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Abstract

Previous methods on estimating detailed human depth

often require supervised training with ‘ground truth’ depth

data. This paper presents a self-supervised method that can

be trained on YouTube videos without known depth, which

makes training data collection simple and improves the gen-

eralization of the learned network. The self-supervised

learning is achieved by minimizing a photo-consistency

loss, which is evaluated between a video frame and its

neighboring frames warped according to the estimated

depth and the 3D non-rigid motion of the human body. To

solve this non-rigid motion, we first estimate a rough SMPL

model at each video frame and compute the non-rigid body

motion accordingly, which enables self-supervised learning

on estimating the shape details. Experiments demonstrate

that our method enjoys better generalization and performs

much better on data in the wild.

1. Introduction

Understanding and reconstructing human motion from

images and videos is an important problem in com-

puter vision with many applications including surveillance,

VR/AR, and tele-presence. Many works focus on estimat-

ing a 2D or 3D skeleton model [6, 29, 25, 34, 26, 39].

While a skeleton model could be useful for surveillance,

other applications demand a 3D surface model of the un-

dressed human body, which is often represented by the

SMPL [24] or SCAPE [3] model. Many works have been

proposed to estimate those parametric shape models from

images [35, 17, 30, 12, 18]. However, the mid- and high-

frequency shape details, e.g., cloth wrinkles and folds, are

not captured in the SMPL and SCAPE models, which limits

their application in AR/VR and tele-presence applications.

Only a handful of recent works [41, 54, 38, 50, 1, 4] can

recover those details from a single image, but they all rely

on ground-truth 3D data for supervision. This paper aims to

develop a self-supervised method for detailed human depth

estimation, such that the network can be trained on a much

∗These authors contributed equally to this work.

larger dataset, e.g. YouTube videos, for improved perfor-

mance.

Self-supervised learning has been adopted [10, 9, 21] to

train depth estimation from a single image for static scenes

by enforcing photo-consistency between the left and right

views in a stereo pair. Basically, the left view can be warped

to the right view according to the estimated depth, the

photo-consistency between the right view and the warped

left view can be used to train the network. In principle, if

the human motion between two video frames is known, we

could adopt the same photo-consistency principle to train

the network for human depth estimation. However, the chal-

lenge is that human body has non-rigid motion and requires

much more complicated motion models such as those in Dy-

namicFusion [28] and VolumeDeform [15], which are diffi-

cult to estimate as well.

To address this challenge, we represent the human depth

by a SMPL model with an additive residual detail map. This

representation is similar to the base and detail shape for-

mulation in [41], but it bears two important advantages.

Firstly, the SMPL model estimation has been well stud-

ied and is robust even on data in the wild, which makes

the base shape estimation more reliable. As we will see

in experiments, this helps to reduce large errors in the esti-

mated depth. Secondly, the SMPL model parameters have

clear semantic meanings and can be used to induce the non-

rigid motion of the human body between two neighboring

video frames. In this way, the non-rigid human body motion

can be solved, and the photo-consistency for self-supervised

learning in [10, 9, 21] can be employed to train the depth es-

timation network.

Measuring photo-consistency between neighboring

video frames is still hard, even when the non-rigid motion

to align the two human shapes is known. We design our

method to be robust to occlusion, motion inaccuracy, and

shading changes to achieve a robust method.

With the proposed self-supervised framework, we can

train our network using almost endless online video clips.

This vast training data significantly improves the general-

ization of the trained network on unseen data, making hu-

man depth estimation more robust.
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2. Related Work

Skeleton Pose or Parametric Model Estimation. With

the development of deep neural network, the estimation

of 2D skeleton joints [6, 29] and 3D skeleton joints [25,

34, 26, 39] has achieved great success with robust per-

formance. Many other works focus on estimating an un-

dressed human body shape from a single image, as the

skeleton joints are insufficient to convey shape informa-

tion. The undressed body shape is often represented by

the SCAPE [3], SMPL [24], or SMPL-X [31] model,

which encodes the body shape by the pose and shape pa-

rameters. These models can be fitted according to esti-

mated skeleton joints [5, 22] or be directly regressed as

in [11, 8, 40, 35, 17, 30, 33, 12, 42, 18].

While the estimation of skeleton pose and these para-

metric body shapes are relatively well studied and robust,

they are insufficient for certain applications such as tele-

presence. In comparison, we strive to recover detailed hu-

man shapes, which has broader applications.

