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Abstract

This paper tackles the problem of motion deblurring of

dynamic scenes. Although end-to-end fully convolutional

designs have recently advanced the state-of-the-art in non-

uniform motion deblurring, their performance-complexity

trade-off is still sub-optimal. Existing approaches achieve

a large receptive field by increasing the number of generic

convolution layers and kernel-size, but this comes at the ex-

pense of of the increase in model size and inference speed.

In this work, we propose an efficient pixel adaptive and

feature attentive design for handling large blur variations

across different spatial locations and process each test im-

age adaptively. We also propose an effective content-aware

global-local filtering module that significantly improves

performance by considering not only global dependencies

but also by dynamically exploiting neighboring pixel infor-

mation. We use a patch-hierarchical attentive architecture

composed of the above module that implicitly discovers the

spatial variations in the blur present in the input image and

in turn, performs local and global modulation of interme-

diate features. Extensive qualitative and quantitative com-

parisons with prior art on deblurring benchmarks demon-

strate that our design offers significant improvements over

the state-of-the-art in accuracy as well as speed.

1. Introduction

Motion-blurred images form due to relative motion dur-

ing sensor exposure and are favored by photographers and

artists in many cases for aesthetic purpose, but seldom by

computer vision researchers, as many standard vision tools

including detectors, trackers, and feature extractors struggle

to deal with blur. Blind motion deblurring is an ill-posed

problem that aims to recover a sharp image from a given

image degraded due to motion-induced smearing of tex-

ture and high-frequency details. Due to its diverse applica-

tions in surveillance, remote sensing, and cameras mounted

∗Equal contribution.

10
-1

10
0

10
1

Runtime for an HD image (seconds)

28.5

29

29.5

30

30.5

31

31.5

32

P
S

N
R

 (
d

B
)

Nah CVPR17

Kupyn CVPR18

Tao CVPR18

Ours(a)

Zhang CVPR18

Zhang CVPR19

Gao CVPR19

Kypyn ICCV2019

Ours(b)

Figure 1. Comparison of different methods in terms of accuracy

and inference time. Our approach outperforms all previous meth-

ods.

on hand-held and vehicle-mounted cameras, deblurring has

gathered substantial attention from computer vision and im-

age processing communities in the past two decades.

Majority of traditional deblurring approaches are based

on variational model, whose key component is the regular-

ization term. The restoration quality depends on the selec-

tion of the prior, its weight, as well as tuning of other param-

eters involving highly non-convex optimization setups[14].

Non-uniform blind deblurring for general dynamic scenes is

a challenging computer vision problem as blurs arise from

various sources including moving objects, camera shake

and depth variations, causing different pixels to capture dif-

ferent motion trajectories. Such hand-crafted priors struggle

while generalizing across different types of real-world ex-

amples, where blur is far more complex than modeled [3].

Recent works based on deep convolutional neural net-

works (CNN) have studied the benefits of replacing the

image formation model with a parametric model that can

be trained to emulate the non-linear relationship between

blurred-sharp image pairs. Such works [13] directly regress

to deblurred image intensities and overcome the limited

representative capability of variational methods in describ-

ing dynamic scenes. These methods can handle combined

effects of camera motion and dynamic object motion and
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achieve state-of-the-art results on single image deblurring

task. They have reached a respectable reduction in model

size, but still lack in accuracy and are not real-time.

Existing CNN-based methods have two major limita-

tions: a) Weights of the CNN are fixed and spatially in-

variant which may not be optimal for different pixels in a

dynamically blurred scene (e.g., sky vs. moving car pix-

els). This issue is generally tackled by learning a highly

non-linear mapping by stacking a large number of filters.

But this drastically increases the computational cost and

memory consumption. b) A geometrically uniform recep-

tive field is sub-optimal for the task of deblurring. Large

image regions tend to be used to increase the receptive field

even though the blur is small. This inevitably leads to a

network with a large number of layers and a high compu-

tation footprint which slows down the convergence of the

network.

