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Abstract

Printed and digitally displayed photos have the ability to

hide imperceptible digital data that can be accessed through

internet-connected imaging systems. Another way to think

about this is physical photographs that have unique QR

codes invisibly embedded within them. This paper presents

an architecture, algorithms, and a prototype implementa-

tion addressing this vision. Our key technical contribution is

StegaStamp, a learned steganographic algorithm to enable

robust encoding and decoding of arbitrary hyperlink bit-

strings into photos in a manner that approaches perceptual

invisibility. StegaStamp comprises a deep neural network

that learns an encoding/decoding algorithm robust to image

perturbations approximating the space of distortions result-

ing from real printing and photography. We demonstrates

real-time decoding of hyperlinks in photos from in-the-wild

videos that contain variation in lighting, shadows, perspec-

tive, occlusion and viewing distance. Our prototype system

robustly retrieves 56 bit hyperlinks after error correction –

sufficient to embed a unique code within every photo on the

internet.

1. Introduction

Our vision is a future in which each photo in the real

world invisibly encodes a unique hyperlink to arbitrary infor-

mation. This information is accessed by pointing a camera

at the photo and using the system described in this paper to

decode and follow the hyperlink. In the future, augmented-

reality (AR) systems may perform this task continuously,

visually overlaying retrieved information alongside each

photo in the user’s view.

Our approach is related to the ubiquitous QR code and

similar technologies, which are now commonplace for a wide

variety of data-transfer tasks, such as sharing web addresses,

purchasing goods, and tracking inventory. Our approach can

be thought of as a complementary solution that avoids visible,

ugly barcodes, and enables digital information to be invisibly
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and ambiently embedded into the ubiquitous imagery of the

modern visual world.

It is worth taking a moment to consider three potential

use cases of our system. First, at the farmer’s market, a stand

owner may add photos of each type of produce alongside

the price, encoded with extra information for customers

about the source farm, nutrition information, recipes, and

seasonable availability. Second, in the lobby of a university

department, a photo directory of faculty may be augmented

by encoding a unique URL for each person’s photo that

contains the professor’s webpage, office hours, location, and

directions. Third, New York City’s Times Square is plastered

with digital billboards. Each image frame displayed may be

encoded with a URL containing further information about

the products, company, and promotional deals.

Figure 1 presents an overview of our system, which we

call StegaStamp, in the context of a typical usage flow. The

inputs are an image and a desired hyperlink. First, we assign

the hyperlink a unique bit string (analogous to the process

used by URL-shortening services such as tinyurl.com). Sec-

ond, we use our StegaStamp encoder to embed the bit string

into the target image. This produces an encoded image that

is ideally perceptually identical to the input image. As de-

scribed in detail in Section 4, our encoder is implemented

as a deep neural network jointly trained with a second net-

work that implements decoding. Third, the encoded image is

physically printed (or shown on an electronic display) and

presented in the real world. Fourth, a user takes a photo that

contains the physical print. Fifth, the system uses an image

detector to identify and crop out all images. Sixth, each im-

age is processed with the StegaStamp decoder to retrieve the

unique bitstring, which is used to follow the hyperlink and

retrieve the information associated with the image.

This method of data transmission has a long history in

both the steganography and watermarking literatures. We

present the first end-to-end trained deep pipeline for this

problem that can achieve robust decoding even under “phys-

ical transmission,” delivering excellent performance suffi-

cient to encode and retrieve arbitrary hyperlinks for an essen-

tially limitless number of images. We extend the traditional

learned steganography framework by adding a set of differ-
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Figure 1: Our deep learning system is trained to hide hyperlinks in images. First, an encoder network processes the input image

and hyperlink bitstring into a StegaStamp (encoded image). The StegaStamp is then printed and captured by a camera. A

detection network localizes and rectifies the StegaStamp before passing it to the decoder network. After the bits are recovered

and error corrected, the user can follow the hyperlink. To train the encoder and decoder networks, we simulate the corruptions

caused by printing, reimaging, and detecting the StegaStamp with a set of differentiable image augmentations.

entiable pixelwise and spatial image corruptions between

the encoder and decoder that successfully approximate the

space of distortions resulting from “physical transmission”

(i.e., real printing or display and subsequent image capture).

