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Abstract

We introduce a scalable approach for object pose estima-

tion trained on simulated RGB views of multiple 3D models

together. We learn an encoding of object views that does

not only describe an implicit orientation of all objects seen

during training, but can also relate views of untrained ob-

jects. Our single-encoder-multi-decoder network is trained

using a technique we denote ”multi-path learning”: While

the encoder is shared by all objects, each decoder only re-

constructs views of a single object. Consequently, views

of different instances do not have to be separated in the

latent space and can share common features. The result-

ing encoder generalizes well from synthetic to real data

and across various instances, categories, model types and

datasets. We systematically investigate the learned encod-

ings, their generalization, and iterative refinement strate-

gies on the ModelNet40 and T-LESS dataset. Despite train-

ing jointly on multiple objects, our 6D Object Detection

pipeline achieves state-of-the-art results on T-LESS at much

lower runtimes than competing approaches. 1

1. Introduction

Object pose estimation, i.e. estimating the 3D rotation

and translation, is a cornerstone in many perception related

applications like augmented reality or robotics. For many

years this field was dominated by template- and feature-

based approaches. Thereby, a given object model or a set of

extracted object features is matched into the underlying sen-

sor data. Depending on the quality of the data and the diffi-

culty of the scene, these approaches are still quite compet-

itive. [22] In recent years however, machine learning, and

in particular Deep Learning (DL) techniques have emerged

as another key approach []. They are often computation-

ally efficient and can show higher robustness towards sen-

sor noise, clutter and environment changes [45, 35, 41]. On

1Code can be found here: https://github.com/DLR-RM/

AugmentedAutoencoder/tree/multipath
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Figure 1: Training (top) and setup phase (bottom) of the

MP-Encoder. During training one encoder is shared among

all objects, while each decoder reconstruct views of a single

object. This turns the encoder into a viewpoint-sensitive

feature extractor, that generates expressive encodings for

multiple trained and even untrained objects.

the other hand, the need for pose-annotated data as well as

lengthy training phases make them less flexible compared

to traditional methods. To tackle the lack of annotations,

several methods have recently shifted to train on synthetic

data rendered from 3D models [23, 34, 38]. However, it is

still common to train individual models for every newly en-

countered instance which is not scalable. Attempts to train

on many objects at once often result in deteriorated per-

formance [45]. Furthermore, due to object discriminative

training, most of these approaches are not suited to gener-

alize to untrained objects. Since the real world consists of

large amounts of object categories and instances, we pro-

pose a more adaptive and scalable approach in this paper.

Inspired by Augmented Autoencoders (AAEs) [34] that
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extract pose representative features on an instance level, we

propose a single-encoder-multi-decoder network for jointly

estimating the 3D object orientation of multiple objects.

While the encoder and latent space are shared among all

objects, the decoders are trained to reconstruct views of

specific instances (top of Fig. 1). This multi-path learning

strategy allows similarly shaped objects to share the same

encoding space. After training, we can generate instance-

specific codebooks containing encodings of synthetic object

views from all over SO(3). So each entry contains a shape

and viewpoint dependent descriptor mapped to an explicit

3D object orientation that can be retrieved at test time. (bot-

tom of Fig. 1)

As we show experimentally, the learned encodings gen-

eralize well to the real domain and are expressive enough to

relate views from all trained and even untrained objects in a

viewpoint sensitive way. For a large number of objects the

performance of the Multi-Path Encoder (MP-Encoder) does

not deteriorate compared to separately trained encoders for

each object and even slightly improves encoding quality

which leads to new state-of-the-art results in 6-DoF object

pose estimation on the T-LESS dataset.

Motivated by this, we also introduce an iterative render-

inference scheme based on the learned encodings, which

enables relative pose estimation on untrained objects. It

resembles the online creation of a local codebook which

also helps avoiding SO(3) discretization errors. We apply

this method to iteratively refine poses of untrained instances

from ModelNet40 and outperform DeepIM [25], a state-of-

the-art approach for RGB-based 6D pose refinement.