Reaching a trade-off between the inference-speed, recep-

tive field and the accuracy of a network is a non-trivial task

(see Fig. 1). Our work focuses on the design of efficient and

interpretable filtering modules that offer a better accuracy-

speed trade-off as compared to simple cascade of convolu-

tional layers. We investigate motion-dependent adaptability

within a CNN to directly address the challenges in single

image deblurring. Since motion blur is inherently direc-

tional and different for each image instance, a deblurring

network can benefit from adapting to the blur present in

each input test image. We deploy content-aware modules

which adjust the filter to be applied and the receptive field

at each pixel. Our analysis shows that the benefits of these

dynamic modules for the deblurring task are two-fold: i)

Cascade of such layers provides a large and dynamically

adaptive receptive field. Directional nature of blur requires

a directional receptive field, which a normal CNN cannot

achieve within a small number of layers. ii) It efficiently

enables spatially varying restoration, since changes in filters

and features occur according to the blur in the local region.

No previous work has investigated incorporating awareness

of blur-variation within an end-to-end single image deblur-

ring model.

Following the state of the art in deblurring, we adopt a

multi-patch hierarchical design to directly estimate the re-

stored sharp image. Instead of cascading along the depth,

we introduce content-aware feature and filter transforma-

tion capability through a global-local attentive module and

residual attention across layers to improve performance.

These modules learn to exploit the similarity in the motion

between different pixels within an image and are also sen-

sitive to position-specific local context.

The efficiency of our architecture is demonstrated

through a comprehensive evaluation on two benchmarks

and comparisons with the state-of-the-art deblurring ap-

proaches. Our model achieves superior performance while
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Figure 2. Overall architecture of our proposed network. CA block

represents cross attention between different levels of encoder-

decoder and different levels. All the resblock contains one con-

tent aware processing module. Symbol ’+’ denotes elementwise

summation.

being computationally more efficient. The major contribu-

tions of this work are:

• We propose an efficient deblurring design built on new

convolutional modules that learn the transformation of

features using global attention and adaptive local fil-

ters. We show that these two branches complement

each other and result in superior deblurring perfor-

mance. Moreover, the efficient design of attention-

module enables us to use it throughout the network

without the need for explicit downsampling.

• We further demonstrate the efficacy of learning cross-

attention between encode-decoder as well as different

levels in our design.

• We provide extensive analysis and evaluations on dy-

namic scene deblurring benchmarks, demonstrating

that our approach yields state-of-the-art results while

being 3× faster than the nearest competitor [26].

2. Proposed Architecture

To date, the driving force behind performance improve-

ment in deblurring has been the use of a large number of lay-

ers and larger filters which assist in increasing the ”static”

receptive field and the generalization capability of a CNN.

However, these techniques offer suboptimal design, since

network performance does not always scale with network

depth, as the effective receptive field of deep CNNs is much

smaller than the theoretical value (investigated in [12]).

We claim that a superior alternative is a dynamic frame-

work wherein the filtering and the receptive field change
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across spatial locations and also across different input im-

ages. Our experiments show that this approach is a con-

siderably better choice due to its task-specific efficacy and

utility for computationally limited environments. It delivers

consistent performance across diverse magnitudes of blur.

Although previous multi-scale and scale-recurrent meth-

ods have shown good performance in removing non-

uniform blur, they suffer from expensive inference time

and performance bottleneck while simply increasing model

depth. Instead, inspired by [26] , we adopt multi-patch hi-

erarchical structure as our base-model, which compared to

multi-scale approach has the added advantage of residual-

like architecture that leads to efficient learning and faster

processing speed. The overall architecture of our proposed

network is shown in Fig. 2. We divide the network into 3

levels instead of 4 as described in [26]. We found that the

relative performance gain due to the inclusion of level 4 is

negligible compared to the increase in inference time and

number of parameters. At the bottom level input sliced into

4 non-overlapping patches for processing, and as we grad-

ually move towards higher levels, the number of patches

decrease and lower level features are adaptively fused using

attention module as shown in Fig. 2. The output of level 1

is the final deblurred image. Note that unlike [26], we also

avoid cascading of our network along depth, as that adds se-

vere computational burden. Instead, we advocate the use of

content-aware processing modules which yield significant

performance improvements over even the deepest stacked

versions of original DMPHN [26]. Major changes incorpo-

rated in our design are described next.

Each level of our network consists of an encoder and a

decoder. Both the encoder and the decoder are made of stan-

dard convolutional layer and residual blocks where each of

these residual blocks contains 1 convolution layer followed

by a content-aware processing module and another convo-

lutional layer. The content-aware processing module com-

prises two branches for global and local level feature pro-

cessing which are dynamically fused at the end. The resid-

ual blocks of decoder and encoder are identical except for

the use of cross attention in decoder. We have also designed

cross-level attention for effective propagation of lower level

features throughout the network. We begin with describ-

ing content-aware processing module, then proceed towards

the detailed description of the two branches and finally how

these branches are adaptively fused at the end.

