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Abstract

In this paper, the main task we aim to tackle is the multi-

instance semi-supervised video object segmentation across

a sequence of frames where only the first-frame box-level

ground-truth is provided. Detection-based algorithms are

widely adopted to handle this task, and the challenges lie in

the selection of the matching method to predict the result as

well as to decide whether to update the target template us-

ing the newly predicted result. The existing methods, how-

ever, make these selections in a rough and inflexible way,

compromising their performance. To overcome this limita-

tion, we propose a novel approach which utilizes reinforce-

ment learning to make these two decisions at the same time.

Specifically, the reinforcement learning agent learns to de-

cide whether to update the target template according to the

quality of the predicted result. The choice of the matching

method will be determined at the same time, based on the

action history of the reinforcement learning agent. Experi-

ments show that our method is almost 10 times faster than

the previous state-of-the-art method with even higher accu-

racy (region similarity of 69.1% on DAVIS 2017 dataset).

1. Introduction

Multi-instance semi-supervised video object segmenta-

tion (VOS) is an important computer vision task, serving

as the basis of many other related tasks including scene un-

derstand, video surveillance and video editing. The task of

VOS is to produce instance segmentation masks for each

frame in a video sequence where the first-frame ground-

truth is provided in advance. It turns out to be a challenging

task especially in the situations of deformation, motion blur,

illumination change, background clutter, and so on.
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Figure 1. Speed-accuracy trade-off for various multi-instance

semi-supervised VOS methods on DAVIS 2017 dataset. Methods

in green only rely on the first-frame box-level ground-truth while

methods in red rely on the first-frame pixel-level ground-truth.

There are two common ways to provide the first-frame

ground-truth, including masks and bounding boxes. Provid-

ing the first-frame masks is a conventional way, which has

been widely adopted nowadays [32, 27]. Although these

methods have already achieved good performance with the

pixel-level accurate target object information, it turns to a

hard task to utilize these methods to solve practical VOS

problems, especially when numerous video sequences need

to be processed in a short time, because annotating pixel-

level ground-truth masks for each video sequence is time-

consuming. To overcome this problem, inspired by the

rapid progress in the task of video object tracking (VOT) at

bounding box level, some works attempt to rely on the first-

frame bounding boxes to provide target object information

instead of using the first-frame masks, which dramatically

accelerates the annotation process and increases scalability.

This kind of acceleration is, however, built on the sac-

rifice of ground-truth “accuracy”. The reason is that some

background area will be incorporated into the bounding box

as well, which greatly increases the difficulty of the VOS
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task. In this way, in order to adapt to the characteristics

of box-level ground-truth, most existing methods relying on

the first-frame bounding boxes adopt the detection-based al-

gorithms. Generally, these detection-based methods include

three steps. The first step is to conduct object detection on

the whole frame to generate the proposals of all possible

objects using the region proposal network [23]. The sec-

ond step is to do the matching process between the target

object and all candidate proposals to find the “correct” pro-

posal. The third step is to do the salience segmentation on

the “correct” proposal to generate the final segmentation re-

sult. However, existing methods relying on the first-frame

bounding boxes [31, 29] are less performing than the meth-

ods relying on first-frame masks both in terms of running

speed and accuracy.

First, in terms of the running speed, we observe that

most existing detection-based algorithms spend too much

time on the matching process (e.g., 1.425s for matching

process and 0.025s for segmentation process in [29]), us-

ing several time-consuming networks to evaluate the ap-

pearance similarity, like the re-identification network [25]

and the siamese style network [29]. We observe that, for

most video sequences, fast matching according to the inter-

section over union (IOU) between candidate proposals of

the current frame and the obtained previous frame’s bound-

ing box or segmentation mask can also lead to acceptable

performance, because the target object normally moves or

changes slowly in two successive frames. However, simple

IOU-based matching methods sometimes lose the target, es-

pecially when the target disappears out of the sight, and then

reappears at a different location. Therefore, neither simple

appearance-based matching nor simple IOU-based match-

ing is the best solution for this task.

