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Abstract

Object recognition techniques using convolutional neu-

ral networks (CNN) have achieved great success. How-

ever, state-of-the-art object detection methods still perform

poorly on large vocabulary and long-tailed datasets, e.g.

LVIS. In this work, we analyze this problem from a novel

perspective: each positive sample of one category can be

seen as a negative sample for other categories, making the

tail categories receive more discouraging gradients. Based

on it, we propose a simple but effective loss, named equal-

ization loss, to tackle the problem of long-tailed rare cat-

egories by simply ignoring those gradients for rare cate-

gories. The equalization loss protects the learning of rare

categories from being at a disadvantage during the network

parameter updating. Thus the model is capable of learn-

ing better discriminative features for objects of rare classes.

Without any bells and whistles, our method achieves AP

gains of 4.1% and 4.8% for the rare and common categories

on the challenging LVIS benchmark, compared to the Mask

R-CNN baseline. With the utilization of the effective equal-

ization loss, we finally won the 1st place in the LVIS Chal-

lenge 2019. Code has been made available at: https:

//github.com/tztztztztz/eql.detectron2

1. Introduction

Recently, the computer vision community has witnessed

the great success of object recognition because of the

emerge of deep learning and convolutional neural networks

(CNNs). Object recognition, which is a fundamental task in

computer vision, plays a central role in many related tasks,

such as re-identification, human pose estimation and object

tracking.

Today, most datasets for general object recognition, e.g.

Pascal VOC [10] and COCO [28], mainly collect frequently

seen categories, with a large number of annotations for each

Figure 1: The overall gradient analysis on positive and neg-

ative samples. We collect the average L2 norm of gradient

of weights in the last classifier layer. Categories’ indices are

sorted by their instance counts. Note that for one category,

proposals of all the other categories and the background are

negative samples for it.

class. However, when it comes to more practical scenarios,

a large vocabulary dataset with a long-tailed distribution

of category frequency (e.g. LVIS [15]) is inevitable. The

problem of the long-tailed distribution of the categories is

a great challenge to the learning of object detection mod-

els, especially for the rare categories (categories with very

few samples). Note that for one category, all the samples

of other categories including the background are regarded

as negative samples. So the rare categories can be easily

overwhelmed by the majority categories (categories with a

large number of samples) during training and are inclined

to be predicted as negatives. Thus the conventional object

detectors trained on such an extremely unbalanced dataset
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Figure 2: The predicted probabilities with EQL. The x-axis

is the category index ordered by the instance number of each

category, and the y-axis is the average predicted probability

for positive proposals of each category.

suffer a great decline.

Most of the previous works consider the influence of

the long-tailed category distribution problem as an imbal-

ance of batch sampling during training, and they handle the

problem mainly by designing specialized sampling strate-

gies [2, 16, 32, 38]. Other works introduce specialized loss

formulations to cope with the problem of positive-negative

sample imbalance [27, 25]. But they focus on the imbal-

ance between foreground and background samples so that

the severe imbalance among different foreground categories

remains a challenging problem.

In this work, we focus on the problem of extremely

imbalanced frequencies among different foreground cate-

gories and propose a novel perspective to analyze the ef-

fect of it. As illustrated in Figure 1, the green and orange

curves represent the average norms of gradients contributed

by positive and negative samples respectively. We can see

that for the frequent categories, the positive gradient has a

larger impact than the negative gradient on average, but for

the rare categories, the status is just the opposite. To put

it further, the commonly used loss functions in classifica-

tion tasks, e.g. softmax cross-entropy and sigmoid cross-

entropy, have a suppression effect on the classes that are not

the ground-truth one. When a sample of a certain class is

utilized for training, the parameters of the prediction of the

other classes will receive discouraging gradients which lead

them to predict low probabilities. Since the objects of the

rare categories hardly occur, the predictors for these classes

are overwhelmed by the discouraging gradients during net-

work parameters updating.