2. Related Work

Object pose estimation has been widely studied in the

literature, mainly from the below aspects.

2.1. Feature/Templatebased approaches

Traditionally, pose estimation methods rely on match-

ing algorithms with local keypoints and descriptors or tem-

plates. E.g., both Hinterstoisser et al. [17] and Vidal et al.

[40] apply so-called Point Pair Features (PPF) to match a

3D model into a given scene outperforming other results in

the BOP challenge [21] but having high runtimes per tar-

get due to the exhaustive search in the large 6D pose space.

While these methods require depth information, which can

be noisy and sensible to environment changes, Ulrich et

al. [39] use single RGB images and estimate object poses

by matching edges of a rendered 3D model into the im-

age. In general, the benefit of such approaches using ex-

plicit matching is that no costly training process is required.

However, they tend to require longer execution times. Ad-

ditionally, usually more expert knowledge is required to set

up such pipelines, as feature extraction and matching pa-

rameters do not generalize well.

2.2. Learningbased Approaches

More recently, a number of learning-based approaches

have been presented with the advantage of reduced compu-

tation time and more complex features that can be learned

directly from data. One approach is to classify or regress

a representation of the object pose directly [23, 28]. Xi-

ang et al. [44] propose a CNN architecture with multiple

stages, where the authors define the pose regression loss as

a closest object point measure. Another line of research

makes predictions on sparse or dense 2D-3D keypoint lo-

cations, e.g. the 3D bounding box corners [32, 38, 37]

or 3D object coordinates on the surface [26, 45, 31]. The

pose is then computed by solving the Perspective-n-Point

(PnP) problem. Apart from occlusions, object and view

symmetries cause challenges since they introduce one-to-

many mappings from object views to poses. While there

are strategies to adapt the loss, network or labels for sym-

metric objects [42, 15, 23], dealing with view-dependent or

occlusion-induced symmetries is often intractable and neg-

atively affects the training process. Therefore, a third ap-

proach is to learn descriptors of object views that are either

conditioned on the pose [1, 42] or completely implicit [34].

The advantage of the implicit approach is that symmetric

views share the same target representation during trainig.

Corresponding explicit poses are automatically grouped and

can be retrieved at test time. These view-centric representa-

tions were also shown to work well for 6D tracking [7].

2.3. Synthetic training data

The demand of learning-based methods for large

amounts of labeled training data is particularly unfavorable

for object pose estimation. Although there are ways to label

object poses semi-automatically [30], it remains a cumber-

some, error-prone process. Recent research tackles this by

exploiting synthetic training data [8] which solves this prob-

lem but creates a new one through the domain gap between

real and synthetic data.

To bridge this gap, Tremblay et al. [38] use mixed train-

ing data consisting of photo-realistic rendering and domain

randomized samples. Since photo-realistic renderings are

costly, we follow a less expensive Domain Randomization

(DR) strategy [23, 37]: 3D models are rendered in poses

randomly sampled from SO(3) using OpenGL with random

lighting and superimposed onto real images from data sets

such as MS COCO [27] or Pascal VOC [10].

2.4. Generalization to Novel Objects

Most learning-based methods predict the pose of one

[31] or few instances [38, 45, 37, 44] and have to be re-

trained for every newly encountered object. However, in

domains like service and industrial robotics or augmented

reality, it would be beneficial to have a general feature ex-

tractor that could produce pose-sensitive features for un-
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trained objects such that testing on a novel object becomes

immediately possible.

When trained on few instances, current pose networks

like [38, 37] concurrently classify objects which poten-

tially hinders their ability to generalize to untrained objects.

Wohlhart et al. [42] and Balntas et al. [1] were the first to

report qualitative results of deep pose descriptors applied to

untrained objects. However, their descriptors are discrim-

inated by both, orientation and object class. So if an un-

trained object has similar appearance from any viewpoint

to one of the trained objects, the corresponding descriptor

will get corrupted. Unlike [42, 1], our multi-path training

strategy does not separate different object instances in the

encoding space and instead allows them to share the same

latent features.

