ACNe: Attentive Context Normalization for Robust Permutation-Equivariant Learning

Weiwei Sun\textsuperscript{1}  Wei Jiang\textsuperscript{1}  Eduard Trulls\textsuperscript{2}  Andrea Tagliasacchi\textsuperscript{3}  Kwang Moo Yi\textsuperscript{1}
\textsuperscript{1}University of Victoria  \textsuperscript{2}Google Research, Zurich  \textsuperscript{3}Google Research, Toronto
{weiweisun, jiangwei, kyi}@uvic.ca  \{trulls, taglia\}@google.com

Abstract

Many problems in computer vision require dealing with sparse, unordered data in the form of point clouds. Permutation-equivariant networks have become a popular solution – they operate on individual data points with simple perceptrons and extract contextual information with global pooling. This can be achieved with a simple normalization of the feature maps, a global operation that is unaffected by the order. In this paper, we propose Attentive Context Normalization (ACN), a simple yet effective technique to build permutation-equivariant networks robust to outliers. Specifically, we show how to normalize the feature maps with weights that are estimated within the network, excluding outliers from this normalization. We use this mechanism to leverage two types of attention: local and global – by combining them, our method is able to find the essential data points in high-dimensional space to solve a given task. We demonstrate through extensive experiments that our approach, which we call Attentive Context Networks (ACNe), provides a significant leap in performance compared to the state-of-the-art on camera pose estimation, robust fitting, and point cloud classification under noise and outliers. Source code: https://github.com/vcg-uvic/acne.

1. Introduction

Several problems in computer vision require processing sparse, unordered collections of vectors \( P = \{p_n \in \mathbb{R}^D\} \), commonly called clouds. Examples include pixel locations \((D=2)\), point clouds from depth sensors \((D=3)\), and sparse correspondences across a pair of images \((D=4)\). The latter includes wide-baseline stereo, one of the fundamental problems in computer vision. It lies at the core of Structure-from-Motion (SfM), which, in turn, is the building block of applications such as 3D reconstruction \([1]\), image-based rendering \([43]\) and time-lapse smoothing \([28]\).

Wide-baseline stereo has been traditionally solved by extracting small collections of discrete keypoints \([31]\) and finding correspondences among them with robust estimators \([16]\), a reliable approach used for well over two decades. This has changed over the past few years, with the arrival of deep learning and an abundance of new dense \([57, 47, 60]\) and sparse \([55, 12, 39, 59, 27]\) methods. Here, we focus on sparse methods, which have seen many recent developments made possible by the introduction of PointNets \([36, 37]\) – neural networks that rely on multi-layer perceptrons and global pooling to process unordered data in a permutation-equivariant manner – something which is not feasible with neither convolutional nor fully-connected layers.

Networks of this type – hereafter referred to as permutation-equivariant networks – have pioneered the application of deep learning to point clouds. The original PointNet relied on the concatenation of point-wise (context-agnostic) and global (point-agnostic) features to achieve permutation equivariance. Yi et al. \([55]\) proposed Context Normalization (CN) as a simple, yet effective alternative to global feature pooling: all it requires is a non-parametric normalization of the feature maps to zero mean and unit variance. Contrary to other normalization techniques utilized by neural networks \([22, 2, 46, 51]\), whose primary objective is to improve convergence, context normalization is used to generate contextual information while preserving permutation equivariance. Despite its simplicity, it proved more effective than the PointNet approach on wide-baseline stereo, contributing to a relative increase in pose estimation accuracy of 50–100%; see \([55, \text{Fig. } 5]\).

Note that CN normalizes the feature maps according to first- (mean) and second- (variance) order moments. Interestingly, these two quantities can be expressed as the solution of a least-squares problem:

\[
\hat{\mu} = \arg\min_{\mu} \sum_n \|p_n - \mu\|_2^2 \tag{1}
\]

\[
\hat{\sigma} = \arg\min_{\sigma} \sum_n \|p_n - \mu\|_2^2 - \sigma^2 \|p_n - \mu\|_2^2 \tag{2}
\]

However, it is well known that least-squares optimization is not robust to outliers \([6, \text{Sec. } 3]\), a problem that also afflicts CN. We illustrate this limitation in Fig. 1, where...
the toy task is to fit a line to data corrupted by outliers. Note that this is a critical weakness, as the application CN was originally devised for, wide-baseline stereo, a problem plagued with outliers: outlier ratios above 80% are typical in standard public datasets; see Section 4.3.

