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Abstract

This paper introduces a neural style transfer model to

generate a stylized image conditioning on a set of exam-

ples describing the desired style. The proposed solution

produces high-quality images even in the zero-shot setting

and allows for more freedom in changes to the content ge-

ometry. This is made possible by introducing a novel Two-

Stage Peer-Regularization Layer that recombines style and

content in latent space by means of a custom graph convo-

lutional layer. Contrary to the vast majority of existing so-

lutions, our model does not depend on any pre-trained net-

works for computing perceptual losses and can be trained

fully end-to-end thanks to a new set of cyclic losses that op-

erate directly in latent space and not on the RGB images.

An extensive ablation study confirms the usefulness of the

proposed losses and of the Two-Stage Peer-Regularization

Layer, with qualitative results that are competitive with re-

spect to the current state of the art using a single model for

all presented styles. This opens the door to more abstract

and artistic neural image generation scenarios, along with

simpler deployment of the model.

1. Introduction

Neural style transfer (NST), introduced by the seminal

work of Gatys [8], is an area of research that focuses on

models that transform the visual appearance of an input im-

age (or video) to match the style of a desired target image.

For example, a user may want to convert a given photo to

appear as if Van Gogh had painted the scene.

NST has seen a tremendous growth within the deep

learning community and spans a wide spectrum of applica-

tions e.g. converting time-of-day [43, 12], mapping among

artwork and photos [1, 43, 12], transferring facial expres-

sions [17], transforming animal species [43, 12], etc.

Despite their popularity and often-quality results, cur-

rent NST approaches are not free from limitations. Firstly,

the original formulation of Gatys et al. requires a new op-

Figure 1. Our model is able to take a content image and convert

it into arbitrary target style in a forward manner. In this figure,

a photo in the middle is converted into styles from 4 different

painters, (left side, from top to bottom) Picasso, Kirchner, Roerich

and Monet.

timization process for each transfer performed, making it

impractical for many real-world scenarios. In addition, the

method relies heavily on pre-trained networks, usually bor-

rowed from classification tasks, that are known to be sub-

optimal and have recently been shown to be biased toward

texture rather than structure [9]. To overcome this first limi-

tation, deep neural networks have been proposed to approx-

113816



imate the lengthy optimization procedure in a single feed

forward step thereby making the models amenable for real-

time processing. Of notable mention in this regard are the

works of Johnson et al. [15] and Ulyanov et al. [35].

Secondly, when a neural network is used to overcome the

computational burden of [8], training of a model for every

desired style image is required due to the limited-capacity

of conventional models in encoding multiple styles into the

weights of the network. This greatly narrows down the ap-

plicability of the method for use cases where the concept

of style cannot be defined a-priori and needs to be inferred

from examples. With respect to this second limitation, re-

cent works attempted to separate style and content in feature

space (latent space) to allow generalization to a style char-

acterized by an additional input image, or set of images.

The most widespread work in this family is AdaIN [11],

a specific case of FiLM [30]. The current state of the art

allows to control the amount of stylization applied, interpo-

lating between different styles, and using masks to convert

different regions of image into different styles [11, 32].

Beyond the study of new network architectures for im-

proving NST, research has resulted in better suited loss

functions to train the models. The perceptual loss [8, 15]

with a pre-trained VGG19 classifier [33] is very commonly

used in this task as it, supposedly, captures high-level fea-

tures of the image. However, this assumption has been re-

cently challenged in [9]. Cycle-GAN [43] proposed a new

cycle consistent loss that does not require one-to-one cor-

respondence between the input and the target images, thus

lifting the heavy burden of data annotation.

The problem of image style transfer is challenging, be-

cause the style of an image is expressed by both local prop-

erties (e.g. typical shapes of objects, etc.) and global

properties (e.g. textures, etc.). Of the many approaches

for modelling the content and style of an image that have

been proposed in the past, encoding of the information in

a lower dimensional latent space has shown very promising

results. We therefore advocate to model this hierarchy in

latent space by local aggregation of pixel-wise features and

by the use of metric learning to separate different styles. To

the best of our knowledge, this has not been addressed by

previous approaches explicitly.

In the presence of a well structured latent space where

style and content are fully separated, transfer can be eas-

ily performed by exchanging the style information in latent

space between the input and the conditioning style images,

without the need to store the transformation in the decoder

weights. Such an approach is independent with respect to

feature normalization and further avoids the need for rather

problematic pre-trained models.

