
Conditional Gaussian Distribution Learning for Open Set Recognition

Xin Sun1, Zhenning Yang1, Chi Zhang1, Keck-Voon Ling2, Guohao Peng1

Nanyang Technological University, Singapore
1{xin001,zhenning002,chi007,peng0086}@e.ntu.edu.sg, 2

ekvling@ntu.edu.sg

Abstract

Deep neural networks have achieved state-of-the-art

performance in a wide range of recognition/classification

tasks. However, when applying deep learning to real-world

applications, there are still multiple challenges. A typical

challenge is that unknown samples may be fed into the sys-

tem during the testing phase and traditional deep neural

networks will wrongly recognize the unknown sample as

one of the known classes. Open set recognition is a poten-

tial solution to overcome this problem, where the open set

classifier should have the ability to reject unknown samples

as well as maintain high classification accuracy on known

classes. The variational auto-encoder (VAE) is a popular

model to detect unknowns, but it cannot provide discrimina-

tive representations for known classification. In this paper,

we propose a novel method, Conditional Gaussian Distri-

bution Learning (CGDL), for open set recognition. In ad-

dition to detecting unknown samples, this method can also

classify known samples by forcing different latent features

to approximate different Gaussian models. Meanwhile, to

avoid information hidden in the input vanishing in the mid-

dle layers, we also adopt the probabilistic ladder architec-

ture to extract high-level abstract features. Experiments on

several standard image datasets reveal that the proposed

method significantly outperforms the baseline method and

achieves new state-of-the-art results.

1. Introduction

In the past few years, deep learning has achieved state-

of-the-art performance in many recognition/classification

tasks [9, 10, 19, 26], but there are still multiple challenges

when applying deep learning to real-world problems. One

typical challenge is that incomplete knowledge exists dur-

ing the training phase, and unknown samples may be fed

into the system during the testing phase. While traditional

recognition/classification tasks are under a common closed

set assumption: all training and testing data come from the

same label space. When meeting an unknown sample, tradi-

tional deep neural networks (DNNs) will wrongly recognize

(a) VAE

(b) Ours: CGDL

Figure 1: Comparison of latent representations on MNIST

dataset of the VAE (a) and the proposed method CGDL

(b). The VAE is widely used in unknown detection, but

it cannot provide discriminative features to undertake clas-

sification tasks as all features just follow one distribution.

Comparatively, the proposed method can learn conditional

Gaussian distributions by forcing different latent features to

approximate different Gaussian models, which enables the

proposed method to classify known samples as well as re-

ject unknown samples.

it as one of the known classes.

The concept of open set recognition (OSR) [31] was pro-

posed, assuming the testing samples can come from any

classes, even unknown during the training phase. The open

set classifier should have a dual character: unknown de-
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tection and known classification1. Considering that during

training it is not available to extract information from un-

known samples, to realize unknown detection, many pre-

vious works analyze information from known samples by

unsupervised learning [2, 28, 43, 44]. Among them, the

variational auto-encoder (VAE) [13] is a popular method, in

combination with clustering [2], GMM [44], or one-class

[28] algorithm. The VAE is a probabilistic graphical model

which is trained not only to reconstruct the input accurately,

but also to force the posterior distribution qφ(z|x) in the

latent space to approximate one prior distribution pθ(z),
such as the multivariate Gaussian or Bernoulli distribution.

The well-trained VAE is able to correctly describe known

data, and deviated samples will be recognized as unknown.

Fig. 1a is an example of the VAE latent representations on

MNIST dataset when the prior distribution pθ(z) is the mul-

tivariate Gaussian. Although the VAE excels at unknown

detection, it cannot provide discriminative representations

to undertake classification tasks as all features only follow

one distribution.