To address this issue, we take inspiration\(^1\) from a classical technique used in robust optimization: Iteratively Re-weighted Least Squares (IRLS) \([8]\). As an example, let us consider the computation of the first-order moment (1). Rather than using the square of the residuals, we can optimize with respect to a robust kernel \(\kappa\) that allows for outliers to be ignored:

\[
\argmin_\mu \sum_n \kappa(\|p_n - \mu\|_2), \tag{3}
\]

which can then be converted back into an iterative least-squares optimization (\(t\) indexes iterations):

\[
\argmin_\mu \sum_n \psi(\|p_n - \mu^{t-1}\|_2)^{-1} \|p_n - \mu^t\|_2^2, \tag{4}
\]

where \(\psi(\cdot)\) is the penalty function associated with the kernel \(\kappa(\cdot)\); see \([33, 17]\). Inspired by this, we design a network that learns to progressively focus its attention on the inliers, operating analogously to \(\psi(\cdot)\) over the IRLS iterations.

Specifically, we propose to train a perceptor that translates the (intermediate) feature maps into their corresponding attention weights, and normalizes them accordingly. We denote this approach as Attentive Context Normalization (ACN), and the networks that rely on this mechanism Attentive Context Networks (ACNe). We consider two types of attention, one that operates on each data point individually (local), and one that estimates the relative importance of data points (global), and demonstrate that using them together yields the best performance. We also evaluate the effect of supervising this attention mechanism when possible. We verify the effectiveness of our method on (1) robust line fitting, (2) classification of 2D and 3D point clouds, and (3) wide-baseline stereo on real-world datasets (outdoors and indoors) showing significant improvements over the state of the art. Our work is, to the best our knowledge, the first to apply attentive mechanisms to the normalization of feature maps. One can also apply a more common form of attention by operating directly on feature maps \([49, 15]\), but we demonstrate that this does not perform as effectively.

2. Related work

We discuss recent works on deep networks operating on point clouds, review various normalization methods for deep networks, and briefly discuss attention mechanisms.

Deep networks for point clouds. Several methods have been proposed to process point cloud data with neural networks. These include graph convolutional networks \([13, 26]\), VoxelNets \([61]\), tangent convolutions \([44]\), and many others. A simpler strategy was introduced by PointNets \([36, 37]\), which has since become a popular solution due to its simplicity. At their core, they are convolutional neural networks with \(1 \times 1\) kernels and global pooling operations. Enhancements to the PointNet architecture include incorporating locality information with kernel correlation \([42]\), and contextual information with LSTMs \([30]\). Another relevant work is Deep Sets \([56]\), which derives neural network parameterizations that guarantee permutation-equivariance.

Permutation-equivariant networks for stereo. While PointNets were originally introduced for segmentation and classification of 3D point clouds, Yi et al. \([55]\) demonstrated that they can also be highly effective for robust matching in stereo, showing a drastic leap in performance against hand-crafted methods \([16, 45, 5]\). The core ingredient of Yi et al. \([55]\) is Context Normalization (CN), an alternative to global feature pooling from PointNets. While similar to other normalization techniques for deep networks \([22, 2, 46, 51]\), CN has a different role – to aggregate point-wise feature maps and generate contextual information. Follow-ups to CN include the use of architectures similar to Yi et al. \([55]\) to iteratively estimate fundamental matrices \([39]\), novel loss formulations \([12]\), and the modeling of locality \([59]\). In OANet \([58]\), order-aware filtering was utilized to incorporate context and spatial correlation. While all of these works rely on “vanilla” CN, we show how to improve its performance by embedding an attention mechanism therein. Our improvements are compatible with any of these techniques.