However, the content and style of an image are not com-

pletely separable. The content of an image exhibits changes

in geometry depending on what style it is painted with. Re-

cently, Kotovenko et al. [20] has proposed a content trans-

former block in an adversarial setting, where the model is

trained in two stages. First a style transfer network is op-

timized. Then it is fixed and content transformer block is

optimized instead, learning to account for changes in geom-

etry relevant to a given style. The style exchange therefore

becomes two-stage. Modeling such dependence has been

shown to improve the visual results dramatically.

This paper addresses the NST setting where style is ex-

ternally defined by a set of input images to allow transfer

from arbitrary domains and to tackle the challenging zero-

shot style-transfer scenario by introducing a novel feature

regularization layer capable of recombining global and lo-

cal style content from the input style image. It is achieved

by borrowing ideas from geometric deep learning (GDL) [2]

and modelling pixel-wise graph of peers on the feature maps

in the latent space. To the best of our knowledge, this is the

first work that successfully leverages the power of GDL in

the style transfer scenario. We successfully demonstrate this

in a series of zero-shot style transfer experiments, whose

generated result would not be possible if the style was not

actually inferred from the respective input images.

This work addresses the aforementioned limitations of

NST models by making the following contributions:

• A state-of-the-art approach for NST using a custom

graph convolutional layer that recombines style and

content in latent space;

• Novel combination of existing losses that allows end-

to-end training without the need for any pre-trained

model (e.g. VGG) to compute perceptual loss;

• Constructing a globally- and locally-combined latent

space for content and style information and imposing

structure on it by means of metric learning.

2. Background

The key component of any NST system is the modeling

and extraction of the ”style” from an image (though the term

is partially subjective). As style is often related to texture,

a natural way to model it is to use visual texture modeling

methods [39]. Such methods can either exploit texture im-

age statistics (e.g. Gram matrix) [8] or model textures using

Markov Random Fields (MRFs) [6]. The following para-

graphs provide an overview of the style transfer literature

introduced by [14].

Image-Optimization-Based Online Neural Methods.

The method from Gatys et al. [8] may be the most repre-

sentative of this category. While experimenting with rep-

resentations from intermediate layers of the VGG-19 net-

work, the authors observed that a deep convolutional net-

work is able to extract image content from an arbitrary
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photograph, as well as some appearance information from

works of art. The content is represented by a low-level layer

of VGG-19, whereas the style is expressed by a combina-

tion of activations from several higher layers, whose statis-

tics are described using the network features Gram matrix.

Li [25] later pointed out that the Gram matrix representation

can be generalized using a formulation based on Maximum

Mean Discrepacy (MMD). Using MMD with a quadratic

polynomial kernel gives results very similar to the Gram

matrix-based approach, while being computationally more

efficient. Other non-parametric approaches based on MRFs

operating on patches were introduced by Li and Wand [21].

Model-Optimization-Based Offline Neural Methods.

These techniques can generally be divided into several sub-

groups [14]. One-Style-Per-Model methods need to train

a separate model for each new target style [15, 35, 22],

rendering them rather impractical for dynamic and fre-

quent use. A notable member of this family is the work

by Ulyanov et al. [36] introducing Instance Normaliza-

tion (IN), better suited for style-transfer applications than

Batch Normalization (BN).

Multiple-Styles-Per-Model methods attempt to assign a

small number of parameters to each style. Dumoulin [5]

proposed an extension of IN called Conditional Instance

Normalization (CIN), StyleBank [3] learns filtering kernels

for different styles, and other works instead feed the style

and content as two separate inputs [23, 40] similarly to our

approach.

Arbitrary-Style-Per-Model methods either treat the style

information in a non-parametric, i.e. as in StyleSwap [4],

or parametric manner using summary statistics, such as in

Adaptive Instance Normalization (AdaIN) [11]. AdaIN, in-

stead of learning global normalization parameters during

training, uses first moment statistics of the style image fea-

tures as normalization parameters. Later, Li et al. [24] in-

troduced a variant of AdaIN using Whitening and Color-

ing Transformations (WTC). Going towards zero-shot style

transfer, ZM-Net [38] proposed a transformation network

with dynamic instance normalization to tackle the zero-shot

transfer problem. More recently, Avatar-Net [32] proposed

the use of a ”style decorator” to re-create content features

by semantically aligning input style features with those de-

rived from the style image.