Second, the major constriction of VOS accuracy is its

rough way to update the target template. The target tem-

plate, containing the target’s latest information including

appearance, location and so on, plays an essential role in

the matching process. Among all candidate proposals of the

current frame, the proposal with the highest similarity with

the target template will be selected. In this way, whether

the correct proposal can be selected is determined by the

quality of the target template as well as its update mecha-

nism. Existing methods, however, simply replace the target

template with the newly predicted result after one frame is

finished, regardless of the correctness of the obtained result.

Therefore, error will be gradually introduced into the target

template, causing a great accuracy decline.

To achieve a better balance between accuracy and

speed, a “smart switch” is required to make two signifi-

cant decisions, including adopting which matching method,

IOU-based matching or appearance-based matching, and

whether to update the target template or not. To tackle this

problem, we formalize it as a conditional decision-making

process where only one simple reinforcement learning (RL)

agent is employed to make decisions in a flexible way. As

can be observed from Figure 1, provided with the opti-

mal matching method and updating mechanism, our algo-

rithm can be dramatically accelerated without losing tar-

gets even in some difficult frames, leading to a higher accu-

racy against previous state-of-the-art methods. Specifically,

the running speed of our method is approximately 10 times

faster than the previous state-of-the-art method.

To sum up, most video object tracking and segmentation

algorithms consist of three steps. The first step is to conduct

the instance segmentation on the current frame to generate

a pool of candidate proposals. The second step is to con-

duct the matching process to find the correct one as the final

result among all candidate proposals according to the target

template information. The third step is to entirely replace

the target template using the prediction of the current frame.

In this paper, as we find the first step does not greatly affect

the final result, our novelty lies in the improvement of the

second and third steps:

• To improve the second step, our method provides a

simple way to trade off between running speed and ac-

curacy by selecting the matching method (IOU-based

matching or appearance-based matching). The choice

of the matching method is determined by the action

history of the RL agent, which dramatically reduces

the running time of our method.

• To improve the third step, as we observe the impor-

tance of the target template update mechanism to avoid

drift, we argue that some predicted results with terrible

quality should be discarded, and the target template

should be kept unchanged in this situation. Specifi-

cally, we adopt a RL agent to make the decision on

whether to update the target template or not according

to the quality of the predicted result, which effectively

prevents the drift problem and boots the accuracy of

our method.

• The proposed approach has been validated on both

VOS and VOT datasets, including DAVIS 2017,

DAVIS 2016, SegTrack V2, Youtube-Object and VOT

2018 long-term datasets. Our method is approxi-

mately 10 times faster than the previous state-of-the-

art method and achieve a higher mean region similar-

ity at the same time. The new state-of-the-art mean re-

gion similarity is obtained on several datasets includ-

ing DAVIS 2017 (69.1%), SegTrack V2(79.2%) and

Youtube-Object (79.3%).
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2. Related Work

2.1. Video Object Segmentation

VOS can be classified into three different categories in-

cluding unsupervised VOS [26], interactive VOS [3, 30] and

semi-supervised VOS [27, 3].

Unsupervised VOS is the task where no first-frame an-

notation is available at all. In [24], concatenated pyramid

dilated convolution feature map is utilized to improve the

final accuracy. Interactive VOS allows user annotation. In

[3], an embedding model is trained to tell if two pixels be-

long to the same object, which proves to be efficient for this

task.

Currently, semi-supervised VOS, where the first-frame

ground-truth is provided, is still the main battlefield of the

VOS tasks. The most common approach is to use the first-

frame ground-truth to fine-tune the general segmentation

network [2]. To adjust to the object appearance variation, in

[28], the segmentation network will be updated during the

test time. To overcome the speed shortcoming of the online

updating, in [34], a meta learning model is utilized to speed

up the process of online updating virtually without a reduc-

tion on the accuracy. To overcome the lack of the training

data, it is proposed to utilize static images to generate more

additional training samples in [32]. When the first-frame

ground-truth is provided in the form of bounding box, in

[31], original Siamese trackers is modified to generate the

segmentation of the target object. In [29], original R-CNN

network is modified to a conditional R-CNN network, and

a temporal consistency re-scoring algorithm is utilized to

find candidate proposals of the target object, followed by a

salience segmentation network to find the final result.