To address this problem, we propose a novel loss func-

tion, equalization loss (EQL). In general, we introduce a

weight term for each class of each sample, which mainly

reduces the influence of negative samples for the rare cat-

egories. The complete formulation of equalization loss is

presented in Section 3. With the equalization loss, the av-

erage gradient norm of negative samples decrease as shown

in Figure 1 (the blue curve). And a simple visualization of

the effect of EQL is shown in Figure 2, which illustrates the

average predicted probabilities for the positive proposals of

each category with (the red curve) and without (the blue

curve) equalization loss. It can be seen that EQL signifi-

cantly improves the performance on rare categories without

harming the accuracy of frequent categories. With the pro-

posed EQL, categories of different frequencies are brought

to a more equal status during network parameter updating,

and the trained model is able to distinguish objects of the

rare categories more accurately.

Extensive experiments on several unbalanced datasets,

e.g. Open Images [23] and LVIS [15], demonstrate the ef-

fectiveness of our method. We also verify our method on

other tasks, like image classification.

Our key contributions can be summarized as follows: (1)

We propose a novel perspective to analyze the long-tailed

problem: the suppression on rare categories during learning

caused by the inter-class competition, which explains the

poor performance of rare categories on long-tailed datasets.

Based on this perspective, a novel loss function, equaliza-

tion loss is proposed, which alleviates the effect of the over-

whelmed discouraging gradients during learning by intro-

ducing an ignoring strategy. (2) We present extensive ex-

periments over different datasets and tasks, like object de-

tection, instance segmentation and image classification. All

experiments demonstrate the strength of our method, which

brings a large performance boosting over common classifi-

cation loss functions. Equipped with our equalization loss,

we achieved the 1st place in the LVIS Challenge 2019.

2. Related Works

We first revisit common objection detection and in-

stance segmentation. Then we introduce re-sampling, cost-

sensitive re-weighting, and feature manipulation methods

that are widely used to alleviate the class-unbalanced prob-

lem in long-tailed datasets.

Object Detection and Instance Segmentation. There

are two mainstream frameworks for objection detection:

single-stage detector [29, 36, 27] and two-stage detector

[13, 12, 37, 26, 31]. While single-stage detectors achieve

higher speed, most of state-of-the-art detectors follow the

two-stage regime for better performance. The popular Mask

R-CNN [17], which extends a mask head in the typical two-

stage detector, provided promising results on many instance

segmentation benchmarks. Mask Scoring R-CNN [21] in-

troduced an extra mask score head to align the mask’s score

and quality. And Cascade Mask R-CNN [1] and HTC [3]

further improved the performance by predicting the mask

in a cascade manner.
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Re-sampling Methods. One of the commonly used

methods in re-sampling is oversampling [2, 16, 32], which

randomly samples more training data from the minority

classes, to tackle the unbalanced class distribution. Class-

aware sampling [38], also called class-balanced sampling,

is a typical technique of oversampling, which first samples

a category and then an image uniformly that contains the

sampled category. While oversampling methods achieve

significant improvement for under-represented classes, they

come with a high potential risk of overfitting. On the oppo-

site of oversampling, the main idea of under-sampling [9]

is to remove some available data from frequent classes to

make the data distribution more balanced. However, the

under-sampling is infeasible in extreme long-tailed datasets,

since the imbalance ratio between the head class and tail

class are extremely large. Recently, [22] proposed a de-

coupling training schema, which first learns the representa-

tions and classifier jointly, then obtains a balanced classifier

by re-training the classifier with class-balanced sampling.

Our method helps the model learn better representations for

tail classes, so it could be complementary to the decoupling

training schema.

Re-weighting Methods. The basic idea of re-weighting

methods is to assign weights for different training samples.

In an unbalanced dataset, an intuitive strategy is to weight

samples based on the inverse of class frequency [41, 20]

or use a smoothed version, inverse square root of class fre-

quency [33]. Besides methods mentioned above which ad-

just the weight on class level, there are other studies focus

on re-weighting on sample level. [27, 25] make the neu-

ral network to be cost-sensitive by increasing the weight

for hard samples and decreasing the weight for easy sam-

ples, which can be seen as online versions of hard exam-

ple mining technique [39]. Recently, Meta-Weight-Net [40]

learns an explicit mapping for sample re-weighting. Differ-

ent from the works above, we focus on the imbalance prob-

lem among different foreground categories. We propose a

new perspective that the large number of negative gradients

from frequent categories severely suppress the learning of

rare categories during training. And we propose a new loss

function to tackle this problem, which is applied to the sam-

ple level and class level simultaneously.