The result is robust retrieval of 95% of 100 encoded bits in

real-world conditions while preserving excellent perceptual

image quality. This allows our prototype to uniquely encode

hidden hyperlinks for orders of magnitude more images than

exist on the internet today (upper bounded by 100 trillion).

2. Related Work

2.1. Steganography

Steganography is the act of hiding data within other data

and has a long history that can be traced back to ancient

Greece. Our proposed task is a type of steganography where

we hide a code within an image. Various methods have been

developed for digital image steganography. Data can be hid-

den in the least significant bits of the image, subtle color

variations, and subtle luminosity variations. Often methods

are designed to evade steganalysis, the detection of hidden

messages [18, 34]. We refer the interested reader to sur-

veys [9, 11] that review a wide set of techniques.

The most relevant work to our proposal are methods that

utilize deep learning to both encode and decode a mes-

sage hidden inside an image [5, 21, 43, 47, 51, 54, 44].

Our method assumes that the image will be corrupted by

a display-imaging pipeline between the encoding and de-

coding steps. With the exception of HiDDeN [54] and Light

Field Messaging (LFM) [45], small image manipulations

or corruptions would render existing techniques useless, as

their goal is encoding a large number of bits-per-pixel in the

context of perfect digital transmission. HiDDeN introduces

various types of noise between encoding and decoding to

increase robustness but focuses only on the set of corruptions

that would occur through digital image manipulations (e.g.,

JPEG compression and cropping). For use as a physical bar-

code, the decoder cannot assume perfect alignment, given

the perspective shifts and pixel resampling guaranteed to oc-

cur when taking a casual photo. LFM [45] obtain robustness

using a network trained on a large dataset of manually pho-

tographed monitors to undo the camera-display corruptions.

Our method does not require this time-intensive dataset cap-

ture step and generalizes to printed images, a medium for

which collecting training data would be even more difficult.

2.2. Watermarking

Watermarking, a form of steganography, has long been

considered as a potential way to link a physical image

to an Internet resource [2]. Early work in the area de-

fined a set of desirable goals for robust watermarking,

including invisibility and robustness to image manipula-

tions [7]. Later research demonstrated the significant ro-

bustness benefits of encoding the watermark in the log-polar

frequency domain [27, 33, 35, 53]. Similar methods have

been optimized for use as interactive mobile phone appli-

cations [13, 31, 36]. Additional work focuses on carefully

modeling the printer-camera transform [37, 42] or display-

camera transform [17, 46, 50] for better information transfer.

Some approaches to display-camera communication take

advantage of the unique properties of this hardware combi-

nation such as polarization [49], rolling shutter artifacts [26],

or high frame rate [12]. A related line of work in image

forensics explores whether it is possible to use a CNN to

detect when an image has been re-imaged [16]. In contrast

to the hand-designed pipelines used in previous work on

watermarking, our method automatically learns how to hide

and transmit data in a way that is robust to many different
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combinations of printers/displays, cameras, lighting, and

viewpoints. We provide a framework for training this system

and a rigorous evaluation of its capabilities, demonstrating

that it works in many real world scenarios and using ablations

to show the relative importance of our training perturbations.

2.3. Barcodes

Barcodes are one of the most popular solutions for trans-

mitting a short string of data to a computing device, requiring

only simple hardware (a laser reader or camera) and an area

for printing or displaying the code. Traditional barcodes are

a one dimensional pattern where bars of alternating thick-

ness encode different values. The ubiquity of high quality

cellphone cameras has led to the frequent use of two dimen-

sional QR codes to transmit data to and from phones. For

example, users can share contact information, pay for goods,

track inventory, or retrieve a coupon from an advertisement.

Past research has addressed the issue of robustly decod-

ing existing or new barcode designs using cameras [29, 32].