2.2. Deep Reinforcement Learning

Currently, RL has been applied to many computer vision

applications. In the task of VOT, [33] adopts RL to learn a

similarity function for data association. In [4], RL is applied

to choose the appropriate template from a template pool. In

terms of VOS, Han et al. splits the VOS task into two sub-

tasks including finding the optimal object box, and finding

the context box [8]. This work is desired by the fact that

the obtained segmentation masks vary under different object

boxes and context boxes for an identical frame. In this way,

RL is naturally suitable to select the optimal object box and

context box for each frame.

3. Our Approach

3.1. Overview

Box-level semi-supervised VOS only provides the first-

frame box-level ground-truth, instead of the first-frame

pixel-level ground-truth. The main objective of our work is

to utilize RL to boost the performance of box-level semi-

supervised VOS in terms of both accuracy and running

speed, by improving its matching mechanism.To do this,

a RL agent is utilized to make two significant decisions si-

multaneously, including adopting which matching method,

IOU-based matching or appearance-based matching, and

whether to update the target template or not.

Specifically, as can be observed from Figure 2, the pro-

cessing of the current frame ft is split into three steps. The

first step is to adopt the IOU-based matching to generate a

temporary preliminary result. Specifically, the search re-

gion bs of the targets is determined first (see Figure 3),

which will be fed into a general instance segmentation net-

work (e.g. YOLACT [5], Mask R-CNN [9]) to generate

numerous candidate predictions. Then, IOU-based match-

ing will be adopted to find the preliminary result among all

candidate predictions.

The second step is to determine the update mechanism

for the target object information (target template) accord-

ing to the correctness and quality of the preliminary result,

which is judged by the RL agent. If it is good, the target

template will be entirely replaced by the preliminary result.

Otherwise, the preliminary result will be discarded and the

target template will keep unchanged. Ultimately, the final

result is generated according to the target template.

The third step is to determine whether the appearance-

based re-detection is essential for ft. If the target is lost,

in other words, the preliminary result keeps terrible for

N successive frames, the target needs to be re-detected

again using the appearance-based matching. Otherwise,

re-detection for ft is not needed, and the next frame ft+1

will be processed. In terms of the appearance-based re-

detection, the whole frame, rather than bs, will be fed into a

general instance segmentation network. Then, a new result

will be selected by the appearance-based matching method

among all candidate predictions. The second step is con-

ducted again to generate a new final result. Note that the

third step is conducted no more than once for each frame.

3.2. Agent Action

A RL agent is used to address two complicated chal-

lenges during the matching process, which have been ig-

nored by all existing detection-based VOS methods.

In our approach, target template is used to represent

the target information, which is an important concept. As

shown in Figure 4, the target template consists of the target’s

bounding box Tbox, segmentation mask Tmask, cropped im-

age Tbox′ inside Tbox, cropped image Tmask′ inside Tmask

and the whole frame Tframe. Correspondingly, the pre-

dicted result incorporates the bounding box Pbox, seg-

mentation mask Pmask, cropped image Pbox′ inside Pbox,

cropped image Pmask′ inside Pmask and the current frame

Pframe.

The first challenge is to decide whether to update the tar-
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Figure 2. Architecture of our method where unconditional paths (full line) indicate they will be conducted in any situation, while conditional

paths (dashed line) indicates they will be conducted only in some particular situations.

get template using the predicted result. Traditionally, the

target template is updated in a rough way, without taking

the correctness or quality of the predicted result into consid-

eration. Therefore, when the segmentation network predicts

a terrible result for current frame ft, which may even refer

to another object rather than the target, the target template

will still be replaced by the incorrect result. This mortal er-

ror will make the tracker drift to the wrong target, causing

a substantial accuracy drop. Note that this error cannot be

avoided by adopting a better matching method because the

target was decided before the matching process.