Here, to overcome this shortcoming, we propose a

novel method, Conditional Gaussian Distribution Learning

(CGDL), for open set recognition. Different from tradi-

tional VAEs, the proposed method is able to generate class

conditional posterior distributions qφ(z|x, k) in the latent

space where k is the index of known classes. These condi-

tional distributions are forced to approximate different mul-

tivariate Gaussian models p
(k)
θ (z) = N (z;µk, I) where µk

is the mean of the k-th multivariate Gaussian distribution,

obtained by a fully-connected layer that maps the one-hot

encoding of the input’s label to the latent space. Fig. 1b is

an example of latent representations of the proposed method

on MNIST dataset. These learned features will be fed to an

open set classifier, which consists of two parts: an unknown

detector and a closed set classifier. As known samples tend

to follow the prior distributions, the unknown detector will

recognize those samples locating in lower probability re-

gions as unknown. Meanwhile, for the known sample, the

closed set classifier will calculate its prediction scores over

all known classes and predict it as the class with the highest

score.

Current networks tend to go deeper for higher accu-

racy in recognition/classification tasks [35]. However, tra-

ditional VAEs are restricted to shallow models as details of

input could be lost in higher layers [25], which limits VAE’s

ability to extract high-level abstract features. To fully ex-

ploit information from known samples, we adopt the proba-

bilistic ladder network [34] into the proposed method. This

probabilistic ladder architecture allows information inter-

actions between the upward path and the downward path,

which enables the decoder to recover details discarded by

1We refer to detection of unknown samples as unknown detection, and

classification of known samples as known classification.

the encoder. Although there are several successful appli-

cations of the probabilistic ladder network [7, 14, 25], this

paper is the first to apply it to open set recognition.

In our experiments, we explore the importance of the

probabilistic ladder architecture and the conditional distri-

butions in the latent space for open set recognition. We em-

pirically demonstrate that our method significantly outper-

forms baseline methods. In summary, this paper makes the

following contributions:

• We propose a novel open set recognition method,

called Conditional Gaussian Distribution Learning

(CGDL). Compared with previous methods based on

VAEs, the proposed method is able to learn conditional

distributions for known classification and unknown de-

tection.

• We develop a fully-connected layer to get the means of

different multivariate Gaussian models, which enables

posterior distributions in the latent space to approxi-

mate different Gaussian models.

• We adopt a probabilistic ladder architecture to learn

high-level abstract latent representations to further im-

prove open set classification scores.

• We conduct experiments on several standard image

datasets, and the results show that our method outper-

forms existing methods and achieves new state-of-the-

art performance.

2. Related Work

Open Set Recognition. The methods for open set recog-

nition (OSR) can be broadly divided into two branches: tra-

ditional methods (e.g., SVM, sparse representation, Near-

est Neighbor,etc.) and deep learning-based methods. In

traditional methods, Scheirer et al. [31] proposed an SVM

based method which adds an extra hyper-line to detect un-

known samples. Jain et al. [11] proposed the PI -SVM

algorithm, which is able to reject unknown samples by

adopting EVT to model the positive training samples at

the decision boundary. Cevikalp et al. [5, 6] defined the

acceptance regions for known samples with a family of

quasi-linear ‘polyhedral conic’ functions. Zhang et al. [42]

pointed out that discriminative information is mostly hid-

den in the reconstruction error distributions, and proposed

the sparse representation-based OSR model, called SROSR.

Bendale et al. [3] recognized unknown samples based on

the distance between the testing samples and the centroids

of the known classes. Júnior et al. [12] proposed the Near-

est Neighbor Distance Ratio (NNDR) technique, which car-

ries out OSR according to the similarity score between

the two most similar classes. Considering deep learning

achieves state-of-the-art performance in a wide range of
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recognition/classification tasks, deep learning-based open

set recognition methods are gaining more and more atten-

tion.

In deep learning-based methods, Bendale et al. [4] pro-

posed the Openmax function to replace the Softmax func-

tion in CNNs. In this method, the probability distribution

of Softmax is redistributed to get the class probability of

unknown samples. Based on Openmax, Ge et al. [8] pro-

posed the Generative Openmax method, using generative

models to synthesize unknown samples to train the network.