Feature Manipulation. There are also some works

operating on the feature representations directly. Range

Loss [44] enlarges inter-classes distance and reduces intra-

classes variations simultaneously. [43] augments the feature

space of tail classes by transferring the feature variance of

regular classes that have sufficient training samples. [30]

transfers the semantic feature representation from head to

tail categories by adopting a memory module. However,

designing those modules or methods is not a trivial task and

makes the model harder to train. In contrast, our method is

simpler and does not access the representation directly.

3. Equalization Loss

The central goal of our equalization loss is to alleviate

the category quantity distribution imbalance problem for

each category in a long-tailed class distribution. We start

by revisiting conventional loss functions for classification,

namely softmax cross-entropy and sigmoid cross-entropy.

3.1. Review of Cross­Entropy Loss

Softmax Cross-Entropy derives a multinomial distribu-

tion p over each category from the network outputs z, and

then computes the cross-entropy between the estimated dis-

tribution p and ground-truth distribution y. The softmax

cross-entropy loss LSCE can be formulated as:

LSCE = −

C
∑

j=1

yj log(pj) (1)

and C is the number of categories. Here, p is calculated by

Softmax(z). Note that the C categories include an extra

class for background. In practice, y uses one-hot represen-

tation, and we have
∑C

j=1
yj = 1. Formally, for the ground

truth category c of a sample,

yj =

{

1 if j = c

0 otherwise
(2)

Sigmoid Cross-Entropy estimates the probability of

each category independently using C sigmoid loss func-

tions. The ground truth label yj only represents a binary

distribution for category j. Usually, an extra category for

background is not included. Instead, yj = 0 will be set

for all the categories when a proposal belongs to the back-

ground. So the sigmoid cross-entropy loss can be formu-

lated as:

LBCE = −

C
∑

j

log(p̂j) (3)

where

p̂j =

{

pj if yj = 1

1− pj otherwise
(4)

Where pj is calculated by σ(zj). The derivative of the

LBCE and LSCE with respect to network’s output z in sig-

moid cross entropy shares the same formulation:

∂Lcls

∂zj
=

{

pj − 1 if yj = 1

pj otherwise
(5)

In softmax cross-entropy and sigmoid cross-entropy, we

notice that for a foreground sample of category c, it can be

regarded as a negative sample for any other category j. So

the category j will receive a discouraging gradient pj for

model updating, which will lead the network to predict low
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probability for category j. If j is a rare category, the dis-

couraging gradients will occur much more frequently than

encouraging gradients during the iterations of optimization.

The accumulated gradients will have a non-negligible im-

pact on that category. Finally, even positive samples for

category j might get a relatively low probability from the

network.

3.2. Equalization Loss Formulation

When the quantity distribution of categories is fairly im-

balanced, e.g. in a long-tailed dataset, the discouraging gra-

dients from frequent categories have a remarkable impact

on categories with scarce annotations. With commonly

used cross-entropy losses, the learning of rare categories

are easily suppressed. To solve this problem, we propose

the equalization loss, which ignores the gradient from sam-

ples of frequent categories for the rare categories. This loss

function aims to make the network training more fair for

each class, and we refer it as equalization loss.