In this way, a “smart switch”, which is able to decide

whether to update the target template according to the qual-

ity of the predicted result, may be the best solution for this

challenge. Rather than making the decision heuristically,

we adopt a RL agent to make such a decision. The action

set A for the RL agent contains 2 candidate actions ai ∈ A,

including a0 to replace the target template using the pre-

dicted result of ft, and a1 to ignore the predicted result of

ft and keep the target template unchanged.

The second challenge is to decide whether to adopt

the fast IOU-based matching method or the accurate

appearance-based matching method. In our approach, IOU-

based matching views the candidate prediction with the

highest IOU score as the correct one, written as:

SIOU = αIOU(Tbox, Pbox) + βIOU(Tmask, Pmask),
(1)

α+ β = 1, (2)

where α and β refer to the weight of these two IOUs.

Appearance-based matching views the candidate predic-

tion with the highest appearance similarity as the correct

one:

Sa = Similarity(Tbox′ , Pbox′), (3)

where Similarity() is a Siamese style network, whose in-

puts are image patches within Tbox′ and Pbox′ . Then, their

individual embedding vectors are generated. A small L2

distance between these two vectors indicates two patches

are similar, and vice versa.

Figure 3. Illustration of the minimum enclosing rectangle bm and

search region bs. bs is generated by bm by expansion.

Having two matching mechanisms is inspired by the ob-

servation that the fast IOU-based matching performs well

for most normal frames, while the appearance-based match-

ing is only essential for a few difficult situations, especially

when the target disappears and reappears again. Therefore,

the selection of the matching method is pretty significant to

trade off between running speed and accuracy.

Instead of adding one more RL agent, we decide to

choose the matching method according to the action history.

In fact, the action history intrinsically indicates the predic-

tion quality. If the RL agent predicts a1 for N successive

frames, it is very likely that the target has been lost, and

the appearance-based matching is essential to be adopted to

detect the target on the whole frame.

3.3. State and Reward

The state st is the input of the RL agent for frame ft,
including the information assisting the RL agent to predict

an optimal action at.
In our approach, st consists of two parts to provide suf-

ficient information to the RL agent. The first part ST is the

modified image of Tframe where Tbox′ remains unchanged

while the area outside Tbox is blackened, written as:

ST = Tbox′ ∪ Φ({i|i ∈ Tframe, i /∈ Tbox′}), (4)

10794



Figure 4. Illustration of elements in the target template (Tbox,

Tmask, Tbox′ , Tmask′ ). Elements in the predicted result (Pbox,

Pmask, Pbox′ , Pmask′ ) are in the same form.

where function Φ is to set all pixels black. It provides both

the location and appearance information of the target in

Tframe.

The second part SP is the modified image of Pframe

where Pmask′ remains unchanged while the area outside

Pmask is blackened:

SP = Pmask′ ∪ Φ({i|i ∈ Pframe, i /∈ Pmask′}). (5)

It provides both the location and appearance information of

the predicted objects, as well as its segmentation informa-

tion.

The ultimate st is the concatenation of the feature maps

of ST and SP :

st = feature(ST ) + feature(SP ). (6)

In details, we adopt Resnet-50 [10], pre-trained on

the ImageNet classification dataset [6], to extract the fea-

ture map of ST and SP . We use the first 5 blocks of

Resnet-50 [10] which results in a feature map with the size

of R
1×1×2048 for both ST and SP , and st is with size

R
1×1×4096. Finally, st will be fed into the RL agent to pre-

dict the action for frame ft.
The reward function, which reflects the accuracy of the

final segmentation result for the video sequence, is defined

as rt = g(st, at):

g(st, a) =

{

100J3
t + 10 Jt > 0.1

−10 Jt ≤ 0.1
, (7)

where Jt refers to the IOU between Pmask and the ground-

truth mask. Using the cube of Jt expands the difference be-

tween the good action’s reward and the bad action’s reward,

which helps to speed up the training of the RL agent.