Category-level pose estimation [33, 3, 36] can be used

to generalize to novel objects from a given category. It as-

sumes that all instances within a category have similar shape

and are aligned in a joint coordinate frame. However, these

assumptions often do not hold in practice where semantic

and geometric similarities often do not coincide. Assigning

aligned coordinate frames can be ambiguous because sym-

metries of instances can vary within a category. Therefore,

in this work, we will not explicitly enforce the alignment

within semantic categories and instead leave this decision

to the self-supervised, appearance-based training.

CNNs trained on large datasets are frequently used to

extract low-level features for downstream tasks, e.g. image

retrieval [13] or clustering [9]. A naive baseline to predict

the 3D orientation of unknown objects would be to compare

feature maps of a network trained on a large dataset like

ImageNet or COCO. Unsurprisingly this baseline does not

work at all because (1) early features are sensitive to trans-

lation while the later layers lost geometric information (2)

features strongly differ for synthetic and real object views

(3) the dimensionality of feature maps is too high to finely

discretize SO(3) while reduction techniques like PCA de-

stroy much information.

The pose refinement methods [29, 25] iteratively predict

rotation and translation residuals between an estimated and

a target view of an object. The former was shown to gen-

eralize to untrained objects of the same category, and the

latter even generalizes to objects of new categories. These

approaches predict an accurate, relative transformation be-

tween two object views in a local neighborhood. In contrast,

our method is able to yield both, local relative and global 3D

orientation estimates.

3. Method

We will first briefly describe the AAE (Sec. 3.1). Build-

ing upon these results, we then propose a novel Multi-Path

Encoder-Decoder architecture and training strategy (Sec.

3.2). Next, we will investigate the encoder on its ability

to extract pose-sensitive features and examine generaliza-

tion to novel instances (Sec. 3.3). Different application sce-

narios depending on the test conditions are discussed (Sec.

3.4). Finally, an iterative render-inference optimization for

pose refinements is presented (Sec. 3.5).

3.1. Implicit Object Pose Representations

Sundermeyer et al. [34] have shown that implicit pose

representations can be learned in a self-supervised way us-

ing an encoder-decoder architecture. This so-called AAE

allows to encode 3D orientations from arbitrary object

views, generalizes from synthetic training data to various

test sensors, and inherently handles symmetric object views.

The AAE is trained to reconstruct rendered views of a

single object. To encode 3D orientation exclusively, the in-

puts are randomly translated and scaled while the recon-

struction target stays untouched. To encode object views

from real images, the background of input views are ran-

domized, occlusions at various locations are generated, and

various lighting and color augmentations are produced. As

a result of this domain randomization, the network learns

to represent the objects’ orientation of real object views im-

plicitly using the latent code z.

Concretely, an input sample x ∈ R
d is randomly aug-

mented by f(.) and mapped by an encoder Υ onto a latent

code z ∈ R
m where m ≪ d. The decoder Λ : Rm → R

d is

trained to map the code back to the target x.

x̂ = Λ(Υ(f(x))) = Λ(Υ(x′)) = Λ(z) (1)

Both Υ and Λ are neural networks, and their weight param-

eters are trained such that the ℓ2-loss is minimized, i.e.

ℓ2(B) =
∑

i∈B

‖xi − x̂i‖2 =
∑

i∈B

‖xi −Λ(Υ(f(xi)))‖2 (2)

where B contains the indices of input samples of a given

batch. After training, the decoder is discarded and latent

encodings of object views from all over SO(3) are saved in

a codebook together with their corresponding orientations

assigned. At test time, a real object crop is encoded and the

nearest code(s) in the codebook according to cosine similar-

ity yield the predicted orientation. The rotation can further

be corrected for the translational offset as described in [35].

A downside of this formulation is that a new network

must be trained for every new object instance. When

naively training the original AAE jointly on several objects,

they need to be separated in the latent space so that the de-

coder is able to reconstruct the correct object. Even when

conditioning the decoder on the object by concatenating a

one-hot vector to the encoding, it can only reconstruct few

instances and it diminishes the ability of the encoder to en-

code object orientations.
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3.2. MultiPath EncoderDecoder

We propose a simple but effective architecture which, in

combination with our multi-path learning strategy, enables

the 3D orientation estimation of multiple objects (see Fig.