Non-parametric shape estimation. As the paramet-

ric SMPL or SCAPE captures limited shape details, non-

parametric representations have been adopted in human

shape estimation. Varol et al. [43] and Venkat et al. [44]

used a 3D volumetric model to represent human shapes for

better flexibility. Güler et al. [2] recovered a dense 2D-to-

3D surface correspondence field for the human body, and

the SMPL model can be generated according to the corre-

spondence. Zhu et al. [53] and Rematas et al. [36] directly

predicted the depth map from a single image by training on

synthetic data. Li et al. [23] exploited motion parallax cues

from static scenes to guide the human depth prediction by

watching ’frozen people’. Kolotouros et al. [20] directly

regressed the vertices in the SMPL model while retaining

the topology. Natsumeet al. [27] used 2D silhouettes and

3D joints of a body pose to describe the immense human

shape.

All the above methods still cannot capture shape de-

tails such as cloth wrinkles. Only a handful of recent

works[41, 54, 38, 1, 50, 4] are able to recover those de-

tails. Among them, Tang et al. [41] proposed a base + detail

shape representation, Zheng et al. [50] followed the volu-

metric shape representation, Zhu et al. [54] and Alldieck et

al. [1] improved the undressed SMPL model with hierar-

chical morphable models and vertex displacements respec-

tively. Saito et al. [38] defined a pixel-aligned implicit func-

tion to represent the human shape. Bhatnagar [4] designed

a neural network to estimate the garment geometry sepa-

rately, and then dress the SMPL model with the garments.

However, all of them require ground-truth 3D data for

supervised training, which is hard to obtain and could lead

to serious generalization problem. We also aim to recover

human shape details. But we advocate for self-supervised

learning to exploit the vast online videos for training. Our

approach significantly improves the network performance

on in-the-wild data.

Self-supervised Depth Estimation. To alleviate the de-

mands on the expensive ground-truth 3D data, various self-

supervised approaches have been proposed to train depth

prediction networks. These methods typically train the net-

work by minimizing a photo-consistency loss for some view

synthesized according to the inferred depth. The meth-

ods in [10, 9, 21] utilize stereo images with known rela-

tive motion between the left and right views. Some meth-

ods [47, 52, 45, 48] use a monocular moving camera and en-

force photo-consistency between neighboring video frames.

This setting is more challenging, since these methods need

to estimate the camera motion at the same time of estimat-

ing scene depth. Khot et al. [19] designed a self-supervised

method for multi-view stereo with a sophisticated loss func-

tion dealing with occlusion and shading changes.

Our method also takes the self-supervised approach to

train a depth estimation network. But our method is de-

signed for a moving human, instead of the static scene in all

the above methods. Thus, the motion model between our

neighboring video frames are much more complicated than

those works.

3. Methods
An overview of the proposed framework is shown in Fig-

ure 1. It composes of three main components: (1) TrackNet,

a neural network to estimate a Skinned Multi-Person Linear

(SMPL) model [24] from a single image, which determines

the base depth and also the non-rigid motion between con-

secutive frames. (2) NRMM, a module to compute the non-

rigid motion according to the SMPL model to align the 3D

human shapes at neighboring frames. (3) ReconNet, a neu-

ral network trained in a self-supervised manner to estimate

the residual detail shape, which will be added to the base

depth to capture shape details.

In the training stage, a short video sequence of a person

is fed to the TrackNet to compute a SMPL model for each

frame. In the next, a target frame is selected, and the non-

rigid motions from the other frames to the target frame are

computed through the NRMM module according to their

SMPL models. Finally, the ReconNet will be trained in an

self-supervised manner given the non-rigid motion by en-

forcing the photo-consistency loss. In the prediction stage,

the TrackNet will estimate the SMPL model to generate the

base depth, with which the ReconNet will predict the de-

tails. The final result is simply the addition of the base shape

and the details.

3.1. Pose Tracking

We estimate a SMPL model at each frame to capture

the human pose and rough shape. SMPL is a parameteric

undressed human body model with 72 pose parameters θ
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Figure 1: Overview of our system. At training time, our system includes the TrackNet to compute a SMPL model at each

input video frame, the NRMM model to compute the non-rigid motion to align two neighboring human shapes, and the

ReconNet to estimate shape details. At testing time, our system first compute the SMPL model from the TrackNet and then

estimates the details form the ReconNet and combine them as the final result.

and 10 shape parameters β controlling a triangle mesh of

6,890 vertices. The parameters θ define the 3D rotation of

each skeleton joint, and the parameters in β describe the

height, weight, and other body shape metrics. Compared

with a skeleton model, a SMPL model encodes strong hu-

man shape prior and provides more information including

limbs orientation and the rough shape.