Some designs particularly take advantage of the increased

capabilities of cameras beyond simple laser scanners in vari-

ous ways, such as incorporating color into the barcode [8].

Other work has proposed a method that determines where a

barcode should be placed on an image and what color should

be used to improve machine readability [30].

Another special type of barcode is specially designed to

transmit both a small identifier and a precise six degree-of-

freedom orientation for camera localization or calibration,

e.g., ArUco markers [19, 38]. Hu et al. [22] train a deep

network to localize and identify ArUco markers in challeng-

ing real world conditions using data augmentation similarly

to our method. However, their focus is robust detection of

highly visible preexisting markers, as opposed to robust de-

coding of messages hidden in arbitrary natural images.

2.4. Robust Adversarial Image Attacks

Adversarial image attacks on object classification CNNs

are designed to minimally perturb an image in order to pro-

duce an incorrect classification. Most relevant to our work

are the demonstrations of adversarial examples in the physi-

cal world [4, 10, 15, 25, 28, 40, 41], where systems are made

robust for imaging applications by modeling physically real-

istic perturbations (i.e., affine image warping, additive noise,

and JPEG compression). Jan et al. [25] take a different ap-

proach, explicitly training a neural network to replicate the

distortions added by an imaging system and showing that ap-

plying the attack to the distorted image increases the success

rate.

These results demonstrate that networks can still be af-

fected by small perturbations after the image has gone

through an imaging pipeline. Our proposed task shares some

similarities; however, classification targets 1 of n ≈ 210 la-

bels, while we aim to uniquely decode 1 of 2m messages,

Original Image StegaStamp Residual

Figure 2: Examples of encoded images. The residual is calcu-

lated by the encoder network and added back to the original

image to produce the encoded StegaStamp. These examples

have 100 bit encoded messages and are robust to the image

perturbations that occur through the printing and imaging

pipelines.

where m ≈ 100 is the number of encoded bits. Additionally,

adversarial attacks typically do not modify the decoder net-

work, whereas we explicitly train our decoder to cooperate

with our encoder for maximum information transferal.

3. Training for Real World Robustness

During training, we apply a set of differentiable image

perturbations outlined in Figure 3 between the encoder and

decoder to approximate the distortions caused by physically

displaying and imaging the StegaStamps. Previous work

on synthesizing robust adversarial examples used a similar

method to attack classification networks in the wild (termed

“Expectation over Transformation”), though they used a more

limited set of transformations [4]. HiDDeN [54] used non-

spatial perturbations to augment their steganography pipeline

against digital perturbations only. Deep ChArUco [22] used

both spatial and nonspatial perturbations to train a robust

detector specifically for ChArUco fiducial marker boards.

We combine ideas from all of these works, training an en-

coder and decoder that cooperate to robustly transmit hidden

messages through a physical display-imaging pipeline.
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Input Perspective warp 

(Sec. 3.1)

Motion/defocus blur 

(Sec. 3.2)

Color manipulation 

(Sec. 3.3)

Noise 

(Sec. 3.4)

JPEG compression 

(Sec. 3.5)

Figure 3: Image perturbation pipeline. During training, we approximate the effects of a physical display-imaging pipeline in

order to make our model robust for use in the real world. We take the output of the encoding network and apply the random

transformations shown here before passing the image through the decoding network (see Section 3 for details).

3.1. Perspective Warp

Assuming a pinhole camera model, any two images of

the same planar surface can be related by a homography. We

generate a random homography to simulate the effect of a

camera that is not precisely aligned with the encoded im-

age marker. To sample a homography, we randomly perturb

the four corner locations of the marker uniformly within a

fixed range (up to ±40 pixels, i.e. ±10%) then solve for the

homography that maps the original corners to their new lo-

cations. We bilinearly resample the original image to create

the perspective warped image.

3.2. Motion and Defocus Blur

Blur can result from both camera motion and inaccurate

autofocus. To simulate motion blur, we sample a random

angle and generate a straight line blur kernel with a width

between 3 and 7 pixels. To simulate misfocus, we use a

Gaussian blur kernel with its standard deviation randomly

sampled between 1 and 3 pixels.