Formally, we introduce a weight term w to the original

sigmoid cross-entropy loss function, and the equalization

loss can be formulated as:

LEQL = −

C
∑

j=1

wj log(p̂j) (6)

For a region proposal r, we set w with the following regu-

lations:

wj = 1− E(r)Tλ(fj)(1− yj) (7)

In this equation, E(r) outputs 1 when r is a foreground re-

gion proposal and 0 when it belongs to background. And

fj is the frequency of category j in the dataset, which is

computed by the image number of the class j over the im-

age number of the entire dataset. And Tλ(x) is a threshold

function which outputs 1 when x < λ and 0 otherwise. λ

is utilized to distinguish tail categories from all other cat-

egories and Tail Ratio (TR) is used as the criterion to set

the value of it. Formally, we define TR by the following

formula:

TR(λ) =

∑C

j Tλ(fj)Nj

∑C

j Nj

(8)

where Nj is the image number of category j. The settings

of hyper-parameters of each part in Equation 7 are studied

in Section 4.4.

In summary, there are two particular designs in equaliza-

tion loss function: 1) We ignore the discouraging gradients

of negative samples for rare categories whose quantity fre-

quency is under a threshold. 2) We do not ignore the gra-

dients of background samples. If all the negative samples

for the rare categories are ignored, there will be no nega-

tive samples for them during training, and the learned model

will predict a large number of false positives.

3.3. Extend to Image Classification

Since softmax loss function is widely adopted in image

classification, we also design a form of Softmax Equaliza-

tion Loss following our main idea. Softmax equalization

loss (SEQL) can be formulated as:

LSEQL = −

C
∑

j=1

yj log(p̃j) (9)

where

p̃j =
ezj

∑C

k=1
w̃kezk

(10)

and the weight term wk is computed by:

w̃k = 1− βTλ(fk)(1− yk) (11)

where β is a random variable with a probability of γ to be 1

and 1− γ to be 0.

Note that image classification is different from classifi-

cation in object detection: each image belongs to a specific

category, so there is no background category. Therefore, the

weight term w̃k does not have the part E(r) as in Equation

7. Therefore, we introduce β to randomly maintain the gra-

dient of negative samples. And the influence of γ is studied

in Section 6.

4. Experiments on LVIS

We conduct extensive experiments for equalization loss.

In this section, we first present the implementation de-

tails and the main results on the LVIS dataset [15] in Sec-

tion 4.2 and Section 4.3. Then we perform ablation studies

to analyze different components of equalization loss in Sec-

tion 4.4. In Section 4.5, we compare equalization loss with

other methods. Details of LVIS Challenge 2019 will be in-

troduced in Section 4.6.

4.1. LVIS Dataset

LVIS is a large vocabulary dataset for instance segmenta-

tion, which contains 1230 categories in current version v0.5.

In LVIS, categories are divided into three groups according

to the number of images that contains those categories: rare

(1-10 images), common (11-100), and frequent (>100). We

train our model on 57k train images and evaluate it on 5k

val set. We also report our results on 20k test images.

The evaluation metric is AP across IoU threshold from 0.5

to 0.95 over all categories. Different from COCO evaluation

process, since LVIS is a sparse annotated dataset, detection

results of categories that are not listed in the image level

labels will not be evaluated.

11665



Backbone EQL AP AP50 AP75 APr APc APf APbbox

Mask R-CNN R-50-C4
✗ 19.7 32.5 20.3 7.9 21.1 22.8 20.3

✓ 22.5 36.6 23.5 14.4 24.9 22.6 23.1

Mask R-CNN R-101-C4
✗ 21.8 35.6 22.7 10.5 23.4 24.2 22.9

✓ 24.1 38.7 25.6 15.8 26.8 24.1 25.6

Mask R-CNN R-50-FPN
✗ 20.1 32.7 21.2 7.2 19.9 25.4 20.5

✓ 22.8 36.0 24.4 11.3 24.7 25.1 23.3

Mask R-CNN R-101-FPN
✗ 22.2 35.3 23.4 9.8 22.6 26.5 22.7

✓ 24.8 38.4 26.8 14.6 26.7 26.4 25.2

Cascade Mask R-CNN R-50-FPN
✗ 21.1 33.3 22.2 6.3 21.6 26.5 21.1

✓ 23.1 35.7 24.3 10.4 24.5 26.3 23.1

Cascade Mask R-CNN R-101-FPN
✗ 21.9 34.3 23.2 6.0 22.3 27.7 24.7

✓ 24.9 37.9 26.7 10.3 27.3 27.8 27.9

Table 1: Results on different frameworks and models. All those models use class-agnostic mask prediction and are evaluated

on LVIS v0.5 val set. AP is mask AP, and subscripts ’r’, ’c’ and ’f’ stand for rare, common and frequent categories

respectively. For equalization loss function, the λ is set as 1.76× 10−3 to include all the rare and common categories.