We design a TrackNet module to predict SMPL parame-

ters for each frame of the input video. The undressed body

shape defined by SMPL parameters are used as the base

shape for further process. Compared to estimating an non-

parametric base shape in [41], our approach is more robust

since the base shape is constrained into a much smaller pa-

rameter space with strong human shape priors.

Our TrackNet adopts the same network architecture as

HMR [17], which consists of a ResNet-50 [14] as a feature

extractor and an iterative error feedback regressor [7]. The

original HMR model is trained on images with annotated

2D joints. In order to produce more accurate results, we

captured a small set of videos with ‘ground-truth’ SMPL co-

efficients generated by DoubleFusion [49] and further fine-

tuned the TrackNet after pretraining following [17].

The TrackNet outputs a 85-D vector, with 82 parame-

ters as SMPL coefficients and 3 parameters for the weak-

perspective camera model. The loss function to finetune

TrackNet on our DoubleFusion data is formulated as:

Ltn = Lpara + θpLJ pos + θrLJ rot (1)

where Lpara is the L1 loss of SMPL parameters, LJ pos and

LJ rot are the L1 loss of 3D position and rotation of SMPL

joints respectively. θp and θr are the loss weights, and both

of them are set to 1 in our experiments. Please note that

our method is not limited to the specific HMR [17] model

and the TrackNet can be upgraded with other SMPL model

estimation networks.

3.1.1 Camera Model Adjustment

State-of-the-art methods [35, 17, 30] for SMPL model es-

timation employ a weak-perspective camera model to fa-

cilitate the computation. However, as it is known, most of

videos are captured with a perspective camera. So in order

to better utilize the photometric loss, we adjust the cam-

era model from the weak-perspective model to the perspec-

tive model. As the focal length of videos in the wild are

normally unknown, we use a medium focal length to ren-

der SMPL model, and we empirically found that this per-

spective camera model can align SMPL model to the image

well. We take a simple conversion from the weak perspec-

tive model to a general perspective model, assuming known

camera focal length as the following,

Vtras. = [tx, ty,
fc

1

2
⇤ img size ⇤ s

], (2)

where vector t = [tx, ty] is translation and s is the scale in

a weak-perspective camera model. fc is the focal length of

the camera.

3.2. Non-rigid Motion Model

In order to exploit the photometric consistency between

different frames for the self-supervision, we need to com-
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Figure 2: Motion map generation. Given the SMPL models

at two neighboring frames, we compute a per-vertex trans-

formation using some nearby vertices (colored in the zoom-

in figure). This per-vertex transformation is then rendered

to image plane as a motion map. Our method assumes that

the non-rigid transformation between the SMPL shapes (red

dashed line) is the same as that between the detailed shapes

(blue dashed line).

pute the motion fields of the human body between consec-

utive frames. However, this is non-trivial as the human mo-

tion is non-rigid. So we propose a novel approach to com-

pute the non-rigid motion of the human body between con-

secutive frames based on the estimated SMPL model per

video frame. Specifically speaking, for each video, we se-

lect the target frame intervally with a gap of 3, then group

the consecutive r = [±4,±5,±7,±8,±9] frames as refer-

ence frames. After grouping each image tuple, we compute

a non-rigid motion field Tt!r to represent the 3D dense spa-

tial transformation of the human body from the target frame

to the reference frame. The non-rigid motion is defined as a

motion field in 3D space, with a 6-DoF transformation for

each vertex of the SMPL model.

To compute the non-rigid motion, we first compute a

per-vertex transformation. As shown in Figure 2, since

the SMPL models at two neighboring frames share the

same topology, we have explicit per-vertex correspondence.

Thus, the per-vertex transformation can be computed by

registering n two-ring neighboring vertices in the target

and reference model. More specifically, the rotation matrix

R 2 SO(3) and translation vector t 2 R
3 can be computed

by

R = argmin

nX

i=1

||R(vit � vct )� (vir � vcr)||
2,

t = vr �R ⇤ vt,

(3)

where vir and vit represent the ith corresponding vertices in

these two-ring neighboring vertices in reference model r

and target model t respectively, vc denotes the center ver-

tex of the two-ring neighbor group.