3.3. Color Manipulation

Printers and displays have a limited gamut compared

to the full RGB color space. Cameras modify their output

using exposure settings, white balance, and a color correction

matrix. We approximate these perturbations with a series of

random affine color transformations (constant across the

whole image) as follows:

1. Hue shift: adding a random color offset to each of the

RGB channels sampled uniformly from [−0.1, 0.1].

2. Desaturation: randomly linearly interpolating between

the full RGB image and its grayscale equivalent.

3. Brightness and contrast: affine histogram rescaling

mx+ b with m ∼ U [0.5, 1.5] and b ∼ U [−0.3, 0.3].

After these transforms, we clip the color channels to [0, 1].

3.4. Noise

Noise introduced by camera systems is well studied and

includes photon noise, dark noise, and shot noise [20]. We

assume standard non-photon-starved imaging conditions,

employing a Gaussian noise model (sampling the standard

deviation σ ∼ U [0, 0.2]) to account for imaging noise.

3.5. JPEG Compression

Camera images are usually stored in a lossy format such

as JPEG. JPEG compresses images by computing the dis-

crete cosine transform of each 8× 8 block in the image and

quantizing the resulting coefficients by rounding to the near-

est integer (at varying strengths for different frequencies).

This rounding step is not differentiable, so we use the trick

from Shin and Song [40] for approximating the quantization

step near zero with the piecewise function

q(x) =

{

x3 : |x| < 0.5

x : |x| ≥ 0.5
(1)

which has nonzero derivative almost everywhere. We sample

the JPEG quality uniformly within [50, 100].

4. Implementation Details

4.1. Encoder

The encoder is trained to embed a message into an image

while minimizing perceptual differences between the input

and encoded images. We use a U-Net [39] style architecture

that receives a four channel 400 × 400 pixel input (input

image RGB channels plus one for the message) and outputs

a three channel RGB residual image. The input message is

represented as a 100 bit binary string, processed through a

fully connected layer to form a 50 × 50 × 3 tensor, then

upsampled to produce a 400× 400× 3 tensor. We find that

applying this preprocessing to the message aids convergence.

We present examples of encoded images in Figure 2.
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4.2. Decoder

The decoder is a network trained to recover the hidden

message from the encoded image. A spatial transformer

network [24] is used to develop robustness against small

perspective changes that are introduced while capturing and

rectifying the encoded image. The transformed image is fed

through a series of convolutional and dense layers and a

sigmoid to produce a final output with the same length as

the message. The decoder network is supervised using cross

entropy loss.

4.3. Detector

For real world use, we must detect and rectify StegaS-

tamps within a wide field of view image before decod-

ing them, since the decoder network alone is not designed

to handle full detection within a much larger image. We

fine-tune an off-the-shelf semantic segmentation network

BiSeNet [48] to segment areas of the image that are be-

lieved to contain StegaStamps. The network is trained using

a dataset of randomly transformed StegaStamps embedded

into high resolution images sampled from DIV2K [1]. At

test time, we fit a quadrilateral to the convex hull of each of

the network’s proposed regions, then compute a homography

to warp each quadrilateral back to a 400× 400 pixel image

for parsing by the decoder.

4.4. Encoder/Decoder Training Procedure

Training Data During training, we use images from the

MIRFLICKR dataset [23] (resampled to 400× 400 resolu-

tion) combined with randomly sampled binary messages.

Critic As part of our total loss, we use a critic network

that predicts whether a message is encoded in a image and is

used as a perceptual loss for the encoder/decoder pipeline.

The network is composed of a series of convolutional layers

followed by max pooling. To train the critic, an input image

and an encoded image are classified and the Wasserstein

loss [3] is used as a supervisory signal. Training of the critic

is interleaved with the training of the encoder/decoder.

Losses To enforce minimal perceptual distortion on the

encoded StegaStamp, we use an L2 residual regularization

LR, the LPIPS perceptual loss [52] LP , and a critic loss

LC calculated between the encoded image and the original

image. We use cross entropy loss LM for the message. The

training loss is the weighted sum of these loss components.