---

\(^1\)See Section G of the supplementary material. A robust kernel can also be trained with a neural network and enforcing monotonicity; see \([11]\).
Normalization in deep networks. In addition to CN, different strategies have been proposed to normalize feature maps in a deep network, starting with the seminal work of Batch Normalization [22], which proposed to normalize the feature maps over a mini-batch. Layer Normalization [2] transposed this operation by looking at all channels for a single sample in the batch, whereas Group Normalization [51] applied it over subsets of channels. Further efforts have proposed to normalize the weights instead of the activations [41], or their eigenvalues [34]. The main use of all these normalization techniques is to stabilize the optimization process and speed up convergence. By contrast, Instance Normalization [46] proposed to normalize individual image samples for style transfer, and was improved upon in [21] by aligning the mean and standard deviation of content and style. Regardless of the specifics, all of these normalization techniques operate on the entire sample—in other words, they do not consider the presence of outliers or their statistics. While this is not critical in image-based pipelines, it can be extremely harmful for point clouds; see Fig. 1.

Attentional methods. The core idea behind attention mechanisms is to focus on the crucial parts of the input. There are different forms of attention, and they have been applied to a wide range of machine learning problems, from natural language processing to images. Vaswani et al. [48] proposed an attentional model for machine translation reusing recurrent architectures. Luong et al. [32] blended two forms of attention on sequential inputs, demonstrating performance improvements in text translation. Xu et al. [54] showed how to employ soft and hard attention to gaze on salient objects and generate automated image captions. Local response normalization has been used to find salient responses in feature maps [24, 29], and can be interpreted as a form of lateral inhibition [19]. The use of attention in convolutional deep networks was pioneered by Spatial Transformer Networks [23], which introduced a differentiable sampler that allows for spatial manipulation of the image. In [53], attention is directly applied to the feature map, given by a PointNet-style network operating on point clouds. However, this strategy does not work as well as ours for wide-baseline stereo; see Section B in the supplementary material.

3. Attentive Context Normalization

Given a feature map $f \in \mathbb{R}^{N \times C}$, where $N$ is the number of features (or data points at layer zero), $C$ is the number of channels, and each row corresponds to a data point, we recall that Context Normalization [55] is a non-parametric operation that can be written as

$$N_{CN}(f) = (f - \mu(f)) \odot \sigma(f),$$

where $\mu(f) = \mathbb{E}[f]$ is the arithmetic mean, $\sigma(f) = \sqrt{\mathbb{E}[(f - \mathbb{E}[f])^2]}$ is the standard deviation of the features across $N$, and $\odot$ denotes the element-wise division. Here we assume a single cloud, but generalizing to multiple clouds (i.e. batch) is straightforward. Note that to preserve the properties of unstructured clouds, the information in the feature maps needs to be normalized in a permutation-equivariant way. We extend CN by introducing a weight vector $w \in [0, \ldots, 1]^N$, and indicate with $\mu_w(\cdot)$ and $\sigma_w(\cdot)$ the corresponding weighted mean and standard deviation. In contrast to Context Normalization, we compute the weights $w$ with a parametric function $\mathcal{W}_\omega(\cdot)$ with trainable parameters $\omega$ that takes as input the feature map, and returns a unit norm vector of weights:

$$w = \eta(\mathcal{W}_\omega(f)), \quad \eta(x) = x / \|x\|_1.$$  \hspace{1cm} (6)

We then define Attentive Context Normalization as

$$N_{ACN}(f; w) = (f - \mu_w(f)) \odot \sigma_w(f).$$  \hspace{1cm} (7)

The purpose of the attention network $\mathcal{W}_\omega(\cdot)$ is to compute a weight function that focuses the normalization of the feature maps on a subset of the input features—the inliers. As a result, the network can learn to effectively cluster the features, and therefore separate inliers from outliers.

There are multiple attention functions that we can design, and multiple ways to combine them into a single attention vector $w$. We will now describe those that we found effective for finding correspondences in wide-baseline stereo, and how to combine and supervise them effectively.

Generating attention. We leverage two different types of attention mechanisms, local and global:

$$w_i^{\text{local}} = \mathcal{W}_\omega^{\text{local}}(f_i) = \text{sigmoid}(\mathbf{W}_i^\top f_i + b),$$  \hspace{1cm} (8)

$$w_i^{\text{global}} = \mathcal{W}_\omega^{\text{global}}(f_i) = \frac{\exp(\mathbf{W}_i^\top f_i + b)}{\sum_{j=1}^N \exp(\mathbf{W}_j^\top f_i + b)},$$  \hspace{1cm} (9)

where $\mathbf{W}$ and $b$ are the parameters of a perceptron, and $f_i$ denotes the feature vector for data point $k$—the $k$-th row of the feature map $f$. Observe that the local attention mechanism (8) acts on each feature vector independently, whereas the global attention mechanism (9) relates the feature vector for each data point to the collection through softmax.