3.4. Search Region Size

The size of the search region bs greatly affects the quality

of the segmentation result. As can be observed from Figure

3, bs is generated using bm (minimal box covering all target

objects in the previous frame) by expansion. The expansion

ratio of bm varies according to the video’s characteristic. In

detail, there are three expansion ratio from bm to bs, includ-

ing a big one, a small one and an intermediate one. First,

each target’s displacement distance between two adjacent

frames is calculated. If anyone is larger than a threshold,

the big expansion ratio is selected. Otherwise, if two target

objects are close to each other (IoU between their bounding

boxes is not zero), the small expansion ratio is chosen. If

not, the intermediate ratio is selected.

3.5. Actor­Critic Training

In our approach, the RL agent is trained under the “actor-

critic” framework [12], which is a prevalent RL framework

consists of two sub-networks including an “actor” sub-

network to generate the action and a “critic” sub-network

to check the quality of this action. Once the RL agent is

fully trained, only the “actor” sub-network is used during

the inference time.

In our “actor-critic” framework, given a current frame ft,
the first step is to feed the state st into the “actor” network

and generate an action at to decide whether to update the

target template using the predicted result. The correspond-

ing reward rt will also be obtained after conducting this ac-

tion. rt is calculated by the region similarity Jt according

to (7).

Our “critic” network will be trained in the value-based

way. Specifically, the parameters are updated as follows

w = w′ + lcδt∇w′Vw′(st), (8)

where

δt = rt + γVw′(st+1)− Vw′(st). (9)

In (8) and (9), w and w′ indicate the weight of the “critic”

model after and before update. lc is the learning rate of the

“critic” model. δt is the TD error which indicates the dif-

ference of the actual score and the predicted score. Vw′(st)
refers to the accumulated reward of state st which is pre-

dicted by the “critic” model before update. γ refers to the

discount factor.

The “actor” network will be updated after the “critic”

network in a policy-based way, as follows

θ = θ′ + la∇(logπθ′(st, at))A(st, at), (10)

where

A(st, st) = Q(st, at)− V (st) = δt. (11)

In (10) and (11), θ and θ′ indicate the weight of the “ac-

tor” model after and before update. la is the learning rate of

the “actor” model. π(s, a) is the policy function which indi-

cates the probability of selecting action a in state s. V (st) is

the score of the state st. Q(st, at) is the score of the state st
if the action at is executed. A(s, a) refers to the advantage

function.

In this way, our “actor-critic” framework avoids the dis-

advantages of both value-based and policy-based methods

during the training process. In other words, our RL agent
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is allowed to be trained and updated at each frame, rather

than waiting until the end of the episode, which dramati-

cally speeds up the training process yet maintains training

stability.

4. Implementation Details

4.1. Segmentation Network Training

In our approach, the training of the instance segmenta-

tion network follows the strategy of YOLACT [5]. The first

step is to pre-train a ResNet-101 network [10] using the Im-

ageNet classification dataset [6]. Then, this network with

FPN [15] is used as the feature backbone for the segmen-

tation network. Finally, the segmentation network will be

trained on the PASCAL VOC dataset [7] with three losses

including the classification loss, box regression loss and the

mask loss calculated by the pixel-level binary cross-entropy

between the predicted masks and the ground-truth.

4.2. RL Agent Training

Our RL agent is trained on the training set of the DAVIS

2017 dataset where all video sequences of the training set

are divided into video clips with the fixed number of frames

in advance. A video clip, consisting of 10 consecutive

frames, is used as an episode for the training of the RL

agent. 20 video clips will be randomly selected as a batch.

At the beginning, the learning rate la for the “actor” model

is 1e-4, and the learning rate lc is 5e-4. la and lc decrease

gradually during the training, and they decrease by 1% for

each 200 iterations. The discount rate γ for the reward is

0.9. The training of our RL agent takes about 10 days on a

NVIDIA GTX 1080 Ti GPU and a 12 Core Intel i7-8700K

CPU@3.7GHz.