1). Our architecture consists of a single encoder Υ, an en-

coding z ∈ R
128, and n decoders Λj with j = 1, ..., n

where n is the number of different object instances. The

convolutional encoder is fed with the same augmented in-

puts as an AAE but with heterogeneous batches B̃ contain-

ing multiple objects. The resulting codes are split and each

decoder only receives codes that correspond to a single ob-

ject instance. The multi-path loss function can be written

as:

ℓm(B̃) =
b

∑

j=1

n
∑

k=1

I(sj = k)‖xj − Λk(Υ(f(xj)))‖2

=
b

∑

j=1

n
∑

k=1

I(sj = k)‖xj − Λk(zj)‖2 (3)

where I is the indicator function used to select the de-

coder Λk that corresponds to the instance sj . Note that in

this setting only the encoder Υ receives information from

the entire mini-batch, while the decoders Λj backpropagate

a loss ℓj from a sub-batch. Since the decoders are only used

to learn an efficient encoding, they can be discarded after

training, leaving behind a compact encoder model.

In contrast to other approaches [42, 1], where objects are

explicitly separated in the descriptor space, our encoder can

learn an interleaved encoding where general features can be

shared across multiple instances. We consider this ability

as the main qualification to obtain encodings that can rep-

resent object orientations from novel, untrained instances,

even when they belong to untrained categories.

3.3. Principal Component Analysis of Encodings

In order to gain insights into the characteristics of the

latent space from trained and untrained objects, we perform

an experiment on the ModelNet40 [43] dataset. We first

train the multi-path encoder-decoder on 80 CAD instances

that originate from the car class. A second model is trained

on 10 instances from 8 different classes, namely airplane,

bed, bench, car, chair, piano, sink, toilet. Training details

can be found in the appendix.

After training, we generate 72 viewpoints along a full

revolution of azimuth, elevation and in-plane rotation. We

record different objects from these viewpoints and feed

them into the encoder. From the encoding space zi ∈ R
128

of all objects we compute the first three principal compo-

nents and project all encodings onto these directions. The

interpolated results can be seen in Fig. 2. The top row

shows the encodings of a car instance from the training set.
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Figure 2: Principal Component Analysis of the learned en-

codings. Depicted are the encodings of views around ele-

vation (red), azimuth (blue), and in-plane (green). Middle

column: Encoder trained only on cars; Right column: En-

coder trained on objects from 8 categories

The other rows show instances which are not in the training

set of neither model, but different sofa and toilet instances

were used to train the second model.

First, it is noticeable that the encodings vary smoothly

along each of the rotation axes, even when views of un-

trained objects are evaluated. It can be seen that the views,

while starting at the same point, end up in different sub-

manifolds that capture the shape of the encoded objects

and their symmetries. For example, the car instance pro-

duces closed trajectories with two revolutions because the

car shape looks similar at opposite viewpoints.

Furthermore, it can be seen that the car in the training

and test set are encoded similarly by each of the models.

This indicates that the encoder as well as the codebook

could be reused when predicting orientations of novel cars,
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Table 1: Different application scenarios for global and iter-

ative pose estimation and the handling of untrained objects

Scenario

Prerequisites I II

Shape category trained ✗ ✓

3D Test Model available ✓ ✗

3D Test Model aligned to Train Model ✗ ✗

Available Methods ⇓ ⇓

Reuse codebook from a trained instance ✗ ✓

Create a new full / sparse codebook ✓ ✗

Iterative relative pose refinement ✓ ✗

even without access to their 3D models.

The remaining encodings of untrained objects can still

be clearly separated and thus a meaningful pose descriptor

could be extracted without retraining the encoder but simply

by creating a codebook from their 3D model.