Shu et al. [33] proposed the Deep Open Classifier (DOC)

model, which replaces the Softmax layer with a 1-vs-rest

layer containing sigmoid functions. Counterfactual image

generation, a dataset augmentation technique proposed by

Neal et al. [22], aims to synthesize unknown-class images.

Then the decision boundaries between unknown and known

classes can be converged from these known-like but actually

unknown sample sets. Yoshihashi et al. [37] proposed the

CROSR model, which combines the supervised learned pre-

diction and unsupervised reconstructive latent representa-

tion to redistribute the probability distribution. Oza and Pa-

tel [24] trained a class conditional auto-encoder (C2AE) to

get the decision boundary from the reconstruction errors by

extreme value theory (EVT). The training phase of C2AE

is divided into two steps (closed-set training and open-set

training), and a batch of samples need to be selected from

training data to generate non-match reconstruction errors.

This is difficult in practice and testing results are highly de-

pendent on the selected samples. On the contrary, the pro-

posed method is an end-to-end system and does not need

extra data pre-processing.

Anomaly Detection. Anomaly detection (also called

outlier detection) aims to distinguish anomalous samples

from normal samples, which can be introduced into OSR for

unknown detection. Some general anomaly detection meth-

ods are based on Support Vector Machine (SVM) [36, 21]

or forests [27]. In recent years, deep neural networks have

also been used in anomaly detection, mainly based on auto-

encoders trained in an unsupervised manner [43, 2, 28, 44].

Auto-encoders commonly have a bottleneck architecture to

induce the network to learn abstract latent representations.

Meanwhile, these networks are typically trained by min-

imizing reconstruction errors. In anomaly detection, the

training samples commonly come from the same distribu-

tion, thus the well-trained auto-encoders could extract the

common latent representations from the normal samples

and reconstruct them correctly, while anomalous samples

do not contain these common latent representations and

could not be reconstructed correctly. Although VAEs are

widely applied in anomaly detection, it cannot provide dis-

criminative features for classification tasks.

Apart from auto-encoders, some studies used Genera-

tive Adversarial Networks (GANs) to detect anomalies [32].

GANs are trained to generate similar samples according to

the training samples. Given a testing sample, the GAN tries

to find the point in the generator’s latent space that can gen-

erate a sample closest to the input. Intuitively, the well-

trained GAN could give good representations for normal

samples and terrible representations for anomalies.

There are also some related tasks focusing on novel

classes. For example, few-shot learning [39, 40, 41] aims to

undertake vision tasks on new classes with scarce training

data. Incremental learning [20] aims to make predictions on

both old classes and new classes without accessing data in

old classes.

3. Preliminaries

Before introducing the proposed method, we briefly in-

troduce the terminology and notation of VAE [13].

The VAE commonly consists of an encoder, a decoder

and a loss function L(θ;φ;x). The encoder is a neural net-

work that has parameters φ. Its input is a sample x and its

output is a hidden representation z. The decoder is another

neural network with parameters θ. Its input is the repre-

sentation z and it outputs the probability distribution of the

sample. The loss function in the VAE is defined as follows:

L(θ;φ;x) = −DKL

(

qφ(z|x) || pθ(z)
)

+ Eqφ(z|x)

[

log pθ(x|z)
] (1)

where qφ(z|x) is the approximate posterior, pθ(z) is the

prior distribution of the latent representation z and pθ(x|z)
is the likelihood of the input x given latent representation

z. On the right-hand side of Eqn. 1, the first term is the

KL-divergence between the approximate posterior and the

prior. It can be viewed as a regularizer to encounter the

approximate posterior to be close to the prior pθ(z). The

second term can be viewed as the reconstruction errors.