In terms of other hyper-parameters, when calculating the

SIOU in (1), we found α = 1, β = 0 for the first frame,

and α = 0.5, β = 0.5 for other frames work well, because

the pixel-level ground-truth is not available for our task. For

the appearance-based matching, we found it is better to re-

detect the target using the appearance-based matching when

action a1 is taken for 3 successive frames.

5. Experiments

5.1. Experiment Setup

We split the experimental evaluation into two sections

including the evaluation on the VOS dataset and the evalu-

ation on the VOT dataset.

For the VOS experiments, we evaluate our method on

four widely-used datasets including DAVIS 2017 dataset

[21], DAVIS 2016 dataset [20], Youtube-Object dataset

[22], and Segtrack V2 dataset [14]. DAVIS 2016 dataset

consists of 50 high quality videos and 3,455 frames, with 30

videos for training and 20 videos for evaluation. In DAVIS

2016 dataset, only a single target is annotated per video se-

quence. DAVIS 2017 dataset extends DAVIS 2016 dataset,

consisting of 60 video sequences for training and 30 video

sequences for evaluation, spanning multiple occurrences of

common video object segmentation challenges such as oc-

clusions, motion-blur and appearance changes. In DAVIS

2017 dataset, each video sequence contains 2.03 object on

average, and a maximum of 5 objects to be tracked in a sin-

gle video sequence. In Youtube-object, there are 155 video

sequences and a total of 570,000 frames. All these video se-

quences are divided into 10 sets according to the category.

Youtube-Object dataset does not split the training set and

the evaluation set, so we set all video sequences as the eval-

uation set. Note that Youtube-Object is not an instance-level

dataset, in other words, for some videos, several individ-

ual targets are annotated into one object as the foreground,

which does not completely match our task. Therefore, we

split the annotations of these video sequences, so that each

target owns its individual instance-level annotation. In Seg-

Track V2 dataset, there are 14 video sequences with more

occlusion and appearance changes compared with Youtube-

Object dataset. Originally, these datasets only provide the

pixel-level ground-truth, which does not match our task.

Therefore, we generate the bounding boxes according to the

pixel-level ground-truth in advance as the first-frame box-

level ground-truth.

We valuate our method following the approach proposed

in [21]. The adopted evaluation metrics include region sim-

ilarity J and contour accuracy F . The region similarity is

calculated as J =
∣

∣

∣

m∩gt
m∪gt

∣

∣

∣
by the intersection-over-union

between the predicted segmentation m and the ground-truth

gt. The contour accuracy is defined as F = 2PcRc

Pc+Rc

, which

indicates the trade-off between counter-based precision Pc

and recall Rc using the F-measure.

For the VOT experiments, we evaluate our VOS method

on the LTB35 dataset [13] which is a long-term VOT dataset

and was adopted to evaluate the long-term tracking per-

formance in the VOT2018 challenge [13]. LTB35 dataset

consists of 35 video sequences with 4,200 frames for each

video sequence on average. In addition, the target will dis-

appear and reappear again for 12.4 times, with an average

target absence period of 40.6 frames per video. In this way,

this dataset is suited to check the algorithm’s ability to re-

detect the disappeared target. We evaluate our method fol-

lowing the standard metric for LTB35 dataset. The perfor-

mance is measured by the F score which is calculated as

F = 2PrRe

(Pr+Re)
, where Pr indicates the precision and Re

indicates the recall. Algorithms will be ranked by the max-

imum F score under different confidence thresholds.

5.2. Comparison with State­of­the­arts

For the experimental evaluation on the VOS dataset, we

compare our method with other state-of-the-art VOS meth-
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Table 1. Quantitative comparison with other methods on the DAVIS 2017 (Da 17), DAVIS 2016 (Da 16), SegTrack V2 (ST) and Youtube-

Object (YOs) datasets, measured by the mean region similarity (J), as well as the average score of region similarity and boundary similarity

(J&F ). FT indicates fine-tuning, M indicates using the first-frame masks, t(s) indicates the average running time per frame in seconds.

