
Deep Implicit Volume Compression

Danhang Tang⇤ Saurabh Singh⇤ Philip A. Chou Christian Häne Mingsong Dou

Sean Fanello Jonathan Taylor Philip Davidson Onur G. Guleryuz Yinda Zhang

Shahram Izadi Andrea Tagliasacchi Sofien Bouaziz Cem Keskin

Google

Abstract

We describe a novel approach for compressing truncated

signed distance fields (TSDF) stored in 3D voxel grids, and

their corresponding textures. To compress the TSDF, our

method relies on a block-based neural network architecture

trained end-to-end, achieving state-of-the-art rate-distortion

trade-off. To prevent topological errors, we losslessly com-

press the signs of the TSDF, which also upper bounds the

reconstruction error by the voxel size. To compress the

corresponding texture, we designed a fast block-based UV

parameterization, generating coherent texture maps that can

be effectively compressed using existing video compression

algorithms. We demonstrate the performance of our algo-

rithms on two 4D performance capture datasets, reducing

bitrate by 66% for the same distortion, or alternatively re-

ducing the distortion by 50% for the same bitrate, compared

to the state-of-the-art.

1. Introduction

In recent years, volumetric implicit representations have

been at the heart of many 3D and 4D reconstruction ap-

proaches [22, 26, 27, 45], enabling novel applications such

as real time dense surface mapping in AR devices and free-

viewpoint videos. While these representations exhibit nu-

merous advantages, transmitting high quality 4D sequences

is still a challenge due to their large memory footprints.

Designing efficient compression algorithms for implicit rep-

resentations is therefore of prime importance to enable the

deployment of novel consumer-level applications such as

VR/AR telepresence [47], and to facilitate the streaming of

free-viewpoint videos [8].

In contrast to compressing a mesh, it was recently shown

that truncated signed distance fields (TSDF) [15] are highly

suitable for efficient compression [31, 59] due to correla-

tion in voxel values and their regular grid structure. Voxel-

based SDF representations have been used with great suc-

∗indicates equal contribution.

Figure 1: When targeting a low bitrate, Draco [24] requires

decimation to have low-poly meshes as input, while [59]

suffers from block artifacts. Our method has visibly lower

distortion while maintaining similar bitrates. Raw meshes

with flat shading are shown to reveal artifacts.

cess for 3D shape learning using encoder-decoder architec-

tures [58, 65]. This is in part due to their grid structure that

can be naturally processed with 3D convolutions, allowing

the use of convolutional neural networks (CNN) that have

excelled in image processing tasks. Based on these obser-

vations, we propose a novel block-based encoder-decoder

neural architecture trained end-to-end, achieving bitrates

that are 33% of prior art [59]. We compress and transmit the

TSDF signs losslessly; this does not only guarantee that the

reconstruction error is upper bounded by the voxel size, but

also that the reconstructed surface is homeomorphic – even

when lossy TDSF compression is used. Furthermore, we

propose using the conditional distribution of the signs given

11293

the encoded TSDF block to compress the signs losslessly,

leading to significant gains in bitrates. This also significantly

reduces artifacts in the reconstructed geometry and textures.

Recent 3D and 4D reconstruction pipelines not only re-

construct accurate geometry, but also generate high quality

texture maps, e.g. 4096⇥4096 pixels, that need to be com-

pressed and transmitted altogether with the geometry [26].

To complement our TSDF compression algorithm, we devel-

oped a fast parametrization method based on block-based

charting, which encourages spatio-temporal coherence with-

out tracking. Our approach allows efficient compression of

textures using existing image-based techniques and removes

the need of compressing and streaming UV coordinates.

To summarize, we propose a novel block-based 3D com-

pression model with these contributions:

1. the first deep 3D compression method that can train end-

to-end with entropy encoding, yielding state-of-the-art

performance;

2. lossless compression of the surface topology using the

conditional distribution of the TSDF signs, and thereby

bounding the reconstruction error by the size of a voxel;

3. a novel block-based texture parametrization that inher-

ently encourages temporal consistency, without tracking

or the necessity of UV coordinates compression.

2. Related works

Compression of 3D/4D media (e.g., meshes, point clouds,

volumes) is a fundamental problem for applications such as

VR/AR, yet has received limited attention in the computer

vision community. In this section, we describe two main

aspects of 3D compression: geometry and texture, as well as

reviewing recent trends in learnable compression.