3. Content-Aware Processing Module

In contrast to high-level problems such as classification

and detection [22], which can obtain large receptive field

by successively down-sampling the feature map with pool-

ing or strided convolution, restoration tasks like deblurring

need finer pixel details that can not be achieved from highly

downsampled features. Most of the previous deblurring ap-

proaches uses standard convolutional layers for local fil-

tering and stack those layers together to increase the re-

ceptive field. [1] uses self-attention and standard convo-

lution on parallel branch and shows that best results are

obtained when both features are combined together com-

pared to using each feature separately. Inspired by this

approach, we design a content-aware “global-local” pro-

cessing module which depending on the input, deploys two

parallel branches to fuse global and local features. The

“global” branch is made of attention module. For decoder,

this includes both self and cross-encoder-decoder attention

whereas for encoder only self-attention is used. For local

branch we design a pixel-dependent filtering module which

determines the weight and the local neighbourhood to ap-

ply the filter adaptively. We describe in detail these two

branches and their adaptive fusion strategy in the following

sections.

3.1. Attention

Following the recent success of transformer architecture

[21] in natural language processing domain, it has been in-

troduced in image processing tasks as well [15, 11]. The

main building block of this architecture is self-attention

which as the name suggests calculates the response at a po-

sition in a sequence by attending to all positions within the

same sequence. Given an input tensor of shape (C,H,W )
it is flattened to a matrix z ∈ R

HW×C and projected to

da and dc dimensional spaces using embedding matrices

Wa,Wb ∈ R
C×da and Wc ∈ R

C×dc . Embedded matrices

A,B ∈ R
HW×da and C ∈ R

HW×dc are known as query,

key and value, respectively. The output of the self-attention

mechanism for a single head can be expressed as

O = softmax

(

ABT

√
da

)

C (1)

The main drawback of this approach is very high memory

requirement due to the matrix multiplication ABT which

requires storing a high dimensional matrix of dimension

(HW,HW ) for image domain. This requires a large down-

sampling operation before applying attention. [15] and [17]

use a local memory block instead of global all-to-all for

making it practically usable. [1] uses attention only from

the layer with the smallest spatial dimension until it hits

memory constraints. Also, these works typically resort to

smaller batch size and sometimes additionally downsam-

pling the inputs to self-attention layers. Although self atten-

tion is implemented in recent video super-resolution work

[25], to reduce memory requirement it resorts to pixel-

shuffling. This process is sub-optimal for spatial attention

as pixels are transferred to channel domain to reduce the

size.

Different from others, we resort to an attention mecha-

nism which is lightweight and fast. If we consider Eq. (1)
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Figure 3. Illustration of our content-aware processing module. The upper and lower branch show self-attention (Sec. 3.1.1) and PDF

module (Sec. 3.2). The fusion module is described in Eqs. 12 and 13.

without the softmax and scaling factor for simplicity, we

first do a (HW, da)× (da, HW ) matrix multiplication and

then another (HW,HW )×(HW, dc) matrix multiplication

which is responsible for the high memory requirement and

has a complexity of O(da(HW )2). Instead, if we look into

this equation differently and first compute BTC which is

an (da, HW ) × (HW, dc) matrix multiplication followed

by A(BTC) which is an (HW, da) × (da, dc) matrix mul-

tiplication, this whole process becomes lightweight with a

complexity of O(dadcHW ). We suitably introduce soft-

max operation at two places which makes this approach in-

tuitively different from standard self-attention but still ef-

ficiently gathers global information for each pixel. Empir-

ically we show that it performs better than standard self-

attention as discussed in ablation studies. Also due to the

light-weight nature, it not only enables us to use this in

all the encoder and decoder blocks across levels for self-

attention but also across different layers of encoder-decoder

and levels for cross attention which results in a significant

increase of accuracy.

3.1.1 Self-Attention (SA)

We start with generating a spatial attention mask M1 de-

scribing which spatial features to emphasize or suppress for

better motion understanding. Given the input feature map

x ∈ R
C×H×W we generate M1 as

M1 = fm1
(x; θm1

) (2)

where M1 ∈ R
H×W , fm1

(·) is convolution followed by a

sigmoid operation to generate a valid attention map. We

generate the enhanced feature map xm1
by element-wise

multiplication as

xm1
= x⊙M1 (3)

where xm ∈ R
C×H×W and M is broadcast along channel

dimension accordingly. Next, we distribute these informa-

tive features to all the pixels adaptively which is similar to

standard self-attention operation.