Commonly, the prior over the latent representation z

is the centered isotropic multivariate Gaussian pθ(z) =
N (z;0, I). In this case, the variational approximate pos-

terior could be a multivariate Gaussian with a diagonal co-

variance structure:

qφ(z|x) = N (z;µ,σ2I) (2)

where the mean µ and the standard deviation σ of the

approximate posterior are outputs of the encoding multi-

layered perceptrons (MLPs). The latent representation z

is defined as z = µ + σ ⊙ ǫ where ǫ ∼ N (0, I) and ⊙ is

the element-wise product. Let J be the dimensionality of z,

then the KL-divergence can be calculated [13]:

−DKL

(

qφ(z|x
)

|| pθ(z))

=
1

2

J
∑

j=1

(

1 + log(σ2
j )− µ2

j − σ2
j

) (3)
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With loss function L(θ;φ;x), the VAE is trained not

only to reconstruct the input accurately, but also to force the

posterior distribution qφ(z|x) in the latent space to approx-

imate the prior distribution pθ(z). If a sample locates in

the low probability region of the learned distribution, this

sample will be recognized as unknown.

4. Proposed Method

In this section, we describe the proposed method in de-

tail. Firstly, we describe the architecture of the proposed

model. Then, we introduce the training phase and the test-

ing phase to describe the functions of each module.

4.1. Architecture

The architecture of the proposed method is composed of

four modules (as shown in Fig. 2):

1. Encoder F
2. Decoder G
3. Known Classifier C
4. Unknown Detector D

Encoder F . To extract high-level abstract latent fea-

tures, the probabilistic ladder architecture is adopted in each

layer. In detail, the l-th layer in the encoder F is expressed

as follows:

xl = Conv(xl−1)

hl = Flatten(xl)

µl = Linear(hl)

σ2
l = Softplus(Linear(hl)

where Conv is a convolutional layer followed by a batch-

norm layer and a PReLU layer, Flatten is a linear layer

to flatten 2-dimensional data into 1-dimension, Linear is

a single linear layer and Softplus applies log(1+exp(· ))
non-linearity to each component of its argument vector

(Fig. 3 illustrates these operations). The latent represen-

tation z is defined as z = µ+σ⊙ ǫ where ǫ ∼ N (0, I), ⊙
is the element-wise product, and µ, σ are the outputs of the

top layer L.

Decoder G. The l-th layer in the decoder G is expressed

as follows:

c̃l+1 = Unflatten(z̃l+1)

x̃l+1 = ConvT(c̃l+1)

h̃l+1 = Flatten(x̃l+1)

µ̃l = Linear(h̃l+1)

σ̃2
l = Softplus(Linear(h̃l+1)

zl = µ̃l + σ̃2
l ⊙ ǫ

where ConvT is a transposed convolutional layer and

Unflatten is a linear layer to convert 1-dimensional data

Figure 2: Block diagram of the proposed method: The en-

coder F and decoder G are applied with the probabilis-

tic ladder architecture to extract high-level abstract latent

features. The known classifier C takes latent representa-

tions as input and produces the probability distribution over

the known classes. The unknown detector D is modeled

by the conditional Gaussian distributions and reconstruction

errors from training samples, which is used for unknown

detection. During training, the proposed model is trained

to minimize the sum of the reconstruction loss Lr, KL-

divergence LKL (both in the latent space and middle layers)

and classification loss Lc. During testing, the unknown de-

tector D will judge whether this sampler is unknown by its

latent features and reconstruction errors. If this sample is

known, the known classifier C will give out its predicted

label.

Figure 3: Operations in the upward pathway.

into 2-dimension (Fig. 4 illustrates these operations). In the
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l-th layer, the bottom-up information (µl and σl) and top-

down information (µ̃l and σ̃l) are interacted by the follow-

ing equations defined in [34]:

q µl =
µ̃lσ̃

−2
l + µlσ

−2
l

σ̃−2
l + σ−2

l

(4)

q σ2

l =
1

σ̃−2
l + σ−2

l

(5)

Figure 4: Operations in the downward pathway.