L = λRLR + λPLP + λCLC + λMLM (2)

We find three loss function adjustments to particularly aid in

convergence when training the networks:

99%100% 99%

99%

100
%

98%

99%

98% 100% 100%

100%

Figure 4: Examples of our system deployed in-the-wild. We

outline the StegaStamps detected and decoded by our system

and the show message recovery accuracies. Our method

works in the real world, exhibiting robustness to changing

camera orientation, lighting, shadows, etc. You can find these

examples and more in our supplemental video.

1. These image loss weights λR,P,C must initially be set

to zero while the decoder trains to high accuracy, after

which λR,P,C are increased linearly.

2. The image perturbation strengths must also start at zero.

The perspective warping is the most sensitive perturba-

tion and is increased at the slowest rate.

3. The model learns to add distracting patterns at the edge

of the image (perhaps to assist in localization). We

mitigate this effect by increasing the weight of the L2

loss at the edges with a cosine dropoff.

5. Real-World & Simulation-Based Evaluation

We test our system in both real-world conditions and

synthetic approximations of display-imaging pipelines. We

show that our system works in-the-wild, recovering mes-

sages in uncontrolled indoor and outdoor environments. We

evaluate our system in a controlled real world setting with

18 combinations of 6 different displays/printers and 3 differ-

ent cameras. Across all settings combined (1890 captured
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Figure 5: Despite not explicitly training the method to be

robust to occlusion, we find that our decoder can handle

partial erasures gracefully, maintaining high accuracy.

images), we achieve a mean bit-accuracy of 98.7%. We con-

duct real and synthetic ablation studies with four different

trained models to verify that our system is robust to each of

the perturbations we apply during training and that omitting

these augmentations significantly decreases performance.

5.1. In­the­Wild Robustness

Our method is tested on handheld cellphone camera

videos captured in a variety of real-world environments. The

StegaStamps are printed on a consumer printer. Examples

of the captured frames with detected quadrilaterals and de-

coding accuracy are shown in Figure 4. We also demonstrate

a surprising level of robustness when portions of the Ste-

gaStamp are covered by other objects (Figure 5). Please see

our supplemental video for extensive examples of real world

StegaStamp decoding, including examples of perfectly recov-

ering 56 bit messages using BCH error correcting codes [6].

We generally find that if the bounding rectangle is accurately

located, decoding accuracy is high. However, it is possible

for the detector to miss the StegaStamp on a subset of video

frames. In practice this is not an issue, because the code only

needs to be recovered once. We expect future extensions

that incorporate temporal information and custom detection

networks can further improve the detection consistency.

5.2. Controlled Real World Experiments

In order to demonstrate that our model generalizes from

synthetic perturbations to real physical display-imaging

pipelines, we conduct a series of test where encoded im-

ages are printed or displayed, recaptured by a camera, then

decoded. We randomly select 100 unique images from the

ImageNet dataset [14] (disjoint from our training set) and

embed random 100 bit messages within each image. We gen-

erate 5 additional StegaStamps with the same source image

but different messages for a total of 105 test images. We con-

duct the experiments in a darkroom with fixed lighting. The

printed images are fixed in a rig for consistency and captured

by a tripod-mounted camera. The resulting photographs are

cropped by hand, rectified, and passed through the decoder.

The images are printed using a consumer printer (HP

5th 25th 50th Mean
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m
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n
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r Enterprise 88% 94% 98% 95.9%