Geometry compression. Geometric surface representa-

tions can either be explicit or implicit. While explicit rep-

resentations are dominant in traditional computer graph-

ics [4, 13], implicit representations have found widespread

use in perception related tasks such as real-time volumet-

ric capture [20, 21, 27, 45]. Explicit representations include

meshes, point clouds, and parametric surfaces (NURBS). We

refer the reader to the relevant surveys [1, 39, 49] for com-

pression of such representations. Mesh compressors such as

Draco [24] use connectivity compression [40, 53] followed

by vertex prediction [62]. An alternate strategy is to encode

the mesh as geometry images [25], or geometry videos [5]

for temporally consistent meshes. Point clouds have been

compressed by Sparse Voxel Octrees (SVOs) [28, 41], first

used for point cloud geometry compression in [56]. SVOs

have been extended to coding dynamic point clouds in [29]

and implemented in the Point Cloud Library (PCL) [54].

A version of this library became the anchor (i.e., reference

proposal) for the MPEG Point Cloud Codec (PCC) [42]. The

MPEG PCC standard is split into video-based PCC (V-PCC)

and geometry-based PCC (G-PCC) [57]. V-PCC uses geome-

try video, while G-PCC uses SVOs. Implicit representations

include (truncated) signed distance fields (SDFs) [15] and

occupancy/indicator functions [30]. These have proved pop-

ular for 3D surface reconstruction [15, 19, 20, 22, 36, 45, 59]

and general 2D and 3D representation [23]. Implicit func-

tions have recently been employed for geometry compres-

sion [7, 32, 59], where the TSDF is encoded directly.

Texture compression. In computer graphics, textures are

images associated with meshes through UV maps. These

images can be encoded using standard image or video

codecs [24]. For point clouds, color is associated with points

as attributes. Point cloud attributes can be coded via spectral

methods [12, 16, 60, 70] or transform methods [17]. Trans-

form methods are used in MPEG G-PCC [57], and, similarly

to TSDFs, have volumetric interpretation [10]. Another ap-

proach is to transmit the texture as ordinary video from each

camera, and use projective texturing at the receiver [59].

However, the bitrate increases linearly with the number of

cameras, and projective texturing can create artifacts when

the underlying geometry is compressed. Employing a UV

parametrization to store textures is not trivial, as enforcing

spatial and temporal consistency can be computationally in-

tensive. On one end of the spectrum, Motion2Fusion [22]

sacrifices the spatial coherence typically desired by simply

mapping each triangle to an arbitrary position of the atlas,

hence sacrificing compression rate for efficiency. On the

other extreme, [26, 50] take a step further by tracking fea-

tures over time to generate a temporally consistent mesh

connectivity and UV parametrization, therefore can be com-

pressed with modern video codecs. This process is however

expensive and cannot be applied to real-time applications.

Learnable compression strategies. Learnable compres-

sion strategies have a long history. Here we focus specif-

ically on neural compression. The use of neural networks

for image compression can be traced back to 1980s with

auto-encoder models using uniform [44] or vector [38] quan-

tization. However, these approaches were akin to non-linear

dimensionality reduction methods and do not learn an en-

tropy model explicitly. More recently Toderici et al. [61]

used a recurrent LSTM based architecture to train multi-

rate progressive coding models. However, they learned an

explicit entropy model as a separate post processing step

after the training of recurrent auto-encoding model. Ballé

et al. [2] proposed an end-to-end optimized image compres-

sion model that jointly optimizes the rate-distortion trade-off.

This was extended by placing a hierarchical hyperprior on

the latent representations to significantly improve the image

compression performance [3]. While there has been signifi-

cant application of deep learning on 3D/4D representations,

e.g. [34, 48, 51, 58, 65, 68], application of deep learning to

3D/4D compression has been scant. However, very recent

works closely related to ours have used rate-distortion opti-

1294

Figure 2: Compression pipeline – Given an input TSDF block x and its sign configuration s=sign(x), an encoder transforms

x into a quantized code ẑ=bE(x)e. Then ẑ and s are entropy coded and transmitted to the receiver (Aenc and Adec blocks)

using a prior learned distribution pẑ(ẑ) and the conditional distribution ps|ẑ(s|ẑ) as estimated by the decoder, respectively.