Other methods. Cycle-GAN [43] introduced a cycle-

consistency loss on the reconstructed images that delivers

very appealing results without the need for aligned input

and target pairs. However, it still requires one model per

style. The approach was extended in Combo-GAN [1],

which lifted this limitation and allowed for a practical multi-

style transfer; however, also this method requires a decoder-

per-style.

Sanakoyeu et al. [31] observed that the applying the

cycle consistency loss in image space might be over-

restricting the stylization process. They also show how to

use a set of images, rather than a single one, to better ex-

press the style of an artwork. In order to provide more

accurate style transfer with respect to an image content,

Kotovenko et al. [20] designed the so called content trans-

former block, an additional sub-network that is supposed to

finetune a trained style transfer model to a particular con-

tent. The strict consistency loss was later relaxed by MU-

NIT [12], a multi-modal extension of UNIT [26], which im-

poses it in latent space instead, providing more freedom to

the image reconstruction process. Later, the same authors

proposed FUNIT [27], a few-shot extension of MUNIT.

Towards exploring the disentanglement of different

styles in the latent space, Kotovenko et al. [19] proposed

a fixpoint triplet loss in order to perform metric learning in

the style latent space, showing how to separate two different

styles within a single model.

3. Method

The core idea of our work is a region-based mechanism

that exchanges the style between input and target style im-

ages, similarly to StyleSwap [4], while preserving the se-

mantic content. To successfully achieve this, style and con-

tent information must be well separated, disentangled. We

advocate the use of metric learning to directly enforce sep-

aration among different styles, which has been experimen-

tally shown to greatly reduce the amount of style dependent

information retained in the decoder. Furthermore, in order

to account for geometric changes in content that are bound

to a certain style, we model the style transfer as a two-stage

process, first performing style transfer, and then in the sec-

ond step modifying the content geometry accordingly. This

is done using the Two-stage Peer-regularized Feature Re-

combination (TPFR) module presented below.

3.1. Architecture and losses

The proposed system architecture is shown in Figure 2.

To prevent the main decoder from encoding the stylization

in its weights, auxiliary decoder [7] is used during train-

ing to optimize the parameters of the encoder and decoder

independently. The yellow module in Figure 2 is trained

as an autoencoder (AE) [29, 41, 28] to reconstruct the in-

put. The green module, instead, is trained as a GAN[10]

to generate the stylized version of the input using the en-

coder from the yellow module, with fixed parameters. The

optimization of both modules is interleaved together with

the discriminator. Additionally, following the analysis from

Martineau et al. [16], the Relativistic Average GAN (Ra-

GAN) is used as our adversarial loss formulation, which

has shown to be more stable and to produce more natural-

looking images than traditionally used GAN losses.
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Figure 2. The proposed architecture with two decoder modules. The yellow decoder is the auxiliary decoder, while the main decoder is

depicted in green. Dashed lines indicate lack of gradient propagation.

Let us now describe the four main building blocks of our

approach in detail1. We denote xi, xt, xf an input image,

a target and fake image, respectively. Our model consists

of an encoder E(·) generating the latent representations, an

auxiliary decoder D̃(·) taking a single latent code as input,

a main decoder D(·) taking one latent code as input, and

TPFR module T (·, ·) receiving two latent codes. Generated

latent codes are denoted zi = E(xi), zt = E(xt). We fur-

ther denote (·)C , (·)S the content and style part of the latent

code, respectively.

The distance f between two latent representations is de-

fined as the smooth L1 norm [13] in order to stabilize train-

ing and to avoid exploding gradients:

f [d] =
1

W ×H

W×H
∑

i=1

N
∑

j=1

di,j ,

di,j =

{

0.5 d2i,j if di,j < 1

|di,j | − 0.5 otherwise
,

(1)

where d = z1 − z2, z1 and z2 are two different feature

embeddings with N channels and W ×H is the spatial di-

mension of each channel.

Encoder. The encoder used to produce latent represen-

tation of all input images is composed of several strided-

convolutional layers for downsampling followed by mul-

tiple ResNet blocks. The latent code z is composed by

two parts: the content part, (z)C , which holds information

about the image content (e.g. objects, position, scale, etc.),

and the style part, (z)S , which encodes the style that the

content is presented in (e.g. level of detail, shapes, etc.).