Blending attention. Note that the product does not change the scale of the normalization applied in (7). Therefore, to take into account multiple types of attention simultaneously, we simply merge them together without “together” to avoid redundancy through element-wise multiplication. One could use a parametric form of attention blending instead; however, it is non-trivial to combine the weights in a permutation-equivariant way, and we found this simple strategy effective.

\footnote{For simplicity, we abuse the notation and drop the layer index from all parameters. All the perceptrons in our work operate individually over each data point with shared parameters across each layer.}
Supervising attention. In some problems, the class for each data point is known a priori and explicit supervision can be performed. In this case, adding a supervised loss on the attention signals can be beneficial. For instance, when finding good correspondences for stereo we can apply binary-cross entropy using the epipolar distance to generate labels for each putative correspondence, as in [55]. Our experiments in Section 6.4 show that while this type of supervision can provide a small boost in performance (1-2%), our approach performs nearly as well without this supervision.

4. Network architecture and applications

Our network receives as input $P \in \mathbb{R}^{N \times D}$, the tensor representation of $P$, and produces an output tensor $O \in \mathbb{R}^{N \times C}$. Note that as $P$ is unstructured, $O$ must be equivariant with respect to permutations of the $N$ rows of $P$. This output tensor is then used in different ways according to the task at hand. We model our architecture after [55], which we refer to as Context Network (CNe). It features a series of residual blocks [20] with Context Normalization (CN). Our architecture, which we call Attentive Context Network, or ACNe, is pictured in Fig. 2. A key distinction is that within each normalization block (Fig. 2; right) we link the individual outputs of each perceptron $F_{\varphi}$ to our ACN layer. We also replace the Batch Normalization layers [22] used in [55] with Group Normalization [51], as we found it performs better; see Section 6.4 for ablation tests.

We demonstrate that ACNe can be used to solve multiple applications, ranging from classical problems such as robust line fitting (Section 4.1) and point cloud classification on MNIST and ModelNet40 (Section 4.2), to robust camera pose estimation for wide-baseline stereo (Section 4.3).

4.1. Robust line fitting

We consider the problem of fitting a line to a collection of points $P \in \mathbb{R}^{N \times 2}$ that is hidden by noise and outliers; see Fig. 1. This problem can be addressed via smooth (IRLS) or combinatorial (RANSAC) optimization — both methods can be interpreted in terms of sparse optimization, such that inliers and outliers are clustered separately; see [7]. Let us parameterize a line as the locus of point $[x, y]$ such that $\theta = [x, y, 1]=0$. We can then score each row of $P$ (i.e. each 2D point) by passing the output tensor $O = \text{ACNe}(P)$ to an additional weight network — with local and global components — following (6), yielding weights $w = \eta(\mathcal{W}_w(O))$.

We also express our points in homogeneous coordinates as $P = [P, 1] \in \mathbb{R}^{N \times 3}$, we can compute our covariance matrix as $C_w(P) = P^T \text{diag}(w)^2 P \in \mathbb{R}^{3 \times 3}$. Then, denoting $\nu_0[C]$ as the eigenvector of $C$ corresponding to its smallest eigenvalue, $\nu_0[C_w(P)]$ is the estimated plane equation that we seek to find. We, therefore, minimize the difference between this eigenvector and the ground truth, with additional guidance to $w_{\text{local}}$ to help convergence:

$$\mathcal{L}(\omega) = \alpha \min_{+/-} \left\{ \| \nu_0 [C_w(P)] \pm \theta \|_2^2 \right\}$$

$$+ \beta E [H(y, w_{\text{local}})] ,$$

where $E[H(a, b)]$ is the average binary cross entropy between $a$ and $b$, $y$ is the ground-truth inlier label, and hyper-parameters $\alpha$ and $\beta$ control the influence of these losses. The $\min_{+/-}$ resolves the issue that $-\theta$ and $\theta$ are the same line.