Known Classifier C. The known classifier C is a Soft-

max layer, which takes the latent representation z as in-

put. It produces the probability distribution over the known

classes.

Unknown Detector D. When training is completed, the

unknown detector D is modeled by information hidden in

the latent representations and reconstruction errors. Dur-

ing the testing phase, the unknown detector D is used as

a binary classifier to judge whether the input is known or

unknown (details are discussed in Sec. 4.3).

4.2. Training

During the training phase, the proposed model forces

the conditional posterior distributions qφ(z|x, k) to approx-

imate different multivariate Gaussian models p
(k)
θ (z) =

N (z;µk, I) where k is the index of known classes, and

the mean of k-th Gaussian distribution µk is obtained by

a fully-connected layer which maps the one-hot encoding

of the input’s label to the latent space. The KL-divergence

in latent space (Eqn. 3) is modified as follows:

−DKL(qφ(z|x, k) || p
(k)
θ (z))

=

∫

qφ(z|x, k)
(

log p
(k)
θ (z)− log qφ(z|x, k)

)

dz

=

∫

N (z;µ,σ2)
(

logN (z;µk, I)− logN (z;µ,σ2)
)

dz

=
1

2

J
∑

j=1

(

1 + log(σ2
j )− (µj − µ

(k)
j )2 − σ2

j

)

(6)

During the training phase, the model is trained to mini-

mize the sum of the reconstruction loss Lr, KL-divergence

LKL and classification loss Lc. To measure classification

loss Lc, we use softmax cross-entropy of prediction and

ground-truth labels. To measure reconstruction loss Lr,

we use the L1 distance between input images x and recon-

structed image x̃. As the probabilistic ladder architecture

is adopted, the KL-divergence is considered not only in the

latent space but also in the middle layers:

LKL =−
1

L

[

DKL

(

qφ(z|x, k) || p
(k)
θ (z)

)

+

L−1
∑

l=1

DKL

(

qθ(x̃l|x̃l+1,x) || qθ(x̃l|x̃l+1)
)]

(7)

where

qθ(x̃l|x̃l+1,x) = N (x̃l; q µl, q σ2

l ) (8)

qθ(x̃l|x̃l+1) = N (x̃l; µ̃l, σ̃
2

l ) (9)

The loss function used in our model is summarized as

follows:

L = −(Lr + βLKL + λLc) (10)

where β is increased linearly from 0 to 1 during the training

phase as described in [34] and λ is a constant.

4.3. Testing

When training is completed, we model the per class mul-

tivariate Gaussian model fk(z) = N (z;mk,σ
2
k) where

mk and σ2
k are the mean and variance of the latent rep-

resentations of all correctly classified training samples in

k-th class. If the dimension of the latent space is n: z =
(z1, ..., zn), the probability of a sample locating in the dis-

tribution fk(z) is defined as follows:

Pk(z) = 1−

∫ m0+|z0−m0|

m0−|z0−m0|

· · ·

∫ mn+|zn−mn|

mn−|zn−mn|

fk(t) dt

(11)

We also analyze information hidden in the reconstruc-

tion errors. The reconstruction errors of input from known

classes are commonly smaller than that of unknown classes

[24]. Here we obtain the reconstruction error threshold by

ensuring 95% training data to be recognized as known. De-

tails of the testing procedure are described in Algo. 1.

5. Experiments and Results

5.1. Implementation details

In the proposed method, we use the SGD optimizer with

a learning rate of 0.001, and fix the batch size to 64. The

backbone is the re-designed VGGNet defined in [37]. The

dimensionality of the latent representation z is fixed to 32.