The style component of the latent code (z)S is further split

equally into (z)S = [(z)locS , (z)globS ]. Here, (z)locS encodes

local style information per pixel of each feature map, while

1The full architecture details are found in the supplementary material.

(z)globS undergoes further downsampling via a small sub-

network to generate a single value per feature map.

Auxiliary decoder. The Auxiliary decoder reconstructs

an image from its latent representation and is used only dur-

ing training to train the encoder module. It is composed of

several ResNet blocks followed by fractionally-strided con-

volutional layers to reconstruct the original image. The loss

is inspired by [31, 19] and is composed of the following

parts. A content feature cycle loss that pulls together latent

codes representing the same content:

Lzcont
= f [E(D(T (zi, zt)))C − (zi)C ]

+ f [E(D(T (zi, zi)))C − (zi)C ]
(2)

A metric learning loss, enforcing clustering of the style

part of the latent representations:

Lpos
zstyle

= f [(zi1)S − (zi2)S ] + f [(zt1)S − (zt2)S ]

Lneg
zstyle

= f [(zi1)S − (zt1)S ] + f [(zi2)S − (zt2)S ]

Lzstyle
= Lpos

zstyle
+max(0.0, µ− Lneg

zstyle
).

(3)

A classical reconstruction loss used in autoencoders,

which forces the model to learn perfect reconstructions of

its inputs:

L̃idt = f [D̃(E(xi))− xi] + f [D̃(E(xt))− xt]. (4)

And a latent cycle loss enforcing the latent codes of the in-

puts to be the same as latent codes of the reconstructed im-

ages:

L̃zcycle
= f [E(D̃(zi))− (zi)] + f [E(D̃(zt))− (zt)], (5)

which has experimentally shown to stabilize the training.

The total auxiliary decoder loss LD̃, is then defined as:

LD̃ = Lzcont
+ Lzstyle

+ L̃zcycle
+ λL̃idt, (6)

where λ is a hyperparameter weighting importance of the

reconstruction loss L̃idt with respect to the rest.

13819



Figure 3. One step of peer regularization takes as input latent representations of content and style images. The content part of the latent

representation is used to induce a graph structure on the style latent space, which is then used to recombine the style part of the content

image’s latent representation from the style image’s latent representation. This results in a new style latent code. The Two-Stage Peer

Regularization Layer performs the peer regularization operation twice. In the second step, the roles of content and style information are

swapped.

Main decoder. This network replicates the architecture of

the auxiliary decoder, and uses the output of the Two-stage

Peer-regularized Feature Recombination module (see Sec-

tion 3.2). During training of the main decoder the encoder

is kept fixed, and the decoder is optimized using a loss func-

tion composed of the following parts. First, the decoder ad-

versarial loss:

Lgen = Exi∼P

[

(

C (xi)− Exf∼QC (xf ) + 1
)2
]

+ Exf∼Q

[

(Exi∼PC (xi)− C (xf ) + 1)
2

]

,
(7)

where P is the distribution of the real data and Q is the dis-

tribution of the generated (fake) data and C is the discrimi-

nator.

In order to enforce the stylization preserve the content

part of the latent codes while recombining the style part of

the latent codes to represent the target style class, we use so

called transfer latent cycle loss:

Lztransf
= f [E(D(T (zi, zt)))C − (zi)C ]

+ f [E(D(T (zi, zt)))S − (zt)S ].
(8)

Further, to make the main decoder learn to reconstruct the

original inputs, we employ the classical reconstruction loss

as we did for auxiliary decoder as well:

Lidt = f [D(T (zi, zi))− xi] + f [D(T (zt, zt))− xt]. (9)

The above put together composes the main decoder loss

LD, where the reconstruction loss Lidt is weighted by the

same hyperparameter λ used also in LD̃.

LD = Lgen + Lztransf
+ λLidt (10)

Discriminator. The discriminator is a convolutional net-

work receiving two images concatenated over the channel

dimension and producing an N × N map of predictions.