Consumer 90% 98% 99% 98.1%

Pro 97% 99% 100% 99.2%

S
cr

ee
n Monitor 94% 98% 99% 98.5%

Laptop 97% 99% 100% 99.1%

Cellphone 91% 98% 99% 97.7%

C
el
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h
o
n
e

P
ri

n
te

r Enterprise 88% 96% 98% 96.8%

Consumer 95% 99% 100% 99.0%

Pro 97% 99% 100% 99.3%

S
cr

ee
n Monitor 98% 99% 100% 99.4%

Laptop 98% 99% 100% 99.7%

Cellphone 96% 99% 100% 99.2%

D
S

L
R P
ri

n
te

r Enterprise 86% 96% 99% 97.0%

Consumer 97% 99% 100% 99.3%

Pro 98% 99% 100% 99.5%

S
cr

ee
n Monitor 99% 100% 100% 99.8%

Laptop 99% 100% 100% 99.8%

Cellphone 99% 100% 100% 99.8%

Table 1: Real world decoding accuracy (percentage of bits

correctly recovered) tested using a combination of six display

methods (three printers and three screens) and three cameras.

We show the 5th, 25th, and 50th percentiles and mean taken

over 105 images chosen randomly from ImageNet [14] with

randomly sampled 100 bit messages.

LaserJet Pro M281fdw), an enterprise printer (HP LaserJet

Enterprise CP4025), and a commercial printer (Xerox 700i

Digital Color Press). The images are also digitally displayed

on a matte 1080p monitor (Dell ST2410), a glossy high

DPI laptop screen (Macbook Pro 15 inch), and an OLED

cellphone screen (iPhone X). To image the StegaStamps, we

use an HD webcam (Logitech C920), a cellphone camera

(Google Pixel 3), and a DSLR camera (Canon 5D Mark II).

All devices use their factory calibration settings. Each of the

105 images were captured across all 18 combinations of the

6 media and 3 cameras. The results are reported in Table 1.

Our method is highly robust across a variety of different

combinations of display/printer and camera; two-thirds of

these scenarios yield a median accuracy of 100% and a 5th

percentile accuracy of at least 95% perfect decoding. Our

mean accuracy over all 1890 captured images is 98.7%.

Using a test set comprised of the cellphone camera +

consumer printer combination, we compare variants of our

method (described further in Section 5.3) to Baluja [5], HiD-

DeN [54], and LFM [44] in Figure 6. The variants of our

model use the same architecture but are trained with different

augmentations; the names None, Pixelwise, Spatial, and All

indicate which categories of peturbations were applied dur-

ing training. We see that Baluja [5], trained with a minimal

amount of augmented noise (similar to our None variant)

performs no better than guessing. HiDDeN [54] incorporates
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Figure 6: Real world comparisons of variants of our method

described in Section 5.3 and competing methods, using the

cellphone camera + consumer printer pipeline from Table 1.

We show the distribution of random guessing (with its mean

of 0.5 indicated by the dotted line) to demonstrate that the no-

perturbations ablation and Baluja [5] perform no better than

chance. HiDDeN [54] uses pixelwise perturbations along

with random masking. Adding spatial perturbations is critical

for achieving high real-world performance. LFM [44] works

well on screens but fails to generalize to printed media.

augmentations into their training pipeline to increase robust-

ness to perturbations. Their method is trained with a set of

pixelwise perturbations along with a “cropping” augmen-

tation that masks out a random image region. However, it

lacks augmentations that spatially resample the image, and

we find that its accuracy falls between our Pixelwise and

Spatial variants. LFM [44] specifically trains a “distortion”

network to mimic the effect of displaying and recapturing

an encoded image, trained on a dataset they collect of over 1

million images from 25 display/camera pairs. In this domain

(“screen”), we find LFM performs fairly well. However, it

does not generalize to printer/camera pipelines (“printer”).

Please refer to the supplement for testing details regarding

the compared methods. Among our own ablated variants,

we see that training with spatial perturbations alone yields

significantly higher performance than only using pixelwise

perturbations; however, Spatial still does not reliably recover

enough data for practical use. Our presented method (All),

combining both pixelwise and spatial perturbations, achieves

the most precise and accurate results by a large margin.