Then we render the per-vertex transformation to the im-

age plane as a motion map by ray tracing. For each pixel

in 2D image, the mean R and t of the 3 vertices in the

corresponding triangle is computed as the final transforma-

tion. In addition to motion map, we also render the depth of

SMPL model in the target frame as base depth Dt.

3.2.1 Occlusion Handling and Baseline Filtering

Exploiting the motion of human shape to measure photo-

consistency between neighboring frames faces two techni-

cal challenges, namely occlusion and insufficient baseline

length. When the motion is too large, part of the body might

become invisible in the reference or target view, just like the

occlusion problem in wide baseline stereo matching. When

the motion is too small, adjusting shape details by maximiz-

ing photo-consistency could lead to noisy results. This is

similar to the problem when the stereo baseline is too short.

To make the self-supervised training of ReconNet robust,

we design careful filtering to deal with this problem. We

define a ‘baseline length’ for each pixel in the motion map,

which is the magnitude of its translation t. We then compute

the mean baseline over all pixels for each tuple, and remove

tuples with mean baseline less than 0.5m. To deal with the

occlusion due to large motion, for each Tt!r, we compute a

validation mask Mr, where we mark a pixel as valid if it is

visible in both target and reference view and has a baseline

length larger than 5 cm.

3.3. ReconNet Architecture

The ReconNet computes the detail depth layer which

will be added to the base depth to compose the final re-

sult. We adopt a variant of U-Net [37] using the residual

blocks [13] in encoder and decoder with skip connections.

The encoder has 6 down-sampling layers, while the decoder

has 5 up-sampling layers. We apply a sigmoid function at

the end of the last layer to regularize the output from -10

to 10 cm. The input is a concatenation of the 512⇥512

RGB image and the zero-median rendered depth map from

the estimated SMPL model. The output of the network is

a 256⇥256 depth offset map. Finally, we compose the de-

tail depth layer with the base depth layer to obtain our final

output.

3.3.1 Self-supervised Learning for Detail

Warping-based view synthesis loss has been proved effec-

tive in monocular, stereo, and multi-view stereo depth pre-

diction tasks [10, 52, 19]. We extend it to monocular non-

rigid human depth estimation.
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Figure 3: We first inverse-project the composed depth to

point clouds, then deform them with non-rigid motion map

and finally reproject deformed point clouds back to refer-

ence image for bilinear sampling.

Given a clip of temporal continuous frames {I1, ..., IN}
with fixed camera intrinsic parameters K, we select the cen-

ter frame {It} as the target frame and the others as refer-

ence frames {Ir}(1  r  N, r 6= t). For each reference

frame, a non-rigid motion {Tt!r}
N�1

r=1 and the validation

map {Mt!r}
N�1

r=1 can be pre-computed with the estimated

SMPL models. Then our network use these non-rigid mo-

tion fields to warp the target frame toward the reference

frames with a differentiable bilinear interpolation. This pro-

cess is illustrated in Figure 3.

Let pt denote the homogeneous coordinates of a pixel in

the target view, and K denote the camera intrinsic matrix.

We can obtain pt’s projected coordinates onto the reference

view pr by

pr ⇠ KTt!r(pt)D(pt)K
�1pt. (4)

The inverse-warped images {Îrt } from each reference

frame can be synthesized according to Equation 4. As a

result, we can then formulate a photo-consistency objective

function as the following:

L
r
photo =

 

α

1� SSIMcs(It, Î
r
t )

2
+ (1� α) k It � Î

r
t } k

!

⌦Mr,

(5)

where SSIMcs denotes the structural similarity index [46]

with only the component of contrast and structure

(SSIMcs =
σxy+c

σ
2
x+σ

2
y+c

). We set α to 0.9, because the esti-

mated SMPL is imperfect, which causes misalignment dur-

ing image warping with the computed non-rigid motion. So

the structural similarity measured by SSIMcs is more robust

than the intensity difference. Moreover, we also use the val-

idation map to mask out invalid pixels.

Our final photo-consistency function is summed over all

reference images for better robustness,

Lphoto =

NX

r=1,r 6=t

Lr
photo. (6)

Following previous self-supervised depth estimation, a

smoothness term is also introduced. Since our target is to

estimate a human shape, we require the gradient of the com-

posed shape to be close to the base shape, which leads to the

following smooth term:

Lsmooth =
X

pt

|ODdetail(pt)� ODbase(pt)|. (7)

We also introduce a regularization term to require the final

depth to be similar to the base depth:

Lregularizer =
X

pt

|Ddetail(pt)�Dbase(pt)|. (8)

Finally, our final learning objective function is:

L = Lphoto + γsLsmooth + γrLregularization, (9)

where γs and γr are the hyperparameters to control the sig-

nificance of the smooth term Lsmooth and regularization

term Lregularizer. In all our experiments, γs is set as 10�5

and γr is 10�6.