Given xm, we generate three attention maps P ∈
R

C2×HW , Q ∈ R
C2×HW and M2 ∈ R

C using convo-

lutional operations fp(·) ,fq(·) and fM2
(·) where global-

average-pooling is used for the last case to get C dimen-

sional representation. We take the first cluster of atten-

tion map Q and split it into C2 different maps Q =
{q1, q2, ..., qC2

}, qi ∈ R
HW and these represent C2 dif-

ferent spatial attention-weights. A single attention reflects

one aspect of the blurred image. However, there are multi-

ple pertinent properties like edges,textures etc. in the image

that together helps removing the blur. Therefore, we deploy

a cluster of attention maps to effectively gather C2 different

key features. Each attention map is element-wise multiplied

with the input feature map xm1
to generate C2 part feature

maps as

xk
m1

= qk ⊙ xm1
,with

HW
∑

i=1

qki = 1 (k = 1, 2, ..., N)

(4)

where xk
m ∈ R

C×HW . We further extract descriptive global

feature by global-sum-pooling (GSP) along HW dimension

to obtain kth feature representation as

x̄k
m1

= GSPHW (xk
m1

) (k = 1, 2, ..., N) (5)

where x̄k
m ∈ R

C . Now we have x̄m1
=

{x̄1

m1
, x̄2

m1
, ..., x̄C2

m1
} which are obtained from C2 different
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attention-weighted average of the input xm. Each of these

C2 representations is expressed by an C-dimensional vec-

tor which is a feature descriptor for the C channels. Sim-

ilar to the first step (Eq.(3)), we further enhance these C
dimensional vectors by emphasizing the important feature-

embeddings as

x̄k
m1m2

= M2 ⊙ x̄k
m1

(6)

where M2 can be expressed as

M2 = fm2
(x̄m1

; θm2
) ∈ R

C (7)

Eq.(3) and Eq.(6) can be intuitively compared to [4],

where similar gated-enhancement technique is used to re-

fine the result by elementwise-multiplication with an atten-

tion mask that helps in propagating only the relevant in-

formation. Next we take the set of attention maps P =
{p1, p2, ..., pHW } where pi ∈ R

C2 is represents attention

map for ith pixel. Intuitively, pi shows the relative impor-

tance of C2 different attention-weighted average (x̄m1m2
)

for the current pixel and it allows the pixel to adaptively se-

lect the weighted average of all the pixels. For each output

pixel j, we element-wise multiply these C2 feature repre-

sentations x̄k
m1m2

with the corresponding attention map pj ,

to get

yj = pj ⊙ x̄m1m2
with

C2
∑

i=1

pji = 1 , (j = 1, 2, ..., HW )

(8)

where yj ∈ R
C×C2 . We again apply global-average-

pooling on yj along C2 to get C dimensional feature rep-

resentation for each pixel as

ȳj = GAPC2
(yj) (9)

where ȳj ∈ R
C represent the accumulated global feature

for the jth pixel. Thus, each pixel flexibly selects features

that are complementary to the current one and accumulates

a global information. This whole sequence of operations

can be expressed by efficient matrix-operations as

yatt = C ⊙
[

(A)softmax(B)T
]

softmax(D) (10)

where A, B, C, D are given by

C = σ(fM2
(xm1

)) ∈ R
C , A = σ(fM1

(x)) ∈ R
C×HW

B = fQ(xm1
) ∈ R

HW×C2 , D = fP (xm1
) ∈ R

C2×HW

This efficient and simple matrix multiplication makes this

attention module very fast whereas the order of operation

(first computing [(A)softmax(B)T ]) results in low memory

footprint. Note that, C is broadcast along HW dimension

appropriately. We utilize this attention block in both en-

coder and decoder at each level for self-attention.

3.1.2 Cross-Attention (CA)

Inspired from the use of cross-attention in [21], we imple-

ment cross encoder-decoder and cross level attention in our

model. For cross encoder-decoder attention, we deploy sim-

ilar attention module where the information to be attended

is from different encoder layers and all the attention maps

are generated by the decoder. Similarly for cross-level, the

attended feature is from a lower level and the attention de-

cisions are made by features from a higher level. We have

observed that this helps in the propagation of information

across layers and levels compared to simply passing the

whole input or doing elementwise sum as done in [26].