5.3. Synthetic Ablation Test

We test how training with different subsets of the image

perturbations from Section 3 impacts decoding accuracy in a

synthetic experiment (Figure 7). We evaluate both our base

model (trained with all perturbations) and three additional

Message length

Metric 50 100 150 200

PSNR ↑ 29.88 28.50 26.47 21.79

SSIM ↑ 0.930 0.905 0.876 0.793

LPIPS ↓ 0.100 0.101 0.128 0.184

Table 2: Image quality for models trained with different

message lengths, averaged over 500 images. For PSNR and

SSIM, higher is better. LPIPS [52] is a learned perceptual

similarity metric, lower is better.

models (trained with no perturbations, only pixelwise per-

turbations, and only spatial perturbations). Most work on

learned image steganography focuses on hiding as much

information as possible, assuming that no corruption will

occur prior to decoding (as in our “no perturbations” model).

We run a more exhaustive synthetic ablation study over

1000 images to separately test the effects of each training-

time perturbation on accuracy. The results shown in Figure 7

follow a similar pattern to the real world comparison test.

The model trained with no perturbations is surprisingly ro-

bust to color warps and noise but immediately fails in the

presence of warp, blur, or any level of JPEG compression.

Training with only pixelwise perturbations yields high ro-

bustness to those augmentations but still leaves the network

vulnerable to any amount of pixel resampling from warping

or blur. On the other hand, training with only spatial per-

turbations also confers increased robustness against JPEG

compression (perhaps because it has a similar low-pass fil-

tering effect to blurring). Again, training with both spatial

and pixelwise augmentations yields the best result.

5.4. Practical Message Length

Our model can be trained to store different numbers of

bits. In all previous examples, we use a message length of

100. Figure 8 compares encoded images from four separately

trained models with different message lengths. Larger mes-

sage are more difficult to encode and decode; as a result,

there is a trade off between recovery accuracy and percep-

tual similarity. The associated image metrics are reported in

Table 2. When training, the image and message losses are

tuned such that the bit accuracy converges to at least 95%.

We settle on a message length of 100 bits as it provides a

good compromise between image quality and information

transfer. Given an estimate of at least 95% recovery accuracy,

we can encode at least 56 error corrected bits using BCH

codes [6]. As discussed in the introduction, this gives us the

ability to uniquely map every recorded image in history to a

corresponding StegaStamp. Accounting for error correcting,

using only 50 total message bits would drastically reduce the

number of possible encoded hyperlinks to under one billion.

The image degradation caused by encoding 150 or 200 bits

is much more perceptible.
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Figure 7: Synthetic ablation tests showing the effect of training with various image perturbation combinations on bit recovery

robustness. “Pixelwise” perturbations (c) are noise, color transforms, and JPEG compression, and “spatial” perturbations (d)

are perspective warp and blur. To test robustness across a range of possible degradation, we parameterize the strength of each

perturbation on a scale from 0 (weakest) to 1 (maximum value seen during training) to 2 (strongest). Models not trained against

spatial perturbations (b-c) are highly susceptible to warp and blur, and the model trained only on spatial perturbations (d) is

sensitive to color transformations. The lines show the mean accuracies and the shaded regions shows the 25th-75th percentile

range over 100 random images and messages. See Section 5.3 for details.
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Figure 8: Four models trained to encode messages of different lengths. The inset shows the residual relative to the original

image. The perceptual quality decreases as more bits are encoded. We find that a message length of 100 bits provides good

image quality and is sufficient to encode a virtually unlimited number of distinct hyperlinks using error correcting codes.

5.5. Limitations

Though our system works with a high rate of success in

the real world, it is still many steps from enabling broad de-

ployment. Despite often being very subtle in high frequency

textures, the residual added by the encoder network is some-

times perceptible in large low frequency regions of the image.

Future work could improve upon our architecture and loss

functions to generate more subtle encodings.

Additionally, we find our off-the-shelf detection network

to be the bottleneck in our decoding performance during real

world testing. A custom detection architecture optimized end

to end with the encoder/decoder could increase detection

performance. The current framework also assumes that the

StegaStamps will be single, square images for the purpose

of detection. We imagine that embedding multiple codes

seamlessly into a single, larger image (such as a poster or

billboard) could provide even more flexibility.