Apart from an offset, both models learn quite similar en-

codings, even for the sofa category which the first model

has not seen during training. This implies that low-level

features are extracted that generalize across various shapes

and categories. However, to fulfill the reconstruction task

the features still need to be robust against lighting and color

augmentations as well as translations that are applied to the

inputs. In the next section, we will explore different ap-

proaches to utilize these properties.

3.4. Object Pose Estimation Across Domains

After training, the MP-Encoder can create codebooks for

all n training instances for pose estimation. (see Sec. 3.1)

On top of that, it can deal with scenarios inlcuding un-

trained objects which are depicted in Table 1. Here, the

trained encoder model is used as a fixed pose-sensitive fea-

ture extractor. Available methods depend on the character-

istics and given information on the considered test objects.

If a 3D model of the untrained object is available, it is

usually preferable to create a new codebook and estimate

the 3D orientation from it (I). If no 3D model is available,

but we have codebooks of trained instances from a category

with coinciding shapes, we could also reuse these code-

books directly for the test instance (II). However, as we do

not explicitly align models of a category in a single coor-

dinate frame, the extracted representation will be more de-

pendent on the shape of an object than on any semantics.

Given a 3D model, we can also use our method for iter-

ative pose refinement at test time. This allows us to refine

results from sparser codebooks or to perform local, relative

pose estimation directly without any codebook.

Algorithm 1: Iterative 6D Pose Refinement

Input: encoder Υ, init pose qinit, tinit, target view x∗

z∗ ← Υ(x∗)
qest ← qinit

test ← tinit

for k = 0 . . . 2 do

for j = 0 . . . 3 do

for i = 0 . . . 40− 10k do

α ∼ N (0, σ2

j+1
)

v ∼ N3(0, I)
∆q← quat( v

‖v‖
, α)

qi ← ∆qqest

xi ← render(qi, test)
zi ← Υ(xi)

end

k ← argmax
i

zi z∗

‖zi‖‖z∗‖

qest ← qk

end

xest = render(qest, test)
∆t = multiScaleEdgeMatching(x∗,xest)
test = test +∆t

end

Result: qest, test

3.5. Iterative Refinement of Latent Codes

Our method for iterative pose refinement is outlined in

Alg. 1. We start with an initial pose estimate and a tar-

get view. Next, we render a batch of 3D model views at

small rotational perturbations from the initial pose and in-

sert the whole batch into the encoder. The code with the

highest cosine similarity to the target view encoding deter-

mines the new rotation estimate. We sample again with a

smaller perturbation radius. The inner loop of this random

optimization scheme, consisting of rendering and inference,

can be efficiently parallelized.

Rotation and translation are alternately optimized three

times in our experiments. As the MP-Encoder is trained

to be invariant against translations, we can first optimize for

the more challenging out-of-plane rotation neglecting trans-

lation. Afterwards, the rotation is usually roughly aligned

to the target and we use a simple edge-based, multi-scale

template matching method based on OpenCV [2] to deter-

mine the translational offset. The advantage of sampling in

SO(3) vs. sampling in the latent space is that (1) the SO(3)

space has lower dimensionality and (2) we only search valid

orientations.

Apart from relative pose estimation with a novel 3D

model without a codebook, the refinement also allows to

trade-off between set-up time, inference time, memory re-

sources and accuracy. The full 92232× 128 codebook cre-

ation takes ∼ 5 minutes per object on a modern GPU and

45MB space. Inference only takes ∼ 6ms on a modern GPU

while the 6D pose refinement in the presented configura-
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Table 2: Pose estimation performance of the MP-Encoder trained on objects 1-18 on the complete T-LESS primesense test

set (RGB-only) compared to 30 single object AAEs [34] trained on all objects. We measure recall under the Visible Surface

Discrepancy (errvsd) metric. The right column shows the performance of a model trained only on 30 instances of the

ModelNet40 dataset. We use ground truth bounding boxes (top) and ground truth masks (bottom) in this experiment. It can

be observed that a single MP-Encoder can reach similar performance on unknown objects if segmentation masks are given.