4.2. Implementation Details

We implement standard Mask R-CNN [17] equipped

with FPN [26] as our baseline model. Training images are

resized such that its shorter edge is 800 pixels while the

longer edge is no more than 1333. No other augmentation is

used except horizontal flipping. In the first stage, RPN sam-

ples 256 anchors with a 1:1 ratio between the foreground

and background, and then 512 proposals are sampled per

image with 1:3 foreground-background ratio for the second

stage. We use 16 GPUs with a total batch size 32 for train-

ing. Our model is optimized by stochastic gradient descent

(SGD) with momentum 0.9 and weight decay 0.0001 for 25

epochs, with an initial learning rate 0.04, which is decayed

to 0.004 and 0.0004 at 16 epoch and 22 epoch respectively.

Though class-specific mask prediction achieves better per-

formance, we adopt a class-agnostic regime in our method

due to the huge memory and computation cost for the large

scale categories. Following [15], the threshold of predic-

tion score is reduced from 0.05 to 0.0, and we keep the top

300 bounding boxes as prediction results. We make a small

modification when EQL is applied on LVIS. Since for each

image LVIS provide additional image-level annotations of

which categories are in that image (positive category set)

and which categories are not in it (negative category set),

categories in EQL will not be ignored if they are in the pos-

itive category set or negative category set of that image, i.e.

the weight term of Equation 7 will be 1 for those categories,

even if they are rare ones.

4.3. Effectiveness of Equalization Loss

Table 1 demonstrates the effectiveness of equalization

loss function over different backbones and frameworks. Be-

sides Mask R-CNN, we also apply equalization loss on Cas-

cade Mask R-CNN [1]. Our method achieves consistent im-

λ(10−3) TR(%) AP APr APc APf APbbox

0 0 20.1 7.2 19.9 25.4 20.5

0.176(λr) 0.93 20.8 11.7 20.2 25.2 20.8

0.5 3.14 22.0 11.2 22.8 25.2 22.4

0.8 4.88 22.3 11.4 23.4 25.3 23.0

1.5 7.82 22.8 11.0 24.5 25.5 23.0

1.76(λc) 9.08 22.8 11.3 24.7 25.1 23.3

2.0 9.83 22.7 11.3 24.3 25.3 23.2

3.0 13.12 22.5 11.0 24.0 25.3 23.1

5.0 18.17 22.4 10.0 23.6 25.7 23.0

Table 2: Ablation study for different λ. λr is about 1.76 ×
10−4, which exactly includes all rare categories. λc is about

1.76 × 10−3, which exactly includes all rare and common

categories. When λ is 0, our equalization loss degenerates

to sigmoid cross-entropy.

provement on all those models. As we can see from the ta-

ble, the improvement mainly comes from the rare and com-

mon categories, indicating the effectiveness of our method

on categories of the long-tailed distribution.

4.4. Ablation Studies

To better analyze equalization loss, we conduct several

ablation studies. For all experiments we use ResNet-50

Mask R-CNN.

Frequency Threshold λ: The influence of different λ is

shown in Table 2. We perform experiments of changing λ

from 1.76× 10−4, which exactly split rare categories from

all categories, to a broad range. We empirically find the

proper λ locating in the space when TR(λ) ranges from

2% to 10%. Results in Table 2 shows that significant im-

provement of overall AP as λ increases to include more tail
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Figure 3: Illustration of different design for threshold func-

tion Tλ(f).

categories. Meanwhile, the performance tends to degener-

ate when λ increases to include frequent categories. One

advantage of equalization loss is that it has negligible ef-

fect on categories whose frequency is larger than a given λ.