The reconstructed block x̂=s� |D(ẑ)| is used with marching cubes (MC in the figure) to extract the mesh, which is then used

to generate the Morton packed chart Mx. Mx is coded separately (with the Tenc and Tdec blocks).

mized auto-encoders similar to [3] to perform 3D geometry

compression end-to-end: Yan et al. [69] used a PointNet-like

encoder combined with a fully-connected decoder, trained to

minimize directly the Chamfer distance subject to a rate con-

straint, on the entire point cloud. Quach et al. [52] performs

block-based coding to obtain higher quality on the MVUB

dataset [35]. Their network predicts voxel occupancy using

a focal loss, which is similar to a weighted binary cross en-

tropy. In the most complete and performant work until now,

Wang et al. [64] also uses block-based coding and predicted

voxel occupancy, with a weighted binary cross entropy. They

reported a 60% bitrate reduction compared to MPEG G-PCC

on the high resolution 8iVFB dataset [18] hosted by MPEG,

though they report only approximate equivalence with state-

of-the-art MPEG V-PCC.

In contrast, we use block-based coding on even higher

resolution datasets, and report bitrates that are at least three

times better than MPEG V-PCC, by compressing the TSDF

directly rather than occupancy, yielding sub-voxel precision.

3. Background

Our goal is to compress an input sequence of TSDF vol-

umes V={Vt}
T
1

encoding the geometry of the surface, and

their corresponding texture atlases T ={Tt}
T
1

, which are

both extracted from a multi-view RGBD sequence [26, 59].

Since geometry and texture are quite different, we compress

them separately. The two data streams are then fused by

the receiver before rendering. To compress the geometry

data V , inspired by the recent advances in learned compres-

sion methods, we propose an end-to-end trained compression

pipeline taking volumetric blocks as input; see Section 4. Ac-

cordingly we also design a block-based UV parametrization

algorithm for texture T ; see Section 5. For those unfamiliar

with the topic and notation, we overview fundamentals of

compression in the supplementary material.

4. Geometry compression

There are two primary challenges in end-to-end learn-

ing of compression, both of which arise from the non-

differentiability of intermediate steps: 1� compression is

non-differentiable due to the quantization necessary for com-

pression; 2� surface reconstruction from TSDF values is typ-

ically non-differentiable in popular methods such as March-

ing Cubes [37]. To tackle 1�, we draw inspiration from the

recent advances in learned image compression [2, 3]. To

tackle 2�, we make the observation that Marching Cubes

algorithm is differentiable with known topology.

Computational feasibility of training. The dense TSDF

volume data V={Vt}
T
t=1

for an entire sequence is very high

dimensional. For example, a sequence from the dataset

used in Tang et al. [59] has 500 frames, with each frame

containing 240⇥240⇥400 voxels. The high dimensionality

of data makes it computationally infeasible to compress the

entire sequence jointly. Therefore, following Tang et al.

[59], we process each frame independently in a block based

manner. From the TSDF volume V , we extract all non-

overlapping blocks {xm}M
1

of size k ⇥ k ⇥ k that contain a

zero crossing. We refer to these blocks as occupied blocks,

and compress them independently.

4.1. Inference

The compression pipeline is illustrated in Figure 2. Given

a block x to be transmitted, the sender first computes the

lossily quantized latent representation ẑ=bE(x;θe)e using

the learned encoder E with parameters θe. Next, the sender

uses ẑ to compute the conditional probability distribution

over the TSDF signs as ps|ẑ(s|ẑ;θs), where s is the ground

truth sign configuration of the block, and θs are the learn-

able parameters of the distribution. The sender then uses

an entropy coder to compute the bitstreams ẑbits and sbits

by losslessly coding the latent code ẑ and signs s using the

1295

Figure 3: Topology mask in inference: We illustrate a 2D

slice from a block, where each cell represents a voxel. (left)

Without masking, the reconstructed surface (red) deviates

from the ground truth (green) because of compression er-

ror. (mid) Losslessly compressed signs will give us ground

truth occupancy/topology during inference. (right) There-

fore, the average reconstructed error due to lossy magnitude

compression is bounded by the size of a voxel (5mm).

distributions pẑ(ẑ;φ) and ps|ẑ(s|ẑ;θs) respectively. Here

pẑ(ẑ;φ) is a learned prior distribution over ẑ parameterized

by φ. Note that while the prior distribution pẑ is part of the

model and known a priori both to the sender and the receiver,

the conditional distribution ps|ẑ needs to be computed by

both. ẑbits and sbits are then transmitted to the receiver, which

first recovers ẑ using entropy decoding with the shared prior

pẑ. The receiver then re-computes ps|ẑ in order to recover

the losslessly coded ground truth signs s. Finally, the re-

ceiver recovers the lossy TSDF values by using the learned

decoder D in conjunction with the ground truth signs s as

x̂ = s � |D(ẑ;θd)|, where � is the element–wise product

operator, | · | the element–wise absolute value operator, and

θd the parameters of the decoder.