Mean 30 separate AAE Single Multi-Path Encoder trained on

VSD recall encoders [34] T-Less Objects 1-18 30 Instances ModelNet40

+
g

t
b

b
o

x Objects 1-18 35.60 35.25 27.64

Objects 19-30 42.45 33.17 34.57

Total 38.34 34.42 30.41

+
g

t
m

as
k Objects 1-18 38.98 43.17 35.61

Objects 19-30 45.33 43.33 42.59

Total 41.52 43.24 38.40

tion takes approximately 1 second. To further speed this

up, the random search could be replaced by more sophisti-

cated black-box optimization tools such as CMA-ES [12].

Depending on the application, i.e. number of objects, avail-

able resources and constraints on the set-up time, global ini-

tialization with sparse codebooks combined with local pose

refinement could be a viable option.

3.6. 6DoF Object Detection Pipeline

Our full RGB-based 6DoF object detection pipeline con-

sists of a MaskRCNN with ResNet50 backbone [14], the

MP-Encoder for 3D orientation estimation and a projective

distance estimate [34] for translation estimation. To com-

pare against other approaches that use depth data, we also

report results with a point-to-plane ICP [5, 46] refinement

step. Especially in the presence of severe occlusions the

RGB-based projective distance estimate does not produce

distances accurate enough to fulfill the strict VSD metric.

On the other hand, an accurate initialization is crucial for

ICP refinement to work well.

For the MaskRCNN we generate training data by past-

ing object recordings from the T-LESS training set at ran-

dom translation, scale and in-plane rotation on random

background images. Thereby, we produce 80000 images

with MS COCO [27] background, 40000 images with black

background and 40000 images with random texture back-

grounds [6]. We apply several standard online color aug-

mentations like hue, brightness, blur and contrast. Our

MaskRCNN reaches an mAP@0.5 performance of 0.68

(bbox detection) and 0.67 (segmentation). Both, MaskR-

CNN and the MP-Encoder can process multiple objects at

once and thus achieve a runtime that stays nearly constant

for a large number of objects.

4. Evaluation

We focus our analysis on two benchmarks: ModelNet40

[43] and the T-LESS dataset [19]. 2

4.1. Metrics

In ModelNet40 we use the absolute angular error

eR = arccos
(

tr(R̂T R− I) / 2
)

(4)

as well as the ADD metric [16] at an average distance

threshold of 0.1× object diameter for the model points M

ADD =
1

m

∑

x∈M

||(Rx+ t)− (R̂x+ t̂)|| (5)

and the 2D projection metric at an average 5px threshold

Proj2D =
1

m

∑

x∈M

||K(Rx+ t)−K(R̂x+ t̂)|| (6)

In the T-LESS experiments we use the errvsd [20] since

here the above metrics are quite meaningless as a result

of various object and view symmetries. The errvsd is an

ambiguity-invariant pose error metric that is computed from

the distance between the estimated and ground truth visible

object surfaces. As in the SIXD challenge 2017 [18] and

the BOP benchmark 2018 [22], we report the recall of 6D

object poses at errvsd < 0.3 with tolerance τ = 20mm and

> 10% object visibility.

4.2. Generalization Capabilities of the MPEncoder

We first investigate the joint encoding performance and

generalization capabilities of the MP-Encoder in isolation,

i.e. with ground truth detections and masks. Therefore,

we compare one MP-Encoder against 30 separately trained

2Further results can be expected at the BOP challenge 2020 [22]
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Table 3: Evaluation of our full 6D Object Detection pipeline with MaskRCNN + Multi-Path Encoder + optional ICP. We

report the mean VSD recall following the SIXD challenge / BOP benchmark [21] on the T-LESS Primesense test set. See the

appendix for object-wise results. A single MP-encoder model outperforms the result of 30 instance-specific AAEs.