When λ = λr, APr improves significantly with marginal

influence to APc and APf . And when λ = λc, APr and

APc improve a lot while APf only degenerates slightly. We

set λ to λc in all our experiments.

Threshold Function Tλ(f): In Equation 7, we use Tλ(fj)
to compute the weight of category j for a given proposal.

Except for the proposed threshold function, Tλ(f) can have

other forms to calculate the weight for the categories with

frequency under the threshold. As illustrated in Figure

3, we present and compare with another two designs: (1)

Exponential decay function y = 1 − (af)n, which com-

putes the weight according to the power of category fre-

quency. (2) Gompertz decay function y = 1 − ae−be−cf

,

which decays smoothly at the beginning and then decreases

more steeply. We run multiple experiments for Exponential

decay function and Gompertz decay function with differ-

ent hyper-parameters and report the best results. The best

hyper-parameter settings for Exponential decay function is

a = 400 and n = 2 and for Gompertz decay function

a = 1, b = 80, c = 3000. Table 3 shows that all of the

three designs achieve fairly similar results, while both expo-

nential decay and Gompertz decay function introduce more

hyper-parameters to fit the design. Therefore, we use the

threshold function in our method for its simpler format with

less hyper-parameters and better performance.

Excluding Function E(r): Table 4 shows the experiment

results for EQL with or without E(r). EQL without E(r)
means removing E(r) from Equation 7, which will treat

the foreground and background the same way. EQL with

E(r) means equalization loss only affects foreground pro-

posals, as defined in Equation 7. Experiment results demon-

AP APr APc APf APbbox

Exponential decay 22.3 10.4 24.0 25.0 22.8

Gompertz decay 22.7 11.0 24.5 25.1 23.2

Ours 22.8 11.3 24.7 25.1 23.3

Table 3: Ablation study for threshold function Tλ(f). For

a fair comparison, we compare the performance with their

best hyper-parameters in multiple experiments.

E(r) AP APr APc APf APbbox

✗ 22.2 12.5 24.7 23.1 22.7

✓ 22.8 11.3 24.7 25.1 23.3

Table 4: Ablation study of Excluding Function E(r). The

top row is the results without using the term E(r), and the

bottom row is the results with it.

strate the importance of E(r). As we can see from the table,

with E(r), EQL achieves 0.6 points AP gain compared with

EQL without E(r). If E(r) is discarded, although APr has

an increase, APf drops dramatically, which causes the over-

all AP decline.

It is worth to notice that if we don’t use E(r), a large

number of background proposals will be also ignored for

rare and common categories, and the insufficient supervi-

sion from background proposals will cause extensive false

positives. We visualize the detection results of an exam-

ple image, which is shown in Figure 4. Without E(r),
more false positives are introduced, which are shown in red

color. Both analysis and illustration above indicate that APr

should decrease without E(r), which is contradictory with

the experiment results in Table 4. The reason is that accord-

ing to LVIS evaluation protocol, if it is not sure whether

category j is in or not in image I , all the false positives of

category j will be ignored in image I . If category j is rare,

the increased false positives are mostly ignored, which alle-

viates their influence. But the simultaneously increased true

positives bring a direct increase in APr.

4.5. Comparison with Other Methods

Table 5 presents the comparison with other methods that

are widely adopted to tackle the class imbalance problem.

According to the table, re-sampling methods improve APr

and APc at the sacrifice of APf , while re-weighting meth-

ods bring consistent gains on all categories but the overall

improvement is trivial. The equalization loss improves APr

and APc significantly with slight effect on APf , surpassing

all other approaches.