4.2. Point cloud classification

We can also apply ACNe to point cloud classification rather than reasoning about individual points. As in the previous application, we consider a set of 2D or 3D locations $P \in \mathbb{R}^{N \times D}$ as input, where $D$ is the number of dimensions. In order to classify each point set, we transform the output tensor $O = \text{ACNe}(P)$ into a single vector $v = \mu_w(O)$ and associate it with a ground-truth one-hot vector $y$ through softmax. Additional weight networks to generate $w$ are trained for this task. We train with the cross entropy loss. Thus, the loss that we optimize is:

$$\mathcal{L}(\omega) = H(y, \text{softmax}(v)) .$$
4.3. Wide-baseline stereo

In stereo we are given correspondences as input, which is thus \( P \in \mathbb{R}^{N \times 4} \), where \( N \) is the number of correspondences and each row contains two pixel locations on different images. In order to remain comparable with traditional methods, we aim to solve for the Fundamental matrix, instead of the Essential matrix, i.e., without assuming known camera intrinsics. Thus, differently from [55, 12, 59], we simply normalize the image coordinates with the image size instead. This makes our method more broadly applicable, and directly comparable with most robust estimation methods for stereo [16, 45, 9, 10, 4].

We obtain \( w \) from the output tensor \( O=\text{ACNe}(P) \) via (6), as in Section 4.1. The weights \( w \) indicate which correspondences are considered to be inliers and their relative importance. We then apply a weighted variant of the 8-point algorithm [18] to retrieve the Fundamental matrix \( \hat{F} \), which parameterizes the relative camera motion between the two cameras. To do so we adopt the differentiable, non-parametric form proposed by [55], and denote this operation as \( \hat{F}=g(X, w) \). We then train our network to regress the ground-truth Fundamental matrix, as well as providing auxiliary guidance to \( w_{\text{local}} \) – the final local attention used to construct the output of the network – with per-correspondence labels obtained by thresholding over the symmetric epipolar distance [18], as in [55]. In addition, we also perform auxiliary supervision on \( w_{\text{local}}^{k} \) – the intermediate local attentions within the network – as discussed in Section 3. Note that this loss is not necessary, but helps training and provides a small boost in performance; see Section 6.4. We do not supervise global attention and leave it for the network to learn. We therefore write:

\[
\mathcal{L}(\omega) = \alpha \min_{\pm/\sim} \left\{ \left\| \hat{F} \pm F^* \right\|_F^2 \right\} + \beta E \left[ H(y, w_{\text{local}}) \right] \\
+ \gamma E_k \left[ H(y, w_{\text{local}}^k) \right],
\]

where \( \left\| \cdot \right\|_F \) is the Frobenius norm, \( H \) is the binary cross entropy, and \( y \) denotes ground truth inlier labels. Again, the hyper-parameters \( \alpha, \beta, \) and \( \gamma \) control the influence of each loss. Similarly to the line-fitting case, the \( \min_{\pm/\sim} \) resolves the issue that \(-\hat{F}^*\) and \( F^* \) express the same solution.

5. Implementation details

We employ a K-layer structure (excluding the first linear layer that changes according to the number of channels) for ACNe, with \( K \times \) ARB units, and two perceptron layers in each ARB. The number of layers \( K \) is set to 3 for 2D point cloud classification, 6 for robust line fitting, and 12 for stereo. For 3D point cloud classification, we add ACN normalization to an existing architecture. We also use 32 groups for Group Normalization, as suggested in [51]. Similarly to [55], we use \( C=128 \) channels per perceptron.

Training setup. For all applications we use the ADAM optimizer [25] with default parameters and a learning rate of \( 10^{-3} \). Except for robust line fitting, we use a validation set to perform early stopping. For robust line fitting, the data is purely synthetic and thus infinite, and we train for 50k iterations. For MNIST, we use 70k samples with a 8:1:1 split for training, validation and testing. For stereo, we use the splits from [58]. For the loss term involving eigen-decomposition (terms multiplied by \( \alpha \) in (10) and (12)), we use \( \alpha=0.1 \), following [55]. All other loss terms have a weight of 1, that is, \( \beta=1 \) and \( \gamma=1 \).