To stitch the volume together, the block indices are trans-

mitted to the client as well. Similar to [59], the blocks are

sorted in an ascending manner, and delta encoding is used

to convert the vector of indices to a representation that is

entropy encoder friendly. Once the TSDF volume is recon-

structed, a triangular mesh can be extracted via marching

cubes. Note that for the marching cube algorithm, the poly-

gon configurations are fully determined by the signs. As

we transmit the signs losslessly, it is guaranteed that the

mesh extracted from the decoded TSDF x̂ will have the

same topology as the mesh extracted from the uncompressed

TSDF x. It follows that the only possible reconstruction er-

rors will be at the vertices that lie on the edges of the voxels.

Therefore, the maximum reconstruction error is bounded by

the edge length, i.e. the voxel size, as shown in Figure 3.

4.2. Training

We learn the parameters Θ={θe,θs,θd,φ} of our com-

pression model by minimizing the following objective

argmin
Θ

Dx̂(x, x̂;θe,θd)
| {z }

distortion

+λ[Rẑ(ẑ;φ)
| {z }

latents bitrate

+Rs(s;θs)
| {z }

signs bitrate

] (1)

Distortion Dx̂(x, x̂;θe,θd). We minimize the reconstruc-

tion error between the ground truth and the predicted TSDF

values. However, directly computing the squared differ-

ence kx̂ � xk2
2

wastes model complexity on learning to

precisely reconstruct values of TSDF voxels that are far

away from the surface. In order to focus the network on

the important voxels (i.e. the ones with a neighboring voxel

of opposing sign), we use the ground truth signs. For each

dimension, we create a mask of important voxels, namely

mx, my and mz . Voxels that have more than one neigh-

bor with opposite signs appear in multiple masks, further

increasing their weights. We then use these masks to cal-

culate the squared differences for important voxels only

Dx̂ = 1

B

PB

n=1

P

d∈x,y,z kmd · (x̂n�xn)k
2

2
, for B blocks.

Rate of latents Rẑ(ẑ;φ). A second loss term we employ is

Rẑ, which is designed to reduce the bitrate of the compressed

codes. This loss is essentially a differentiable estimate of the

non-differentiable Shannon entropy of the quantized codes

ẑ; see [2] for additional details.

Rate of losslessly compressed signs Rs(s;θs). Since s
contains only discrete values {�1,+1}, it can be com-

pressed losslessly using entropy coding. As men-

tioned above, we use the conditional probability distribu-

tion ps|ẑ(s|ẑ) instead of the prior distribution ps(s). Note

that the conditional distribution should have a much lower en-

tropy than the priors, since s is dependent on the ẑ by design.

This allows us to compress the signs far more efficiently.

To make this dependency explicit, we add an extra head to

the decoder, such that ps(s|ẑ)=Ds(ẑ), and x̂=s� |Db(ẑ)|.
The sign rate loss Rs is then the cross entropy between the

ground truth signs s, with �1 remapped to 0, and their con-

ditional predictions ps(s|ẑ). Minimizing Rs has the effect of

training the network to make better sign predictions, while

also minimizing the bitrate of the compressed signs.

Encoder and Decoder architectures. Our proposed com-

pression technique is agnostic to the choice of the individual

architectures for the encoder and decoder. In this work,

we targeted a scenario requiring a maximum model size of

roughly 2MB, which makes the network suitable for mobile

deployment. To limit the number of trainable parameters,

we used convolutional networks, where both the encoder

and the decoder consist of a series of 3D convolutions and

transposed convolutions. More details about the specific

architectures can be found in the supplementary material.

5. Texture compression

We propose a novel efficient and tracking-free UV

parametrization method to be seamlessly combined with

our block-level geometry compression; see Figure 2. As our

parametrization process is deterministic, UV coordinates can

be inferred on the receiver side, thus removing the need for

compression and transmission of the UV coordinates.

1296

Figure 4: Texture packing – (left) 3D blocks and 2D patches are ordered and matched by their Morton codes respectively.

This process unwraps the 3D volume to the texture atlas. (right) The UVAtlas [71] only ensures local spatial coherence within

each chart, whilst our method encourages global spatial coherence. Refer to the supplementary video for a comparison on

temporal coherence.