For loss function described in Sec. 4.2, the parameter β is

increased linearly from 0 to 1 during the training phase as
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Algorithm 1 Testing procedure

Require: Testing sample X

Require: Trained modules F , G, C
Require: Threshold τl of Gaussian distributions

Require: Threshold τr of reconstruction errors

Require: For each class k, let zi,k is the latent representa-

tion of each correctly classified training sample xi,k

1: for k = 1, . . . ,K do

2: compute the mean and variance of each class:

mk = meani(zi,k), σ
2
k = vari(zi,k)

3: model the per class multivariate Gaussian: fk(z) =
N (z;mk,σ

2
k)

4: end for

5: latent representation Z = F(X)
6: predicted known label ypred = argmax(C

(

Z)
)

7: reconstructed image X̃ = G(Z)
8: reconstruction error R = ||X − X̃||1
9: if ∀k ∈ {1, ...,K}, Pk(Z) < τl or R > τr then

10: predict X as unknown

11: else

12: predict X as known with label ypred
13: end if

described in [34], while the parameter λ is set equal to 100.

The networks were trained without any large degradation

in closed set accuracy from the original ones. The closed

set accuracy of the networks for each dataset are listed in

Table. 1. The threshold τl of conditional Gaussian distri-

butions is set to 0.5, and the threshold τr of reconstruction

errors is obtained by ensuring 95% training data be recog-

nized as known.

5.2. Ablation Analysis

In this section, we analyze our contributions from

each component of the proposed method on CIFAR-100

dataset [16]. The CIFAR-100 dataset consists of 100

classes, containing 500 training images and 100 testing im-

ages in each class. For ablation analysis, the performance is

measured by F-measure (or F1-scores) [30] against varying

Openness [31]. Openness is defined as follows:

Openness = 1−

√

2×Ntrain

Ntest +Ntarget

(12)

where Ntrain is the number of known classes seen during

training, Ntest is the number of classes that will be observed

during testing, and Ntarget is the number of classes to be

recognized during testing. We randomly sample 15 classes

out of 100 classes as known classes and varying the number

of unknown classes from 15 to 85, which means Openness

is varied from 18% to 49%. The performance is evaluated

by the macro-average F1-scores in 16 classes (15 known

Table 1: Comparison of closed set test accuracies between

the plain CNN and the proposed method CGDL. Although

the training objective of CGDL is classifying known sam-

ples as well as learning conditional Gaussian distributions,

there is no significant degradation in closed set accuracy.

Architecture MNIST SVHN CIFAR-10

Plain CNN 0.997 0.944 0.912

CGDL 0.996 0.942 0.912

classes and unknown).

We compare the following baselines for ablation analy-

sis:

I. CNN: In this baseline, only the encoder F (without

ladder architecture) and the known classifier C are trained

for closed set classification. This model can be viewed

as a traditional convolutional neural network (CNN).

During testing, learned features will be fed to C to get the

probability scores of known classes. A sample will be

recognized as unknown if its probability score of predicted

label is less than 0.5.

II. CVAE: The encoder F , decoder G and classifier C
are trained without the ladder architecture, and the testing

procedure is the same as baseline I. This model can be

viewed as a class conditional variational auto-encoder

(CVAE).

III. LCVAE: The probabilistic ladder architecture is

adopted in the CVAE, which contributes to the KL-

divergences during training (Eqn. 7). We call this model

as LCVAE. The testing procedure is the same as baseline I

and II.

IV. CVAE+CGD: The model architecture and training

procedure are the same as baseline II, while the conditional

Gaussian distributions (CGD) are used to detect unknowns

during testing.

V. LCVAE+CGD: In this baseline, LCVAE is introduced

along with CGD-based unknown detector. The training and

testing procedure are respectively the same as baseline III

and IV.

VI. LCVAE+RE: Different from baseline V, reconstruction

errors (RE), instead of CGD, are used in LCVAE to detect

unknown samples.

VII. Proposed Method: The training procedure is the

same as baseline V and VI, while during testing condi-

tional Gaussian distributions and reconstruction errors are

together used for unknown detection.