4.6. LVIS Challenge 2019

With the help of the equalization loss, we finally won the

1st place on LVIS challenge held on COCO and Mapillary
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AP AP50 AP75 APr APc APf APS APM APL APbbox

Sigmoid Loss 20.1 32.7 21.2 7.2 19.9 25.4 19.3 35.7 45.0 20.5

Softmax Loss 20.2 32.6 21.3 4.5 20.8 25.6 19.9 36.3 44.7 20.7

Class-aware Sampling [38] 18.5 31.1 18.9 7.3 19.3 21.9 17.3 32.1 40.9 18.4

Repeat Factor Sampling [15] 21.3 34.9 22.0 12.2 21.5 24.7 19.6 35.3 46.2 21.6

Class-balanced Loss [5] 20.9 33.8 22.2 8.2 21.2 25.7 19.8 36.1 46.4 21.0

Focal Loss [27] 21.0 34.2 22.1 9.3 21.0 25.8 19.8 36.5 45.5 21.9

EQL(Ours) 22.8 36.0 24.4 11.3 24.7 25.1 20.5 38.7 49.2 23.3

Table 5: Comparison with other methods on LVIS v0.5 val set. All experiments are performed based on ResNet-50 Mask

R-CNN.
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Figure 4: Illustration of the effect of excluding function

E(r). The upper and lower images correspond to using and

removing E(r) respectively. The true positives are drawn in

green while false positives in red. We visualize the results

with scores higher than 0.3 for better visualization.

Joint Recognition Challenge 2019. Combined with other

enhancements, like larger backbone [19, 42], deformable

convolution [6], synchronized batch normalization [35], and

extra data, our method achieves a 28.9 mask AP on LVIS

v0.5 test set, outperforming the ResNeXt-101 Mask R-

CNN baseline (20.1%) by 8.4%. More details about our

solution of challenge are described in Appendix A.

5. Experiments on Open Images Detection

Open Image dataset v5 is a large dataset of 9M images

annotated with image-level labels and bounding boxes. In

Method AP AP1 AP2 AP3 AP4 AP5

SGM 48.13 59.86 51.24 49.31 46.51 33.72

CAS [38] 56.50 64.44 59.30 59.74 57.02 42.00

EQL(Ours) 57.83 64.95 60.18 61.17 58.23 44.6

Table 6: Results on OID19 val set based on ResNet-50.

SGM and CAS stand for sigmoid cross-entropy and class-

aware sampling. We sort all the categories by their image

number and divide them into 5 groups. TR and λ is 3% and

3× 10−4 respectively.

our experiments, we use the split of data and the subset of

the categories of the competition 2019 for object detection

track (OID19). The train set of OID19 contains 12.2M

bounding boxes over 500 categories on 1.7M images, and

the val contains about 10k images.

According to Table 6, our method achieves a great im-

provement compared with standard sigmoid cross-entropy,

outperforming class-aware sampling method by a signifi-

cant margin. To better understand the improvement of our

methods, we group all the categories by their image num-

ber and report the performance of each group. We can see

that our method has larger improvements on categories with

fewer samples. Significant AP gains on the group of fewest

100 categories are achieved compared with sigmoid cross-

entropy and class-aware sampling (2.6 and 10.88 points re-

spectively).

6. Experiments on Image Classification

To demonstrate the generalization ability of the equaliza-

tion loss when transferring to other tasks. We also evaluate

our method on two long-tailed image classification datasets,

CIFAR-100-LT and ImageNet-LT.

Datasets. We follow exactly the same setting with [5] to

generate the CIFAR-100-LT with imbalance factor of 200 1.

CIFAR-100-LT contains 9502 images in train set, with

500 images for the most frequent category and 2 images

1https://github.com/richardaecn/

class-balanced-loss
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λ = 3.0× 10−3 λ = 5.0× 10−3

γ Acc@top1 Acc@top5 Acc@top1 Acc@top5

0 41.33 67.75 41.33 67.75

0.75 42.08 70.03 42.26 69.95

0.9 43.12 71.50 43.74 71.42

0.95 43.38 71.94 43.30 72.31

0.99 42.44 71.44 42.49 72.07

Table 7: Varying γ and λ for SEQL. The accuracy is re-

ported on CIFAR-100-LT test set. γ = 0 means we use

softmax loss function.

Method Acc@top1 Acc@Top5

Focal Loss† [27] 35.62 -

Class Balanced† [5] 36.23 -

Meta-Weight Net† [40] 37.91 -

SEQL(Ours) 43.38 71.94

Table 8: Results on CIFAR-100-LT test set based on

ResNet-32 [18]. We use γ of 0.95 and λ of 3.0 × 10−3.