4. Experiment

4.1. Data

We find the poses tracked by original HMR model

trained in the wild images are not accurate enough for the

self-supervised learning of ReconNet, so we finetune the

TrackNet using our collected data with ground truth SMPL

parameters generated by DoubleFusion[49].

Thus, we captured 36 video sequences of different

people performing simple action, which contains roughly

48,000 frames in total. Half of the frames have labeled

SMPL coefficients recovered from depth streams by Dou-

bleFusion [49], and are used in training of the TrackNet. To

augment the background in the video, we randomly use im-

ages from the Places Dataset[51] as the background for each

sequence. All the image frames are also used to bootstrap

our ReconNet in a self-supervised manner, and the SMPL

parameters are predicted by our finetuned TrackNet. To

train the ReconNet, we grouped the frames from the cap-

tured videos. For each clip, we skip every 3 frames to set

a target frame, and other consecutive [±4,±5,±7,±8,±9]
frames are set as the reference frames. We sampled in total

12,533 image tuples for training.

To ensure our model can be generalized to in-the-wild

data, we select 18 videos from YouTube, and generate about
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Figure 4: Experiments on data in the wild. From left to right, each example shows a single input image, our result, the result

from HMD[54], and the result from Tang et al. [41].

(a) (b)

(c) (d)

Figure 5: From the left to right, each example shows a sin-

gle input image, the result after finetuned on YouTube data,

the results before finetuning. This finetuning improves both

mid- and high- frequency shape details.

3,000 images tuples to finetune our ReconNet. We select

YouTube videos with a simple criteria that the video con-

tains a single and complete person with less occlusion. Note

that we can replace TrackNet with other better SMPL model

or even SMPL-X [32] model estimation networks for more

accurate base shape and motion map generation.

4.2. Training Details

We finetune the TrackNet from the original HMR model

with ‘Adam’ optimizer using our captured data with SMPL

parameters from DoubleFusion. The learning rate is set to

1⇥ 10�6. We use batch size 20 and train in 20 epochs.

We first bootstrap the ReconNet with our captured videos

in self-supervised manner for 2 epochs. The learning rate is

set as 4 ⇥ 10�4 and the batchsize is 2. We then finetune

the ReconNet with YouTube images with the learning rate

of 1⇥ 10�4 for one epoch.

4.3. Experiment on Data in the Wild

We test our method on unseen YouTube videos. We ran-

domly select half of the frames in the video to finetune our

ReconNet, and use the other frames for evaluation. Figure 4

shows the comparison with HMD[54] and Tang et al. [41]

on in-the-wild data. We find our result can capture more

fine details compared with other two methods mainly for

two reasons: first, our model is finetuned with in-the-wild

videos due to the self-supervised learning; second, our pho-

tometric loss is more effective in capturing small wrinkles.

In comparison, the other two methods are trained only with
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Figure 6: Comparison to Tang et al. [41] and HMD[54] on their testing datasets. The source images in top half part are from

the testing data of Tanget al. [41], and the source images in bottom half part are from the REAL dataset in HMD[54].

limited ‘ground truth’ depth from consumer depth cameras.

The noisy ‘ground truth’ depth makes it difficult for the net-

work to recover small details. Further more, although both

our method and Tang et al. [41] separate the human shape

to a base shape and a detail shape, we use a SMPL model

for the base shape, which is more robust for the in-the-wild

data. It is clear that our method generates more details than

[41] and [54] in the examples (a), (b), (d), (h), (j). Tang et

al.’s[41] results have large errors on examples (a), (b), (e),

(g), (k). We notice that the complex clothing, faces and

hairstyles are not estimated accurately, which is mainly be-

cause they are difficult for photo-consistency based recon-

struction.

We also show the predicted results with and without the

fine-tuning the ReconNet on Youtube data in Figure 5. Our

model cannot capture the fine details without finetuning.

Finetuning on YouTube data improves the mid- and high-

frequency shape details. Please refer to the supplementary

material for more results and discussion.
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4.4. Quantitative Evaluation

To quantitatively evaluate the accuracy and compare to

the previous methods, we evaluate our method on the testing

data provided by Tang et al. [41] and HMD [54].