Template matching PPF based Learning-based

Hodan-15 Vidal-18 Drost-10 Drost-10-edge Brachmann-16 Kehl-16 OURS Sundermeyer-18 OURS

Depth Depth +ICP Depth Depth + RGB RGB-D RGB-D + ICP RGB + ICP RGB only

Average 63.18 66.51 56.81 67.5 17.84 24.6 69.53 19.26 20.53

Time (s) 13.5 4.7 2.3 21.5 4.4 1.8 0.8 0.1 0.2

AAE models on all scenes of the T-LESS Primesense test

set (Table 2). Equivalent encoder and decoder architectures

are used. Furthermore, the MP-Encoder is only trained on

the first 18 3D object reconstructions of the T-LESS dataset

to show the generalization capabilities on untrained objects

19-30. On objects 1-18 which the MP-Encoder has seen

during training, the results using ground truth bounding

boxes are close to the AAE results. Looking at the next row,

the performance on the untrained objects 19-30 is signifi-

cantly worse compared to the single AAEs. We suppose that

the MP-Encoder has difficulties to extract unknown objects

from the background. This hypothesis is strongly supported

by the results with ground truth masks (bottom) where the

MP-Encoder even outperforms the AAEs. Even for the un-

trained objects 19-30 the performance gap to the AAEs that

were trained on these objects is quite small. One possible

explanation is that a feature extractor trained on multiple

objects learns more versatile and thus more robust features.

The last column of Table 2 depicts the surprisingly good

generalization from ModelNet40 to the T-LESS dataset.

Here, the MP-Encoder is specifically trained on 30 texture-

free CAD models from the 8 categories airplane, bed,

bench, car, chair, piano, sink, toilet. Codebooks are cre-

ated for all T-LESS objects and it is tested on the same

real sensor recordings. These results underline that with the

multi-path training combined with an input randomization

strategy, we can learn to extract orientation variant features

that generalize well across greatly differing domains.

4.3. 6D Object Detection results

Next, we evaluate our full 6D pose estimation pipeline

on the T-LESS dataset which is a particularly challeng-

ing 6D object detection benchmark containing texture-less,

symmetric objects as well as clutter and severe occlusions.

Table 3 presents results using the strict vsd metric (Sec.

3.6). We achieve state-of-the-art results on T-LESS at much

lower runtimes than previous methods, both in the RGB do-

main and also in the depth domain when initializing an ICP

with our RGB-based pose estimate. Although the gains are

marginal, the results are significant because we only train

a single encoder on the whole dataset and still obtain state-

of-the-art results. This makes our method scalable, partic-

Figure 3: Left: Qualitative 6D Object Detection results

of the RGB-based pipeline on T-LESS Primesense scenes.

Only 18 of 30 objects are used to train the Multi-Path en-

coder; Middle: ICP-refined results; Right: Relative pose

refinement of instances from the untrained categories gui-

tar and bathtub. Red is the initial pose, green depicts the

refined pose.

Figure 4: Failure case: MaskRCNN predicts the

wrong class 20 instead of 19 (the object below). Since

the shape is quite similar (except scale) the codebook

of object 20 still gives a reasonable pose estimate.

ularly considering that no real pose-annotated data is used

for training. Fig. 3 (left) shows qualitative examples of the

full 6D Object Detection pipeline. Previously, pose esti-

mation of texture-less objects has been dominated by pure

depth-based geometric matching approaches that often pos-

sess high run-times and do not scale very well with the num-

ber of considered objects. Fig. 4 shows a failure case which

underlines that strict instance-wise pose estimation may not

be suitable for real world applications where objects often
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Table 4: Relative Pose Refinement from up to 45o and ∆t = (10, 10, 50)[mm] perturbations on untrained instances of seen

(top) and unseen (bottom) object categories of the ModelNet40 dataset. We measure the recall at the 5cm, 5o threshold, the

ADD at 0.1d (object diameter) metric and the Proj2D at 5px threshold.