† means that the results are copied from origin paper [5, 40].

Imbalanced factor is 200.

for the rarest category. CIFAR-100-LT shares the same test

set of 10k images with original CIFAR-100. We report the

top1 and top5 accuray. ImageNet-LT [30] is generated from

ImageNet-2012 [7], which contains 1000 categories with

images number ranging from 1280 to 5 images for each cat-

egory 2. There are 116k images for training and 50k images

for testing. Different from CIFAR-100-LT, we additionally

present accuracies of many shot, medium shot and few shot

to measure the improvement on tail classes.

Implementation Details. For CIFAR-100-LT, we use Nes-

terov SGD with momentum 0.9 and weight decay 0.0001

for training. We use a total mini-batch size of 256 with 128

images per GPU. The model ResNet-32 is trained for 12.8K

iterations with learning rate 0.2, which is then decayed by

a factor of 0.1 at 6.4K and 9.6K iteration. Learning rate is

increased gradually from 0.1 to 0.2 during the first 400 it-

erations. For data augmentation, we first follow the same

setting as [24, 18], then use autoAugment [4] and Cutout

[8]. In testing, we simply use the origin 32 × 32 images.

For ImageNet-LT, we use a total mini-batch size of 1024

with 16 GPUs. We use ResNet-10 as our backbone like

[30].The model is trained for 12K iterations with learning

rate 0.4, which is divided by 10 at 3.4K, 6.8K, 10.2K itera-

tions. A gradually warmup strategy [14] is also adopted to

increase the learning rate from 0.1 to 0.4 during the first 500

iterations. We use random-resize-crop, color jitter and hor-

izontal flipping as data augmentation. Training input size is

2https://github.com/zhmiao/

OpenLongTailRecognition-OLTR

γ Many Medium Few Acc@top1 Acc@top5

0 53.2 27.5 8.0 34.7 58.7

0.5 52.5 28.7 9.8 35.2 59.7

0.75 52.1 30.7 11.6 36.2 60.8

0.9 49.4 32.3 14.5 36.4 61.1

0.95 46.5 32.8 16.4 35.8 60.7

Table 9: Varying γ for SEQL with λ of 4.3 × 10−4. The

accuracy is reported on ImageNet-LT test set. When γ is

0, the SEQL degenerates to softmax loss function.

Method Acc@Top1 Acc@Top5

FSLwF† [11] 28.4 -

Focal Loss† [27] 30.5 -

Lifted Loss† [34] 30.8 -

Range Loss† [44] 30.7 -

OLTR† [30] 35.6 -

SEQL(Ours) 36.44 61.19

Table 10: Results on ImageNet-LT test set based on

ResNet-10 [18]. The optimal γ and λ are 0.9 and 4.3×10−4

respectively. † means that the results are copied from origin

paper [30]

224 × 224. In testing, we resized the images to 256 × 256
then cropped a single view of 224× 224 at the center.

Results on CIFAR-100-LT and ImageNet-LT. We build a

much stronger baseline on CIFAR-100-LT due to those aug-

mentation techniques. As shown in Table 7, our EQL still

improves the strong baseline by a large margin of 2%. And

those improvements are come from classes with fewer train-

ing samples. As for ImageNet-LT, we also present ablation

studies in Table 9. A wide range of values of γ give con-

sistent improvements over the softmanx loss baseline. As

shown in Table 8 and Table 10, our equalization loss sur-

passes prior state-of-the-art approaches significantly, which

demonstrates that our method can be generalized to differ-

ent tasks and datasets effectively.

7. Conclusion

In this work, we analyze the severe inter-class compe-

tition problem in long-tailed datasets. We propose a novel

equalization loss function to alleviate the effect of the over-

whelmed discouraging gradients on tail categories. Our

method is simple but effective, bringing a significant im-

provement over different frameworks and network architec-

tures on challenging long-tailed object detection and image

classification datasets.
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