Robust estimators for stereo inference. As a special case, we evaluate the possibility of applying standard robust estimators for outlier rejection such as RANSAC after training the model to potentially maximize its performance, as previously done in [55, 12, 58]. To do so, we modify our architecture by changing the final layer to output only the local attention with the ReLU+Tanh activation, as in Yi et al. [55]. We then simply threshold \( w \) with zero, select the data points that survive this process as inliers, and feed them to different RANSAC methods to process them further. We compare these results with those obtained directly from the weighted 8-point formulation.

6. Results

We first consider a toy example on fitting 2D lines with a large ratio of outliers. We then apply our method to point cloud classification, following [36, 37], which includes 2D for digit classification on MNIST and 3D for object classification on ModelNet40 [52]. These three experiments illustrate that our attentional method performs better than
We create a point cloud from these images following the procedure of [36]: we threshold each image at 128 and use the coordinates – normalized to a unit bounding box – of the surviving pixel locations as data samples. We subsample 512 points with replacement, in order to have the same number of points for all training examples. We also add a small Gaussian noise of 0.01 to the pixel coordinates after sampling following [36]. Outliers are generated by sampling from a uniform random distribution. We compare our method against vanilla PointNet [36] and CNe [55]. For PointNet, we re-implemented their method under our framework to have an identical training setup.

### 6.3. Classifying 3D objects – Table 3

We apply our method to the problem of 3D object (point cloud) classification. We use the ModelNet40 dataset [52], and compare with PointNet [37]. Similarly to the MNIST case, we contaminate the dataset with outliers to test the robustness of each method. Specifically, we add a predetermined ratio of outliers to the point clouds, sampled uniformly within the range \([-1, 1]\). We also add small Gaussian perturbations to the locations of the points, with a standard deviation of 0.01. We then sample 1024 points from the point cloud to perform classification. Again, to simply test if ACN can improve existing pipelines, we plug our normalization into the vanilla PointNet architecture. Note that the original PointNet includes an affine estimation step which provides a small performance boost – we omit it from our implementation, in order to isolate the architectural differences between the methods. We report the results in Table 3. Our method performs best, with the gap becoming wider as outliers become prevalent.

### 6.4. Wide-baseline stereo – Fig. 4 and Table 4

Wide-baseline stereo is an extremely challenging problem, due to the large number of variables to account for – viewpoint, scale, illumination, occlusions, and properties of the imaging device – see Fig. 4 for some examples. We benchmark our approach on a real-world dataset against multiple state-of-the-art baselines, following the data [58] and protocols provided by [55]. Their ground truth camera poses are obtained from Structure-from-Motion with VisualSFM [50], from large image collections of publicly available, challenging photo-tourism data.

We evaluate performance in terms of the **reconstructed poses**. Since the stereo matching problem is defined only up to a scale factor [18], it is not possible to compute absolute (metric) errors for translation. Instead, we follow

### Table 1. Robust line fitting – Line fitting results over the test set in terms of the \(\ell_2\) distance between ground-truth and the estimates.

<table>
<thead>
<tr>
<th>Outlier ratio</th>
<th>0%</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNe [55]</td>
<td>0.009</td>
<td>0.038</td>
<td>0.056</td>
<td>0.162</td>
<td>0.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACNe (Ours)</td>
<td>1e-6</td>
<td>0.008</td>
<td>0.024</td>
<td>0.130</td>
<td>0.383</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Table 2. 2D Point cloud classification – Classification accuracy on MNIST, under different outlier ratios (%). Our method performs best in all cases, and the gap becomes wider with more outliers.

<table>
<thead>
<tr>
<th>Outlier ratio</th>
<th>0%</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PointNet [36]</td>
<td>98.1</td>
<td>95.1</td>
<td>93.2</td>
<td>79.5</td>
<td>67.7</td>
<td>70.0</td>
<td>54.8</td>
</tr>
<tr>
<td>CNe [55]</td>
<td>98.0</td>
<td>95.8</td>
<td>94.0</td>
<td>91.0</td>
<td>90.1</td>
<td>87.7</td>
<td>87.2</td>
</tr>
<tr>
<td>ACNe (Ours)</td>
<td>98.3</td>
<td>97.2</td>
<td>96.5</td>
<td>95.3</td>
<td>94.7</td>
<td>94.3</td>
<td>93.7</td>
</tr>
</tbody>
</table>

### Table 3. 3D Point cloud classification – We replicate the 3D point classification experiment on ModelNet40 from [36], with vanilla PointNet. We then add outliers with Gaussian noise. Our approach performs best with and without outliers.