3.2. Pixel­Dependent Filtering Module (PDF)

In contrast to [1], for the local branch, we use Pixel-

Dependent Filtering Module to handle spatially-varying dy-

namic motion blur effectively. Previous works like [6] gen-

erate sample-specific parameters on-the-fly using a filter

generation network for image classification. [10] uses in-

put text to construct the motion-generating filter weights for

video generation task. [28] uses an adaptive convolutional

layer where the convolution filter weights are the outputs of

a separate filter-manifold network for crowd counting task.

Our work is based on [19] as we use a meta-layer to gen-

erate pixel dependent spatially varying kernel to implement

spatially variant convolution operation. Along with that, the

local pixels where the filter is to be applied, are also deter-

mined at runtime as we adjust the offsets of these filters

adaptively. Given the input feature map x ∈ R
C×H×W , we

apply a kernel generation function to generate a spatially

varying kernel V and do the convolution operation for pixel

j as

ydynj,c =

K
∑

k=1

Vj,jkWc[jk]x[j + jk +∆jk] (11)

where ydynj ∈ R
C , K is the kernel size, jk ∈ {(−(K −

1)/2,−(K − 1)/2), ..., ((K − 1)/2, (K − 1)/2)} defines

position of the convolutional kernel of dilation 1, Vj,jk ∈
R

K2
×H×W is the pixel dependent kernel generated,Wc ∈

R
C×C×K×K is the fixed weight and ∆jk are the learnable

offsets. We set a maximum threshold ∆max for the offsets

to enforce efficient local processing which is important for

low level tasks like deblurring. Note that the kernels (V )

and offsets vary from one pixel to another, but are constant

for all the channels, promoting efficiency. Standard spatial

convolution can be seen as a special case of the above with

adapting kernel being constant Vj,jk = 1 and ∆jk = 0.

In contrast to [1], which simply concatenates the output

of these two branches, we design attentive fusion between

these two branches so that the network can adaptively ad-

just the importance of each branch for each pixel at runtime.

Empirically we observed that it performs better than simple
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(a) Blurred Image (b) Blurred patch (c) MS-CNN (d) DelurGAN (e) SRN (f) DelurGAN-V2 (g) Stack(4)-DMPHN (h) Ours (a)

Figure 4. Visual comparisons of deblurring results on images from the GoPro test set [13]. Key blurred patches are shown in (b), while

zoomed-in patches from the deblurred results are shown in (c)-(h).

addition or concatenation. Also, as discussed in visualiza-

tion section, it gives an insight into the specific requirement

for different levels of blur. Given the original input x to this

content-aware module, we generate a fusion mask as

Mfus = sigmoid(ffus(x)) (12)

where Mfus ∈ R
H×W , ffus is a single convolution layer

generating single channel output. Then we fuse the two

branches as

yGL = Mfus ⊙ yatt + (1−Mfus)⊙ ydyn (13)

The fused output yGL contains global as well as local infor-

mation distributed adaptively along pixels which helps in

handling spatially-varying motion blur effectively.

4. Experiments

4.1. Implementation Details

Datasets: We follow the configuration of [26, 9, 20, 8, 13],

which train on 2103 images from the GoPro dataset [13].

For testing, we use two benchmarks: GoPro [13] (1103 HD

images), and HIDE [18] (2025 HD images).

Training settings and implementation details: All the

convolutional layers within our proposed modules contain

128 filters. The hyper-parameters for our encoder-decoder

backbone are N = 3, M = 2, and P = 2, and filter size

in PDF modules is 5 × 5. Following [26], we use batch-

size of 6 and patch-size of 256 × 256. Adam optimizer [7]

was used with initial leaning rate 10−4, halved after every

2 × 105 iterations. We use PyTorch [16] library and Titan

Xp GPU.

4.2. Performance comparisons

The main application of our work is efficient deblur-

ring of general dynamic scenes. Due to the complexity of

the blur present in such images, conventional image for-

mation model based deblurring approaches struggle to per-

form well. Hence, we compare with only two conven-

tional methods [23, 24] (which are selected as representa-

tive traditional methods for non-uniform deblurring, with

publicly available implementations). We provide extensive

comparisons with state-of-the-art learning-based methods,

namely MS-CNN[13], DeblurGAN[8], DeblurGAN-v2[9],

SRN[20], and Stack(4)-DMPHN[26]. We use official im-

plementation from the authors with default parameters.