The first image is the one to discriminate, whereas the sec-

ond one serves as conditioning for the style class. The out-

put prediction is ideally 1 if the two inputs come from the

same style class and 0 otherwise. The discriminator loss is

defined as:

LC = Exi∼P

[

(

C (xi)− Exf∼QC (xf )− 1
)2
]

+ Exf∼Q

[

(Exi∼PC (xi)− C (xf )− 1)
2

]

.
(11)

3.2. Twostage Peerregularized Feature Recombi
nation (TPFR)

The TPFR module draws inspiration from PeerNets [34]

and Graph Attention Layer (GAT) [37] to perform style

transfer in latent space, taking advantage of the separation

of content and style information (enforced by Equations 2

and 3). Peer-regularized feature recombination is done in

two stages, as explained in the following paragraphs.

Style recombination. It receives zi = [(zi)C , (zi)S ] and

zt = [(zt)C , (zt)S ] as an input and computes the k-Nearest-

Neighbors (k-NN) between (zi)C and (zt)C using the Eu-

clidean distance to induce the graph of peers.

Attention coefficients over the graph nodes are computed

and used to recombine the style portion of (zout)S as con-

vex combination of its nearest neighbors representations.

The content portion of the latent code remains instead un-

changed, resulting in: zout = [(zi)C , (zout)S ].
Given a pixel (zm)C of feature map m, its k-NN graph

in the space of d-dimensional feature maps of all pixels of

all peer feature maps nk is considered. The new value of

the style part (z)S for the pixel is expressed as:

(z̃mp )S =

K
∑

k=1

αmnkpqk(z
nk
qk
)S , (12)
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αmnkpqk =
LReLU(exp(a((zmp )C , (z

nk
qk
)C)))

∑K

k′=1
LReLU(exp(a((zmp )C , (z

nk′

qk′
)C)))

(13)

where a(·, ·) denotes a fully connected layer mapping from

2d-dimensional input to scalar output, and αmnkpqk are at-

tention scores measuring the importance of the qkth pixel of

feature map n to the output pth pixel x̃m
p of feature map m.

The resulting style component of the input feature map X̃
m

is the weighted pixel-wise average of its peer pixel features

defined over the style input image.

Content recombination. Once the style latent code is re-

combined, an analogous process is repeated to transform the

content latent code according to the new style information.

In this case, it starts off with inputs zout = [(zi)C , (zout)S ]
and zt = [(zt)C , (zt)S ] and the k-NN graph is computed

given the style latent codes (zout)S , (zt)S . This graph is

used together with Equation 12 in order to compute the at-

tention coefficients and recombine the content latent code

as (zfinal)C .

The output of the TPFR module therefore is a new latent

code zfinal = [(zfinal)C , (zout)S ] which recombines both

style and content part of the latent code.

4. Experimental setup and Results

The proposed approach is compared against the state-of-

the-art on extensive qualitative evaluations and, to support

the choice of architecture and loss functions, ablation stud-

ies are performed to demonstrate roles of the various com-

ponents and how they influence the final result. Only quali-

tative comparisons are provided as no standard quantitative

evaluations are defined for NST algorithms.

4.1. Training

A modification of the dataset collected by [31] is used for

training the model. It is composed of a collection of thirteen

different painters representing different target styles and se-

lection of relevant classes from the Places365 dataset [42]

providing the real photo images. This gives us 624,077

real photos and 4,430 paintings in total. Our network can

be trained end-to-end alternating optimization steps for the

auxiliary decoder, the main decoder, and the discriminator.

The loss used for training is defined as:

L = LC + LD + LD̃, (14)

where C is the discriminator, D the main decoder, and D̃ is

the auxiliary decoder (see Section 3.1). Using ADAM [18]

as the optimization scheme, with an initial learning rate of

4e−4 and a batch size of 2, training is performed for a total

of 200 epochs. After 50 epochs, the learning rate is decayed

linearly to zero. Please note that choice of the batch size can

be arbitrary, and we choose 2 only due to limited comput-

ing resources. In each epoch, we randomly visit 6144 of

the real photos. The weighting of the reconstruction iden-

tity loss λ = 25.0 and the margin for the metric learning

µ = 1.0 during all of our experiments. The training images

are cropped and resized to 256 × 256 resolution. Note that

during testing, our method can operate on images of arbi-

trary size.

4.2. Style transfer

A set of test images from Sanakoyeu [31] is stylized and

compared against competing methods in Figure 4 (inputs of

size 768× 768 px) to demonstrate arbitrary stylization of a

content image given several different styles. It is important

to note that, as opposed to majority of the competing meth-

ods, our network does not require retraining for each style

and allows therefore also for transfer of previously unseen

styles, e.g. Pissarro in row 5 of Figure 4, which is a painter

that has not been present in the training set.

