36] 43.1 39.1
P&C FW-AEC (Our) 84.9 P&C FW-AEC (Our) 59.9 63.1 P&C Rand (Our) 56.4 39.6
P&C FS-AEC (Our) 76.3 50.6
P&C FW-AEC (Our) | 76.1 50.7

Table 1: Comparison of action recognition performance of our P&C system with state-of-the-art approaches of Supervised
Skeleton (blue) and Unsupervised RGB+D (purple); Unsupervised Skeleton (red)) types.
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Figure 7: Confusion matrices for testing P&C performance on the three datasets (from left to right): NW-UCLA (10 actions);
UWA3D V4 (30 actions); NTU-RGBD Cross-View (60 actions).
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Figure 8: t-SNE visualization of learned features on NW-
UCLA dataset.

each dataset. We include plots of additional P&C config-
urations in the Supplementary material. The initial accu-
racy appears to be substantial and this is attributed to the
hyper-parameter search being performed on random initial-
ized networks prior to training that we describe in Section
3. Indeed, we find that using appropriate initialization, the
encoder, without any training, effectively directs similar ac-
tion sequences to similar final states. Training enhances
this performance further in both P&C FW and P&C FS
configurations. Over multiple training iterations both P&C
FW and P&C FS achieve higher accuracy than no-FW and
no-FS in all datasets. While the convergence of the loss
curve indicates improvement of the accuracy, the value of
the loss does not necessarily indicate a better accuracy as
can be observed from loss and accuracy curves of training
on UWA3D and NTU-RGB+D (Fig. 6 middle, right).

We show the confusion matrices for the three consid-
ered datasets in Fig. 7. In NW-UCLA (with least classes)
we show the elements of the 10x10 matrix. Our method
achieves high-accuracy (> 83%) on average and there are
three actions (pick up with two hands, drop trash, sit down)
for which it recognizes them with nearly 100% accuracy.
We also show in Fig. 8 a t-SNE visualization of the learned
features for NW-UCLA test. Even in this 2D embedding
it is clearly evident that the features for each class are well
separated. As more action classes are considered, the recog-
nition becomes a more difficult task and also depends on the
amount of training data. For example, while NTU RGB+D
has more classes than UWA3D, the recognition accuracy
on NTU RGB+D is smoother and results with better perfor-
mance since it has 40 times more data than UWA3D. Our re-
sults show that our method is compatible with varying data
sizes and number of classes.

Comparison: We compare the performance of our P&C
method with prior related supervised and unsupervised
methods applied to (left-to-right): NW-UCLA, UWA3D,
NTU RGB+D datasets, see Table 1. In particular, we com-
pare action recognition accuracy with approaches based on
supervised skeleton data (blue), unsupervised RGB+D data

(purple) and unsupervised skeleton data (red). For compari-
son with unsupervised skeleton methods, we implement and
reproduce the LongTerm GAN model (LongT GAN) as in-
troduced in [36] and list its performance.

For NW-UCLA, P&C outperforms previous unsuper-
vised methods (both RGB+D and skeleton based). Our
method even outperforms the first three supervised meth-
ods listed in Table 1-left. UWA3D is considered a chal-
lenging test for many deep learning approaches since the
number of sequences is small, while it includes a large num-
ber of classes (30). Indeed, action recognition performance
of many supervised skeleton approaches is low (< 50%).
For such datasets, it appears that the unsupervised approach
could be more favorable, i.e., even P&C Rand reaches per-
formance of ~ 50%. LongT GAN achieves slightly higher
performance than P&C Rand, however, not as high as P&C
FS/FW-AEC which perform with =~ 60%. Only a single su-
pervised skeleton method, VA-RNN-Aug, is able to perform
better than our unsupervised approach, see Table 1-middle.
On the large scale NTU-RGB+D dataset, our method per-
forms extremely well on the cross-view test. It outper-
forms prior unsupervised methods (both RGB+D and skele-
ton based) and on-par with ST-LSTM (second best super-
vised skeleton method), see Table 1-right. On the cross-
subject test we obtain performance that is higher (including
P&C Rand) than the prior unsupervised skeleton approach,
however, our accuracy does not outperform unsupervised
RGB+D approaches. We believe that the reason stems from
skeleton based approaches not performing well in general
on cross-subject tests since additional aspects such as sub-
jects parameters, e.g., skeleton geometry and invariant nor-
malization from subject to subject, need to be taken into
account.

In summary, for all three datasets, we used a single archi-
tecture and it was able to outperform the prior unsupervised
skeleton method, LongT-GAN[36], most supervised skele-
ton methods and unsupervised RGB+D methods on cross
view tests and some supervised skeleton and unsupervised
RGB+D on large scale cross subject test.

6. Conclusion

We presented a novel unsupervised model for human
skeleton-based action recognition. Our system reaches en-
hanced performance compared to prior approaches due to
novel training strategies which weaken the decoder and
strengthen the training of the encoder. As a result, the net-
work learns more separable representations. Experimen-
tal results demonstrate that our unsupervised model can ef-
fectively learn distinctive action features on three bench-
mark datasets and outperform prior unsupervised meth-
ods.
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