Quantitative Evaluation We show performance com-

parisons on two different benchmark datasets. The quanti-

tative results on GoPro testing set and HIDE Dataset [18]

are listed in Table 1 and 2. We evaluate two variants of our

model with(b) and without(a) learnable offsets as shown in

Table 1.

The average PSNR and SSIM measures obtained on the

GoPro test split is provided in Table 1. It can be observed

from the quantitative measures that our method performs

better compared to previous state-of-the-art. The results

shown in Figure 4. shows the large dynamic blur handling

capability of our model while preserving sharpness. We fur-

ther evaluate the run-time of all the methods on a single

GPU with images of resolution 720 × 1280. The standard-

deviation of the PSNR, SSIM, and run-time scores on the

GoPro test set are 1.78, 0.018, and 0.0379, respectively. As

reported in Table 1, our method takes significantly less time

compared to other methods.

We also evaluate our method on the recent HIDE

Dataset [18]. Both of GoPro and HIDE datasets contain

dominant foreground object motion along with camera mo-

tion. We compare against all existing models trained on

GoPro train-set for fair comparisons. As shown in Table 2,

our approach outperforms all methods including [18], with-

out requiring any human bounding box supervision. The

superiority of our model is owed to the robustness of the

proposed adaptive modules.

Qualitative Evaluation: Visual comparisons on differ-

ent dynamic and 3D scenes are shown in Figs. 4 and 5. Vi-

sual comparisons are given in Fig. 4. We observe that the
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(a) Blurred Image (b) Blurred patch (c) DelurGAN (d) SRN (e) DelurGANv2 (f) Stack(4)-DMPHN (g) Ours

Figure 5. Visual comparisons of deblurring results on images from the HIDE test set [18]. Key blurred patches are shown in (b), while

zoomed-in patches from the deblurred results are shown in (c)-(g).

Table 1. Performance comparisons with existing algorithms on 1103 images from the deblurring benchmark GoPro [13].

Method [24] [23] [5] [3] [13] [8] [20] [27] [2] [26] [9] Ours(a) Ours(b)

PSNR (dB) 21 24.6 23.64 26.4 29.08 28.7 30.26 29.19 30.90 31.20 29.55 31.85 32.02

SSIM 0.741 0.846 0.824 0.863 0.914 0.858 0.934 0.931 0.935 0.940 0.934 0.948 0.953

Time (s) 3800 700 3600 1200 6 1 1.2 1 1.0 0.98 0.48 0.34 0.77

(a) Input Image (b) Fusion Mfus (c) Mask M1

Figure 6. Visualization of intermediate results on images from the

GoPro test set [18].

Table 2. Performance comparisons with existing algorithms on

2025 images from the deblurring benchmark HIDE [18].

Method [8] [9] [20] [18]1 [26] Ours

PSNR 24.51 26.61 28.36 28.89 29.09 29.98

SSIM 0.871 0.875 0.915 0.930 0.924 0.930

Table 3. Quantitative comparison of different ablations of our net-

work on GoPro testset.
Design SA CA CLA Kernel Offset PSNR

Net1 ✗ ✗ ✗ ✗ ✗ 30.25

Net2 ✗ ✗ ✗ X ✗ 30.81

Net3 X ✗ ✗ ✗ ✗ 30.76

Net4 X X ✗ ✗ ✗ 30.93

Net5 X ✗ X ✗ ✗ 31.12

Net6 X X ✗ X ✗ 31.44

Net7 X X X X ✗ 31.85

Net8 X X X X X 32.02

results of prior works suffer from incomplete deblurring or

artifacts. In contrast, our network is able to restore scene

details more faithfully which are noticeable in the regions

containing text, edges, etc. An additional advantage over

[5, 23] is that our model waives-off the requirement of pa-

rameter tuning during test phase.

On both the datasets, the proposed method achieves con-

sistently better PSNR, SSIM and visual results with lower

inference-time than DMPHN [26] and a comparable num-

ber of parameters.

4.3. Ablation studies

In Table 3, we analyse the effect of individual modules

on our network’s performance, using 1103 test images from

GoPro dataset [13]. As shown in Figure 2, the proposed

resblock contains one content-aware processing module and

two standard convolutional layers. To find the optimal num-

ber of resblock in encoder and decoder we trained different

versions of our network with varying number of resblocks.