The experimental results are shown in Fig. 5. Among

baseline I, II and III, unknown detection simply relies on the

known classifier C. Although the performance is a little im-

proved when the probabilistic ladder architecture is adopted
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Table 2: The Area Under the ROC curve (AUROC) on detecting known and unknown samples. Results are averaged among

five randomized trials.

Method MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 Ting-ImageNet

Softmax 0.978 ± 0.002 0.886 ± 0.006 0.677 ± 0.032 0.816 ± - 0.805 ± - 0.577 ± -

Openmax [4] 0.981 ± 0.002 0.894 ± 0.008 0.695 ± 0.032 0.817 ± - 0.796 ± - 0.576 ± -

G-Openmax [8] 0.984 ± 0.001 0.896 ± 0.006 0.675 ± 0.035 0.827 ± - 0.819 ± - 0.580 ± -

OSRCI [22] 0.988 ± 0.001 0.910 ± 0.006 0.699 ± 0.029 0.838 ± - 0.827 ± - 0.586 ± -

C2AE [24] 0.989 ± 0.002 0.922 ± 0.009 0.895 ± 0.008 0.955 ± 0.006 0.937 ± 0.004 0.748 ± 0.005

ours: CGDL 0.994 ± 0.002 0.935 ± 0.003 0.903 ± 0.009 0.959 ± 0.006 0.950 ± 0.006 0.762 ± 0.005

Figure 5: F1-scores against varying Openness with different

baselines for ablation analysis.

(baseline III), the overall performance in these three base-

lines is weak as the F1-scores degrade rapidly as the Open-

ness increases. Conditional Gaussian distributions (CGD) is

added for unknown detection in CVAE model (baseline IV),

but it has seen no visible change in performance. In base-

line V, this trend is alleviated by introducing CGD-based

unknown detector into LCVAE. This shows the importance

of the probabilistic ladder architecture for open set recog-

nition. It is also the reason why the CGD-based unknown

detection achieves better performance in baseline V than in

baseline IV. If we only use reconstruction errors to detect

unknowns (baseline VI), the results are worst. However, if

reconstruction errors are added to the CGD-based unknown

detector (baseline VII), there is a little improvement in per-

formance. As a result, applying conditional Gaussian distri-

butions and reconstruction errors to detect unknowns with

the probabilistic ladder architecture achieves the best per-

formance.

Table 3: Open set classification results on MNIST dataset

with various outliers added to the test set as unknowns. The

performance is evaluated by macro-averaged F1-scores in

11 classes (10 known classes and unknown).

Method Omniglot MNIST-noise Noise

Softmax 0.595 0.801 0.829

Openmax [4] 0.780 0.816 0.826

CROSR [37] 0.793 0.827 0.826

ours: CGDL 0.850 0.887 0.859

5.3. Comparison with State­of­the­art Results

In this section, we compare the proposed method with

state-of-the-art methods. We report our results under two

different experimental set-ups, where the difference is that

in the first set-up, the performance is measured by the

model’s ability on detecting unknown samples, and in the

second set-up, the performance is measured by F1-scores in

all known classes and unknown.

Unknown Detection. Following the protocol defined in

[22], we use four standard image datasets: MNIST [18],

SVHN [23], CIFAR-10 [15] and Tiny-ImageNet [17], to

measure the model’s ability to identify unknown samples.

For MNIST, SVHN and CIFAR-10 datasets, each dataset is

randomly partitioned into 6 known classes and 4 unknown

classes. Meanwhile, the model is also trained on CIFAR-10

as described previously with 4 known classes, but the test

set is replaced with 10 unknown classes randomly chosen

from CIFAR-100 [16] dataset. This task is reported as CI-

FAR+10. Similarly, 50 unknown classes are randomly cho-

sen from CIFAR-100 [16] dataset to set up the CIFAR+50

task. For the Tiny-ImageNet dataset, we randomly choose

20 classes as known classes. The remaining 180 classes are

defined as unknown. The performance is measured by the

Area Under the ROC curve (AUROC) on detecting known

and unknown samples, and the results shown in Table. 2

are averaged among 5 separate samples of known and un-

known. From this table, we can see that our method sig-
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Table 4: Open set classification results on CIFAR-10 dataset with various outliers added to the test set as unknowns. The

performance is evaluated by macro-averaged F1-scores in 11 classes (10 known classes and unknown).
∗We report the experimental results reproduced in [37].