<table>
<thead>
<tr>
<th>Outlier ratio</th>
<th>0%</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PointNet</td>
<td>98.5</td>
<td>98.1</td>
<td>95.8</td>
<td>94.5</td>
<td>93.4</td>
<td>92.1</td>
<td>81.6</td>
</tr>
<tr>
<td>PointNet w/ CN</td>
<td>87.2</td>
<td>84.3</td>
<td>84.5</td>
<td>83.4</td>
<td>81.7</td>
<td>81.6</td>
<td>81.6</td>
</tr>
<tr>
<td>PointNet w/ ACN</td>
<td>87.7</td>
<td>84.6</td>
<td>85.0</td>
<td>84.6</td>
<td>83.3</td>
<td>84.2</td>
<td>84.2</td>
</tr>
</tbody>
</table>
the methodology of [55] and measure the error between the
ground truth and estimated vectors between both cameras,
for both rotation and translation, and combine them by taking
the maximum of the two. We then evaluate the accuracy over
all image pairs at multiple error thresholds, accumulate it up
to a limit (either 10° or 20°), and summarize performance
by its mean – which we call the mean Average Precision
(mAP); see [55]. This means that methods that perform
better at lower error thresholds are rewarded. We use their
data mostly as is, using the pre-extracted correspondences
and splits from OANet [58], but adapt it to the Fundamental
matrix problem. In contrast to previous works [55, 58],
which report results on the scene the models were trained
on, we focus on unknown scenes, in order to determine each
method’s actual performance.

As we discussed in Section 4.3, both CNe [55] and
OANet [58] assume known camera intrinsics and estimate
the Essential matrix, instead of the Fundamental matrix –
this is a significantly easier problem, as the number of free
parameters drops from 7 to 5. However, most research pa-
pers on this topic focus on estimating the Fundamental ma-
trix [9, 10, 38, 3, 4], which is why we focus on this problem
instead. For completeness, we also report results for the
Essential matrix in the supplementary appendix, for which
we also achieve state-of-the-art results.

In more detail, given an image pair, we extract 2k key-
points for each image with SIFT [31]. Matches are then
formed from one image to the other, in both directions.
As is typical for image matching, we then filter out non-
discriminative correspondences via bi-directional check, en-
four one-to-one matching. For RANSAC variants we
found it to be critical to further apply Lowe’s ratio test [31] –
without it RANSAC variants provide worse results. We
apply it with a ratio threshold of 0.8. We do not apply this
test for learned methods, as it throws out too many inliers for
learned methods to bring any benefit. Also, when training
learned methods, we train without bidirectional check to
show as many correspondences in the training set as possible
to the network.

We consider the following methods: LMedS [40],
RANSAC [16, 9], MLESAC [45], DegenSAC [10],
MAGSAC [4] CNe [55], DFE [39], OANet [58] and ACNe
(ours). We consider the pose estimated with the weighted
8-point algorithm directly, as well as those combined with a
robust outlier rejection method as outlined in Section 5.

Quantitative results. We report quantitative results in Ta-
ble 4, for two different error thresholds (10°/20°). We make
three fundamental observations:

(1) Our method consistently outperforms all of the baselines,
including CNe and OANet. The difference in performance
between ACNe and its closest competitor, OANet, is of
14.1/9.8% relative for Outdoors, and 8.6/9.2% relative for
Indoors when used without any additional post processing.
The gap for Outdoors is reduced to 1% when they are com-
bined with MAGSAC, but ACNe still outperforms OANet.
For Indoors, we observe a drop in performance for both
OANet and ACNe when combining them with RANSAC
or MAGSAC. The margin between learned and traditional
methods is significant, with ACNe performing 30.1/39.6%
better relative on Outdoors and 45.5/47.1% better relative
on Indoors, compared to the best performing traditional bas-
eline – including a very recent method, MAGSAC.