6. Conclusion

We have presented an end-to-end deep learning frame-

work for encoding 56 bit error corrected hyperlinks into

arbitrary natural images. Our networks are trained through

an image perturbation module that allows them to generalize

to real world display-imaging pipelines. We demonstrate

robust decoding performance on a variety of printer, screen,

and camera combinations in an experimental setting. We

also show that our method is stable enough to be deployed

in-the-wild as a replacement for existing barcodes that is less

intrusive and more aesthetically pleasing.
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Madrid-Cuevas, and Rafael Medina-Carnicer. Generation

of fiducial marker dictionaries using mixed integer linear

programming. Pattern Recognition, 2015. 3

[20] Samuel W. Hasinoff. Photon, poisson noise. In Computer

Vision: A Reference Guide. 2014. 4

[21] Jamie Hayes and George Danezis. Generating steganographic

images via adversarial training. In NeurIPS, 2017. 2

[22] Danying Hu, Daniel DeTone, and Tomasz Malisiewicz. Deep

charuco: Dark charuco marker pose estimation. In CVPR,

2019. 3

[23] Mark J. Huiskes and Michael S. Lew. The mir flickr retrieval

evaluation. In MIR ’08: Proceedings of the 2008 ACM In-

ternational Conference on Multimedia Information Retrieval.

ACM, 2008. 5

[24] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Ko-

ray Kavukcuoglu. Spatial transformer networks. In NeurIPS,

2015. 5

[25] Steve T. K. Jan, Joseph Messou, Yen-Chen Lin, Jia-Bin

Huang, and Gang Wang. Connecting the digital and physical

world: Improving the robustness of adversarial attacks. In

AAAI, 2019. 3

[26] Kensei Jo, Mohit Gupta, and Shree K. Nayar. Disco: Display-

camera communication using rolling shutter sensors. ACM

Trans. Graph., 2016. 2

[27] X. Kang, J. Huang, and W. Zeng. Efficient general print-

scanning resilient data hiding based on uniform log-polar

mapping. IEEE TIFS, 2010. 2

[28] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-

versarial examples in the physical world. arXiv preprint

arXiv:1607.02533, 2016. 3

[29] Yue Liu, Ju Yang, and Mingjun Liu. Recognition of qr code

with mobile phones. In Chinese Control and Decision Con-

ference. IEEE, 2008. 3

[30] Emi Myodo, Shigeyuki Sakazawa, and Yasuhiro Takishima.

Method, apparatus and computer program for embedding

barcode in color image, 2013. US Patent 8,550,366. 3

[31] Takao Nakamura, Atsushi Katayama, Masashi Yamamuro,

and Noboru Sonehara. Fast watermark detection scheme

from camera-captured images on mobile phones. IJPRAI,

2006. 2

[32] Eisaku Ohbuchi, Hiroshi Hanaizumi, and Lim Ah Hock. Bar-

code readers using the camera device in mobile phones. In

International Conference on Cyberworlds. IEEE, 2004. 3

[33] Shelby Pereira and Thierry Pun. Robust template matching

for affine resistant image watermarks. IEEE Transactions on

Image Processing, 2000. 2

[34] Tomáš Pevnỳ, Tomáš Filler, and Patrick Bas. Using high-

dimensional image models to perform highly undetectable

steganography. In International Workshop on Information

Hiding, 2010. 2

[35] Anu Pramila, Anja Keskinarkaus, and Tapio Seppänen. Water-

mark robustness in the print-cam process. In IASTED SPPRA,

2008. 2

[36] Anu Pramila, Anja Keskinarkaus, and Tapio Seppänen. To-

ward an interactive poster using digital watermarking and a

mobile phone camera. Signal, Image and Video Processing,

2012. 2

2125



[37] Anu Pramila, Anja Keskinarkaus, and Tapio Seppänen. In-

creasing the capturing angle in print-cam robust watermarking.

Journal of Systems and Software, 135:205–215, 2018. 2

[38] Francisco Romero Ramirez, Rafael Muñoz-Salinas, and
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