Method ImageNet-crop ImageNet-resize LSUN-crop LSUN-resize

Softmax [37]∗ 0.639 0.653 0.642 0.647

Openmax [4] 0.660 0.684 0.657 0.668

LadderNet+Softmax [37] 0.640 0.646 0.644 0.647

LadderNet+Openmax [37] 0.653 0.670 0.652 0.659

DHRNet+Softmax [37] 0.645 0.649 0.650 0.649

DHRNet+Openmax [37] 0.655 0.675 0.656 0.664

CROSR [37] 0.721 0.735 0.720 0.749

C2AE [24] 0.837 0.826 0.783 0.801

ours: CGDL 0.840 0.832 0.806 0.812

nificantly outperforms previous works and achieves a new

state-of-the-art performance.

Open Set Recognition. An ideal open set classifier can

not only reject unknown samples but also classify known

classes. In the following experiments, the models are

trained by all training samples of one dataset, but in the

testing phase, samples from another dataset are added to

the test set as unknown samples. We measure the open set

recognition performance by the macro-averaged F1-scores

in known classes and unknown on MNIST and CIFAR-10

datasets.

Figure 6: Examples from MNIST, Omniglot, MNIST-

Noise, and Noise datasets.

Firstly, we choose MNIST, the most popular hand-

written digit dataset, as the training set. As outliers, we fol-

low the set up in [37], using Omniglot [1], MNIST-Noise,

and Noise these three datasets. Omniglot is a dataset con-

taining various alphabet characters. Noise is a synthesized

dataset by setting each pixel value independently from a

uniform distribution on [0, 1]. MNIST-Noise is also a syn-

thesized dataset by adding noise on MNIST testing sam-

ples. Each dataset contains 10, 000 testing samples, the

same as MNIST, and this makes the known-to-unknown ra-

tio 1:1. Fig. 6 shows examples of these datasets. The open

set recognition scores are shown in Table. 3 and the pro-

posed method achieves the best results on all given datasets.

Secondly, following the protocol defined in [37], all sam-

ples in CIFAR-10 dataset are collected as known data, and

samples from other datasets, i.e., ImageNet [29] and LSUN

[38], are selected as unknown samples. We resize or crop

the unknown samples to make them have the same size

with known samples. ImageNet-crop, ImageNet-resize,

LSUN-crop, and LSUN-resize these four datasets are gen-

erated, and each dataset contains 10,000 testing images,

which is the same as CIFAR-10. This makes during test-

ing the known-to-unknown ratio 1:1. The performance of

the method is evaluated by macro-averaged F1-scores in 11

classes (10 known classes and unknown), and our results are

shown in Table. 4. We can see from the results that on all

given datasets, the proposed method is more effective than

previous methods and achieves a new state-of-the-art per-

formance.

6. Conclusion

In this paper, We have presented a novel method for open

set recognition. Compared with previous methods solely

based on VAEs, the proposed method can classify known

samples as well as detect unknown samples by forcing pos-

terior distributions in the latent space to approximate differ-

ent Gaussian models. The probabilistic ladder architecture

is adopted to preserve the information that may vanish in the

middle layers. This ladder architecture obviously improves

the open set performance. Moreover, reconstruction infor-

mation is added to the unknown detector to further improve

the performance. Experiments on several standard image

datasets under two set-ups show that the proposed method

significantly outperforms the baseline methods and achieves

new state-of-the-art results.
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