The method with the best score is bold, and the method with the second best score is marked in underline.

Method FT M t(s) Da 17 - J Da 17 - J&F Da 16 - J Da 16 - J&F ST - J YOs - J

Ours ✘ ✘ 0.09 69.1 70.6 77.5 78.9 79.2 79.3

BoLTVOS[29] ✘ ✘ 1.45 68.4 71.9 78.1 79.6 - -

BoLTVOS * ✘ ✘ 1.45 60.9 64.9 78.1 79.6 - -

SiamMask[31] ✘ ✘ 0.06 54.3 55.8 71.7 69.8 - -

SiamMask * ✘ ✘ 0.11 59.5 63.3 75.6 75.9 - -

MSK(box)[19] ✘ ✘ 12 - - 73.7 - 62.4 69.3

STM[18] ✘ ✔ 0.16 69.2 74.1 84.8 88.1 - -

FEELVOS[27] ✘ ✔ 0.51 69.1 71.5 81.5 81.8 - 78.9

RGMP[32] ✘ ✔ 0.28 64.8 66.7 81.1 81.7 71.7 -

VideoMatch[11] ✘ ✔ 0.35 56.5 62.4 81.0 80.9 79.9 -

OSMN[36] ✘ ✔ 0.28 52.5 54.8 74.0 73.5 - 69.0

PReMVOS[16] ✔ ✔ 37.21 73.9 77.8 85.6 86.5 - -

OSVOS-S[17] ✔ ✔ 9 64.7 68.0 84.9 86.8 - 83.2

OnAVOS[28] ✔ ✔ 26 61.0 63.6 85.7 85.0 66.7 77.4

CINM[1] ✔ ✔ >120 64.5 67.5 83.4 84.2 77.1 78.4

Figure 5. Visualization results of different methods.

ods, which are classified into three groups. Methods in the

first group only use the first-frame box-level ground-truth,

including BoLTVOS [29], SiamMask [31] and MSK [19].

Methods in the second group adopt the first-frame pixel-

level ground-truth but do not fine-tune on it, including STM

[18], FEELVOS [27], RGMP [32], VideoMatch [11] and

OSMN [36]. Methods in the third group fine-tune on the

first-frame pixel-level ground-truth, including PReMVOS

[16], OSVOS-S [17], OnAVOS [28], and CINM [1]. All

quantitative results of the comparison are summarized in

Figure 1 and Table 1. In Table 1, the method with the high-

est score is highlighted and the method with the second best

score is marked with underline.

As can be observed from Table 1, for the evaluation

of the DAVIS 2017 dataset, compared with other meth-

ods which only rely on the first-frame box-level ground-

truth (BoLTVOS* removes the re-scoring network and

SiamMask* adopts the Box2Seg network of BoLTVOS),

our method is virtually 15 times faster the previous state-

of-the-art method BoLTVOS [29], and our accuracy (mean

region similarity Jm) is even higher than BoLTVOS [29] at

the same time. For another competitive method SiamMask

[31], which runs virtually as fast as our method, our ac-

curacy is much higher than it by around 15%. In ad-

dition, in the second group, the proposed method ap-

proximately achieves the same Jm as the state-of-the-art

method STM[18], trained without the additional Youtube-

VOS dataset [35], as it was not used in our method. When

compared with the methods in the third group, our method

also outperforms most of these methods. Only PReMVOS

[16] achieves a higher accuracy than our method, but our

method runs 370 times faster than it. For the evaluation of

DAVIS 2016 dataset, as it is not an instance-level dataset,

our method ranks the second among methods in the first

group. For the evaluation for SegTrack V2 dataset and

Youtube-Object dataset, our methods also achieves a com-

petitive result even compared with methods using the first-

frame pixel-level ground-truth. Some visualization results

are shown in Figure 5.