Qualitative results2 that were done on color images of

size 512 × 512, using previously unseen paintings from

painters that are in the training set, are shown in Figure 5(b).

It is worth noticing that our approach can deal also with

very abstract painting styles, such as the one of Jackson Pol-

lock (Figure 5(b), row 3, style 1). It motivates the claim that

our model generalizes well to many different styles, allow-

ing zero-shot style transfer.

Zero-shot style transfer. In order to support our claims

regarding zero-shot style transfer, we have collected sam-

ples of a few painters that were not seen during training.

In particular, we collected paintings from Salvador Dali,

Camille Pissarro, Henri Matisse, Katigawa Utamaro and

Rembrandt. The evaluation presented in Figure 5(a) shows

that our approach is able to account for fine details in paint-

ing style of Camille Pissarro (row 1, style 1), as well as

create larger flat regions to recombine style that is own to

Katigawa Utamaro (row 6, style 2). We find the results of

zero-shot style transfer using the aforementioned painters

very encouraging.

Ablation study. There are several key components in our

solution which make arbitrary style transfer with a single

model and end-to-end training possible. The effect of sup-

pressing each of them during the training is examined, and

results for the various models are compared, highlighting

the importance of each component in Figure 6. Clearly, the

auxiliary decoder used during training is a centerpiece of

the whole approach, as it prevents degenerate solutions. We

observe that training encoder directly with the main decoder

end-to-end does not work (Fig. 6 NoAux). Separation of the

2More results are shown in the supplementary material.
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Figure 4. Qualitative comparison with respect to other state-of-the-art methods. It should be noted that most of the compared methods had

to train a new model for each style. While providing competitive results, our method performs arbitrary style transfer using a single model.

latent code into content and style part allows for the intro-

duced two-stage style transfer and is important to account

for changes in shape of the objects for styles like, e.g. Pi-

casso (Fig. 6 NoSep). Two-stage recombination provides

better generalization to variety of styles (Fig. 6 NoTS). Per-

forming only exchange of style based on content features

completely fails in some cases (e.g. row 1 in Fig. 6). Next,

metric learning on the style latent space enforces its better

clustering and enhances some important details in the styl-

ized image (Fig. 6 NoML). Last but not least, the combined

local and global style latent code is important in order to

be able to account for changes in edges and brushstrokes

appropriately (Fig. 6 NoGlob).

5. Conclusions

We propose a novel model for neural style transfer

which mitigates various limitations of current state-of-the-

art methods and that can be used also in the challenging

zero-shot transfer setting. This is thanks to a Two-Stage

Peer-Regularization Layer using graph convolutions to re-

combine the style component of the latent representation

and with a metric learning loss enforcing separation of dif-

ferent styles combined with cycle consistency in feature

space. An auxiliary decoder is also introduced to pre-

vent degenerate solutions and to enforce enough variabil-

ity of the generated samples. The result is a state-of-the-art

method that can be trained end-to-end without the need of a

pre-trained model to compute the perceptual loss, therefore

lifting recent concerns regarding the reliability of such fea-

tures for NST. More importantly the proposed method re-

quires only a single encoder and a single decoder to perform

transfer among arbitrary styles, contrary to many competing

methods requiring a decoder (and possibly an encoder) for

each input and target pair. This makes our method more

applicable to real-world image generation scenarios where

users define their own styles.
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(a) Zero-shot style transfer. (b) Styles seen during training.

Figure 5. Qualitative evaluation of our method for previously unseen styles (left) and for styles seen during training (right). It can be

observed that the generated images are consistent with the provided target style (inferred from a single sample only), showing the good

generalization capabilities of the approach.

Figure 6. Ablation study evaluating different architecture choices for our approach. Detail of style transfer for row 2 is shown in the

rightmost column. Ours refers to the final approach, NoAux makes no use of the auxiliary decoder during training, NoSep ignores the

separation of content and style in the latent space during feature exchange in TPFR module and exchanges the whole latent code at once,

NoTS recombines only style features based on content and keeps the original content features, NoML does not use metric learning and

NoGlob does not separate the style latent code into a global and local part.
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