Comparison on the Dataset from [41]. Tang et al.

[41] published a small dataset with ground truth 3D human

shapes generated by InfiniTAM [16] for quantitative evalu-

ation. To evaluate our results on their dataset, we first use

ICP to register our results to the ground truth, and measure

the error at each pixel by the point-to-point nearest neighbor

distance. Following [41], we compute the accuracy at dif-

ferent error thresholds, i.e. the percentage of pixels with an

error smaller than some threshold. The accuracy of different

methods evaluated on this dataset is shown in Table 1. We

also compute the Mean Absolute Error (MAE) to evaluate

the overall shape accuracy. Our method has smaller MAE

both than Tang et al. [41] and HMD, and higher accuracy

when the error threshold is larger than 4cm. It suggests our

method has less large errors than [41] on their published

dataset. However, Tang et al. can recover better shape de-

tails on this dataset. We believe this is because the test data

is highly consistent with their training data. The advantages

of our self-supervised method is demonstrated on data in

the wild in Figure 4. The performance of HMD [54] varies

on this dataset, e.g. poor results on example (b), (d) and (f),

suggesting its generalization is poorer than our method.

The first three rows in Figure 6 shows some visual re-

sults from these methods. Tang et al.’s method sometimes

generate distorted limbs as shown in example (b) and (d).

Comparing on the Dataset from [54]. HMD provides

another small dataset with ground-truth 3D mesh recovered

by multi-view reconstruction methods for quantitative eval-

uation. Here, we focus on comparing our ReconNet with the

‘Shading-Net’ in HMD, which is also a refinement model

on an estimated SMPL model. For fair comparison, we use

the same SMPL model for both methods. The accuracy is

reported in Table 2. We can see our self-supervised method

achieves better accuracy than HMD even on their test data.

The last three rows in Figure 6 are the qualitative com-

parison between these three methods on this dataset. We

can find Tang et al.’s performance in this dataset is not good

because of its poor generalization and the unusual poses in

this dataset. Also, we can find our method can recover more

details in example (g), (j), (k).

4.5. Ablation Study

We perform various ablation studies on the dataset of

Tang et al. [41] in this subsection. We denote the result

without using validation mask Mr and SSIMcs as baseline,

and compare it with various other settings. All the ablation

study are trained with the same hyperparameter.

Validation Mask The baseline method generate poorer

accuracy than the proposed method with validation mask

Table 1: Comparison on the dataset published in [41].

Methods Accuracy MAE

1.0cm 2.0cm 4.0cm

Tang et al. [41] 33.30 59.68 79.63 2.735

HMD [54] 27.66 54.10 76.31 3.077

Ours 31.47 59.08 82.13 2.609

Table 2: Comparison on the dataset published in [54]. ‘Ours

(HMD)’ means our method fed with the same undressed

SMPL model as HMD.

Methods
Accuracy (%) MAE

(cm)
1.0cm 2.0cm 4.0cm

Tang et al. [41] 19.07 41.71 73.19 3.125

HMD [54] 21.83 46.10 75.46 3.043

Ours(HMD) 22.62 47.65 76.65 2.944

Table 3: Ablation study on Tang et al.’s test set. Please see

text for more details.

Methods Accuracy MAE

1.0cm 2.0cm 4.0cm

Ours(Baseline) 28.14 55.57 79.46 2.828

Ours(M) 28.52 56.35 80.67 2.714

Ours(M+SSIMcs) 31.47 59.08 82.13 2.609

as shown in Table 3. This proves the effectiveness of our

occlusion handling and baseline filtering.

SSIMcs loss. We replace the original SSIM loss with

SSIMcs loss in training the ReconNet. SSIMcs is measured

on the contrast domain and is more robust to misalignment

(due to imperfect non-rigid motion estimation) and shading

changes. As shown in Table 3, after replacing SSIM with

SSIMcs, our model achieves better performance.

5. Conclusions

We present a self-supervised method to estimate human

shapes with fine geometry details such as cloth wrinkles.

This self-supervised approach enables the network to be

trained on in-the-wild data, such as YouTube videos, which

significantly improves the generalization of the network.

This result is achieved by introducing the SMPL model

for the base shape, and using it to compute the non-rigid

human motion at neighboring frames to facilitate photo-

consistency evaluation. Extensive evaluation and compar-

ison with state-of-the-art methods proves the effectiveness

of our method.
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