For the experimental evaluation of VOT, the compari-

son with other state-of-the-art methods [13] is conducted

on the VOT 2018 long-term dataset. As can be observed

from Figure 6, our method achieves an F score of 0.622,

which is quite competitive compared with other VOT meth-

ods. Overall our method achieves very good speed accu-
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Table 2. Ablation studies on the DAVIS 2017 dataset, measured by

the mean region similarity (Jm).

Method Jm t(s)

no update 27.3 0.03

simple update (IOU) 63.1 0.03

simple update (appearance) 67.2 1.10

RL update w/o re-detection 68.1 0.06

Ours 69.1 0.09

Ours (supervised) 60.2 0.09

BoLTVOS 68.4 1.45

SiamMask 54.3 0.06

racy trade-off for the VOT task. This result also shows our

method is able to handle both VOS and VOT tasks, even

in the situations where the target disappears and reappears

again at a different place.

5.3. Ablation studies

Contribution of each component: We conduct ablation

studies on DAVIS 2017 [21], where parts of our methods are

disabled to investigate the contribution of each component.

First, we totally remove the target template update mech-

anism, obtaining the method no update, which cause nu-

merous drift, and leads to a terrible accuracy (27.3%). Then,

we evaluate the simple update mechanisms, where the tar-

get template will always be updated, and only IOU-based

matching or only appearance-based matching is adopted to

select the predicted result, obtaining method simple up-

date (IOU) and method simple update (appearance) re-

spectively. As can be observed from Table 2, only adopt-

ing IOU-based matching already achieves an acceptable ac-

curacy (63.1%). Although the accuracy of method simple

update (appearance) is 4.1% greater than method simple

update (IOU), the sacrifice on speed is unacceptable (from

0.03s to 1.1s), which proves the inefficiency of the simple

target template update mechanism, where only appearance-

based matching is adopted. In addition, the accuracy of

method simple update (appearance) is still lower than that

of our overall method, which demonstrate that the target

template update issue cannot be totally solved simply by

adopting an accurate matching method. Finally, we evalu-

ate our method without the usage of the appearance-based

matching for re-detection, obtaining method RL update

w/o re-detection, whose accuracy is 1.0% lower than that

of our overall method. This gap is not big, because the situa-

tion where the target disappears and reappears from another

place is pretty rare in the DAVIS 2017 dataset.

RL or supervised learning? Apart from training the

network with RL, we also attempt to train the network in

the supervised way, i.e. evaluating the fixed label for each

Figure 6. Speed-accuracy trade-off on VOT2018 LT dataset.

frame in advance before training, but finally, as can be ob-

served from Table 2, we find the model trained under the

reinforcement learning way performs much better than the

model trained under the supervised way, which achieve the

accuracy of 69.1% (RL) and 60.2% (supervised). We be-

lieve the major reason is that, a RL model considers not only

the current profit but also the potential profit in the future,

due to the adopted accumulative future reward for training.

In other words, the model trained in a supervised way tends

to be myopic, while the model trained in the RL way pays

more attention to the global and overall performance, mak-

ing it more suited to video-related tasks.

Choice of instance segmentation: Apart from adopt-

ing the one-stage segmentation network, like YOLACT [5],

we also attempt to adopt the two-stage segmentation net-

work, like Mask R-CNN [9]. Then, the running speed

of our method drops slightly from around 90ms to around

150ms, and it is still around 10 times faster than the previous

state-of-the-art method, BoLTVOS [29]. As Mask R-CNN

achieves higher accuracy than YOLACT [5], our final ac-

curacy is even slightly higher than the proposed one. Note

that the choice of the instance segmentation method does

not greatly affect the final result, both for running speed

and accuracy.

6. Conclusion

In this paper, an RL-based template matching and up-

dating mechanism is proposed to handle box-level semi-

supervised VOS. A single RL agent is applied to make

these decisions jointly, which is trained using an actor-critic

RL framework. Evaluation on common datasets for both

VOS and VOT demonstrates the great performance of our

method. In the future, we plan to design more matching

mechanisms and template target update mechanisms to fur-

ther improve the performance of our method.
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