(2) Different from the findings of [55], we observe that
RANSAC variants may harm performance, particularly with
ACNe. This is because through its global attention – w\text{global}
– ACNe can infer the relative importance of each correspon-
dence, which is not easily taken into account when passing
samples to a robust estimator. In this manner, ACNe goes
beyond simple outlier rejection. The best performance is
typically achieved by using ACNe at its pure form, directly
feeding its weights to the weighted 8-point algorithm. Given
that all our experiments are on unseen sequences, this further
shows that ACNe generalizes very well, even without being
followed by an additional robust estimator.

(3) Contrary to the results of Yi et al. [55] and Zhang et
al. [58], we find that traditional baselines perform better
than reported on either work. This is because their exper-
iment.

Figure 4. Wide-baseline stereo – We show the results of different matching algorithms on the dataset of [55]. We draw the inliers produced by them, in green if the match is below the epipolar distance threshold (in red otherwise). Note that this may include some false positives, as epipolar constraints map points to lines – perfect ground truth would require dense pixel-to-pixel correspondences.
We report that our approach provides improved performance over other methods, and that it pairs best with SuperPoint.

### Ablation study – Table 5.
We perform an ablation study to evaluate the effect of the different types of attention, as well as the supervision on the local component of the attentive mechanism. We also compare with CNe, as its architecture is the most similar to ours. We use the train and validation splits for the Saint Peter’s Square sequence for this study, as it is the primary sequence used for training in [55] and has many images within the set. (1) We confirm that CNe [55] performs better with Batch Normalization (BN) [22] than with Group Normalization (GN) [51] – we use GN for ACNe, as it seems to perform marginally better with our attention mechanism. (2) We observe that our attentive mechanisms allow ACNe to outperform CNe, and that their combination outperforms their separate use. (3) Applying supervision on the weights further boosts performance.

### With learned features – Table 6.
Finally, we report that our method also works well with two state-of-the-art, learned local feature methods – SuperPoint [14] and LF-Net [35]. They are learned end-to-end – their characteristics are thus different from those of SIFT keypoints. We test again on Saint Peter’s Square, as our primary focus is to show that it is possible to use other feature types. In Table 6 we report that both methods improve performance over SIFT with OANet and ACNe, but with ratio test and MAGSAC they perform worse. It is interesting how SuperPoint, without the ratio test, performs better than SIFT with MAGSAC, but the order is reversed when the ratio test is introduced, highlighting its importance. Regardless of feature type, we demonstrate that our approach improves performance over other methods, and that it pairs best with SuperPoint.

### 7. Conclusion
We have proposed Attentive Context Normalization (ACN), and used it to build Attentive Context Networks (ACNe) to solve problems on permutation-equivariant data. Our solution is inspired by IRLS, where one iteratively re-weights the importance of each sample, via a soft inlier/outlier assignment. We demonstrated that by learning both local and global attention we are able to outperform state-of-the-art solutions on line fitting, classification of point clouds in 2D (digits) and 3D (objects), and challenging wide-baseline stereo problems. Notably, our method thrives under large outlier ratios. For future research directions, we consider incorporating ACN into general normalization techniques for deep learning. We believe that this is an interesting direction to pursue, as all existing techniques make use of statistical moments.

### Acknowledgements
This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, NSERC Collaborative Research and Development Grant (Google), and by Compute Canada.
References

[27] Florian Kluger, Eric Brachmann, Hanno Ackermann, Carsten Rother, Michael Ying Yang, and Bodo Rosenhahn. CON- SAC: Robust Multi-Model Fitting by Conditional Sample Consensus. CVPR, 2020. 1
[50] Changchang Wu. Towards Linear-Time Incremental Structure from Motion. In JDD, 2013. 6
[51] Xuxin Wu and Kaiming He. Group Normalization. In European Conf. on Comput. Vis., 2018. 1, 2, 3, 4, 5, 8
[59] Chen Zhao, Zhiguo Cao, Chi Li, Xin Li, and Jiaqi Yang. NM-Net: Mining Reliable Neighbors for Robust Feature Correspondences. Conf. on Comput. Vis. Pattern Recognit., 2019. 1, 2, 5