Although, the training performance as well as the quantita-

tive results got better with the increase in number of blocks,

beyond 3 the improvement was marginal. This led us to the

choice of using 3 resblocks in each encoder and decoder

and serves as a good balance between efficiency and perfor-

mance as well.

As the use of local convolution and global attention to-

gether [1] or replacing local convolution with attention [17]

is explored recently for image recognition tasks, we further

analyze it for image restoration tasks like deblurring. As

shown in Table 3, we observe that the advantages of SA and

PDF modules are complimentary and their union leads to

better performance (Net4 vs Net6). For better information

flow between different layers of encoder-decoder and also

between different levels we used CA, where the advantage

of this attentive information flow rather than simple addition

can be observed by comparing the performance of Net4 and

Net5 compared to Net3. We also analyze the role of both

adaptive weights and the adaptive local-neighborhood for

PDF module. As shown quantitatively in Table 3 (Net7 and

Net8) and visualized in Figure 7, adaptiveness of the off-

sets along with the weights perform better as it satisfies the

need of directional local filters. We have also showed com-

parisons of the convergence plots of these models in sup-

plementary. We also try to incorporate the attention mech-

anism used in [1] in our model for fair comparison. Due
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Figure 7. The second row shows one of the spatial attention map for each image. The third row shows the spatial distribution of the

horizontal-offset values for the filter. Fourth row shows the variance of the predicted kernel values.

to high memory requirement, we were only able to use one

attention module in the decoder in each level. The resul-

tant PSNR was 30.52 compared to 30.76 of Net3. But, as

it already occupied full GPU memory, we were unable to

introduce more blocks, or cross attention.

4.4. Visualization and Analysis

The first row of Fig. 7 contains images from the testing

datasets which suffer from complex blur due to large cam-

era and object motion. In the subsequent rows, we visualize

the output of different modules of our network and analyze

the behavior change while handling different levels of blur

due to camera motion, varying depth, moving objects, etc.

The second row of Fig. 7 shows one of the attention-maps

(qi, i ∈ 1, 2, ...C2) corresponding to each image. We can

observe the high correlation between estimated attention

weights and the dominant motion blurred regions present

in the image. This adaptive ability of the network to fo-

cus on relevant parts of the image can be considered crucial

to the observed performance improvement. The third and

fourth rows of Fig. 7 show the spatially-varying nature of

filter weights and offsets. Observe that a large horizontal

offset is estimated in the regions with high horizontal blur

so that the filter shape can spread along the direction of mo-

tion. Although the estimated filter wights are not directly

interpretable, it can be seen that the variance of the filters

correlates with the magnitude of blur. We further visualize

the behavior of the fusion mask which adaptively weighs

the outputs of the two branches for each pixel location. As

shown in Fig. 6, PDF module output is more preferred in

regions with moving foreground objects or blurred edges

where most of the other regions give almost equal weight to

both the branches. On the other hand, homogeneous regions

where the effect of blur is negligible, have shown a prefer-

ence towards the attention branch. To further investigate

this behavior, we have visualized the spatial mask (M1).

As we can observe in Fig. 6(c), the mask suppresses these

homogeneous regions even before calculating self-attention

for each pixel. This shows the robustness and interpretabil-

ity of our attention module while handling any type of blur.

PDF Module: We synthetically blurred 25 sharp images us-

ing synthetic linear PSFs oriented in 4 different directions

(0◦,45◦,90◦,135◦). For these images, we recorded the dom-

inant direction of filter offsets estimated by our PDF mod-

ule. The values obtained (11◦,50◦,81◦,126◦) show high cor-

relation between the offset orientations and the PSF angles.

5. Conclusions

We proposed a new content-adaptive architecture design

for the challenging task of removing spatially-varying blur

in images of dynamic scenes. Efficient self-attention is uti-

lized in all the encoder-decoder to get better representation

whereas cross-attention helps in efficient feature propaga-

tion across layers and levels. Proposed dynamic filtering

module shows content-awareness for local filtering. The

complimentary behaviour of the two branches are shown in

Table 3 and Fig. 6. Different from existing deep learning-

based methods for such applications, the proposed method

is more interpretable which is one of its key strengths.

Our experimental results demonstrated that the proposed

method achieved better results than state-of-the-art methods

on two benchmarks both qualitatively and quantitatively.

We showed that the proposed content-adaptive approach

achieves an optimal balance of memory, time and accuracy

and can be applied to other image-processing tasks.
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