metric (5o, 5cm) 6D Pose (ADD) Proj2D (5px)

method
DeepIm [25] Ours DeepIm [25] Ours DeepIm [25] Ours

init refined init refined init refined init refined init refined init refined

n
o
v
el

in
st

an
ce airplane 0.8 68.9 0.9 96.9 25.7 94.7 33.4 97.9 0.4 87.3 0.1 97.4

car 1.0 81.5 0.4 96.4 10.8 90.7 13.4 98.5 0.2 83.9 0.1 94.0

chair 1.0 87.6 0.3 96.4 14.6 97.4 16.3 98.3 1.5 88.6 0.0 94.6

Mean 0.9 79.3 0.5 96.6 17.0 94.3 21.0 98.2 0.7 86.6 0.1 95.3

n
o
v
el

ca
te

g
o

ry

bathtub 0.9 71.6 0.7 85.5 11.9 88.6 15.4 91.5 0.2 73.4 0.1 80.6

bookshelf 1.2 39.2 0.7 81.9 9.2 76.4 13.7 85.1 0.1 51.3 0.0 76.3

guitar 1.2 50.4 0.5 69.2 9.6 69.6 13.1 80.5 0.2 77.1 0.3 80.1

range hood 1.0 69.8 0.5 91.0 11.2 89.6 14.1 95.0 0.0 70.6 0.0 83.9

sofa 1.2 82.7 0.6 91.3 9.0 89.5 12.2 95.8 0.1 94.2 0.0 86.5

wardrobe 1.4 62.7 0.7 88.7 12.5 79.4 14.8 92.1 0.2 70.0 0.0 81.1

tv stand 1.2 73.6 0.6 85.9 8.8 92.1 10.5 90.9 0.2 76.6 0.1 82.5

Mean 1.2 64.3 0.6 84.8 10.3 83.6 13.4 90.1 0.1 73.3 0.1 81.6

differ only in details.

4.4. Iterative Refinement on Untrained Objects

In our final experiment, we evaluate the MP-Encoder on

the task of iterative refinement of poses on untrained in-

stances from seen and unseen categories from ModelNet40.

We follow the evaluation protocol of DeepIm [25] where

the relative pose between two object views of an untrained

instance is sought. The target view is rendered at con-

stant translation t = (0, 0, 500) (mm) and random rotation

R ∼ SO(3). Then we render another object view with

that pose perturbed by the angles βx/y/z ∼ N (0, (15o)2)
sampled for each rotation axis and a translational offset

∆x ∼ N (0, 102), ∆y ∼ N (0, 102), ∆z ∼ N (0, 502)
(mm). If the total angular perturbation is more than 45o,

it is resampled.

We train category specific MP-Encoders on 80 instances

of the airplane, car and chair class and predict the relative

pose on novel instances. We also train another MP-Encoder

on 80 instances from 8 different categories 3 to obtain a gen-

eral viewpoint-sensitive feature extractor which we test on

instances from novel categories. To retain the relative pose

to the target view we use our random optimization scheme

described in Alg. 1 with an initial σ = 45o.

We compare our approach against DeepIm [25] that also

minimizes the relative pose between an initial and a target

view through an iterative rendering inference cycle. The re-

sults in Table 4 demonstrate superior performance of our

approach on both, seen and unseen categories. Figure 3 on

3airplane, bed, bench, car, chair, piano, sink, toilet

the right shows qualitative results of the refinement on un-

seen categories.

5. Conclusion

In this paper we presented a novel approach for estimat-

ing poses of multiple trained and untrained objects from

a single encoder model. In contrast to other methods,

training on multiple objects does not degrade performance

and instead leads to state-of-the-art results on the texture-

less, symmetric objects of the T-LESS dataset. The same

MP-Encoder architecture is also used for iterative pose re-

finement on untrained objects outperforming previous ap-

proaches on ModelNet40.

The ability of this pose estimator to generalize across

objects from different categories, datasets and image do-

mains indicates that low-level viewpoint-sensitive features

are shared across various domains. Higher-level features for

discriminating semantics require viewpoint-invariance and

usually generalize less well. Therefore, our results suggest

that these two tasks should be learned separately.

We believe that this is a step towards coping with the

large number of instances in industrial settings where 3D

models are often available and service robotics where cat-

egories often appear repeatedly and interactions with novel

objects should be immediately possible.
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