Block-level charting. Traditional UV mapping either par-

titions the surface into a few large charts [71], or generates

one chart per triangle to avoid UV parametrization as in

PTEX [6]. In our case, since the volume has already been

divided into fixed-size blocks during geometry compression,

it is natural to explore block-level parametrization. To ac-

commodate compression error, the compressed signal is de-

compressed on the sender side, such that both the sender and

receiver have access to identical reconstructed volumes; see

Figure 2 (left). Triangles of each occupied block are then ex-

tracted and grouped by their normals. Most blocks have only

one group, while blocks in more complex areas (e.g. fingers)

may have more. The vertices of the triangles in each group

are then mapped to UV space as follows: 1� the average nor-

mal in the group is used to determine a tangent space, onto

which the vertices in the group are projected; 2� the projec-

tions are rotated until they fit into an axis-aligned rectangle

with minimum area, using rotating calipers [63]. This results

in deterministic UV coordinates for each vertex in the group

relative to a bounding box for the vertex projections; 3� the

bounding boxes for the groups in a block are then sorted by

size and packed into a chart using a quadtree-like algorithm.

There is exactly one 2D chart for each occupied 3D block.

After this packing, the UV coordinates for the vertices in

the block are offset to be relative to the chart. These charts

are then packed into an atlas, where the UV coordinates for

the vertices are again offset to be relative to the atlas, i.e. to

be a global UV mapping. After UV parametrization, color

information can be obtained from either per-vertex color in

the geometry, previously generated atlas or even raw RGB

captures. Our method is agnostic to this process.

Morton packing. In order to optimize compression, the

block-level charts need to be packed into an atlas in a way

that maximizes spatio-temporal coherence. This is non-

trivial, as in our sparse volume data structure the amount

and positions of blocks can vary from frame to frame. As-

suming the movement of the subject is smooth, preserving

the 3D spatial structure among blocks during packing is ex-

pected to preserve spatio-temporal coherence. To achieve

this effect we propose a Morton packing strategy. Morton

ordering [43] (also called Z-order curve) has been widely

used in 3D graphics to create spatial representations [33].

As our blocks are on a 3D regular grid, each occupied block

can be indexed by a triple of integers (x, y, z)2Z3. Each

integer has a binary representation, e.g. xB−1 · · ·x0, where

x=
PB−1

b=0
xb2

b. The 3D Morton code for (x, y, z) is de-

fined as the integer M3(x, y, z)=
PB−1

b=0
(4yb+2xb+zb)2

3b

whose binary representation consists of the interleaved bits

yB−1xB−1zB−1 · · · y0x0z0. Likewise, as our charts are on

a 2D regular grid, each chart can be indexed by a pair of

integers (u, v)2Z2, whose 2D Morton code is the integer

M2(u, v)=
PB−1

b=0
(2ub + vb)2

2b whose binary representa-

tion is uB−1vB−1 · · ·u0v0. These functions are invertible

simply by demultiplexing the bits. We map the chart for an

occupied block at volumetric position (x, y, z) to atlas posi-

tion (u, v)=M−1

2
(rank(M3(x, y, z))), where rank is the

rank of the 3D Morton code in the list of 3D Morton codes,

as illustrated in Figure 4 (left). Note that we choose to prior-

itize y over x and z when interleaving their bits into the 3D

Morton code, as y is the vertical direction in our coordinate

system, to accommodate typically standing human figures.

Hence, as long as blocks move smoothly in 3D space, cor-

responding patches are likely to move smoothly in the atlas,

leading to an approximate spatio-temporal coherence, and

therefore better (video) texture compression efficacy.

6. Evaluation

To assess our method, we rely on the dataset captured

by Tang et al. [59], which consists of six ⇠500 frames

long RGBD multi-view sequences of different subjects

at 30Hz. We use three of them for training and the others

1297

Raw data Naı̈ve Ours

Avg. Size / Volume 155.1KB 139.8KB 2.9KB

Table 1: Lossless sign compression: Our data-driven prob-

ability model, combined with an arithmetic coder, can im-

prove the compression rate by 48⇥ comparing to a naı̈ve

probabilty model based on statistics of signs in the dataset.

for evaluation. We also employ “The Relightables” dataset

by Guo et al. [26], which contains higher quality geome-

try and higher resolution texture maps – three ⇠600-frame

sequences. To demonstrate the generalization of learning-

based methods, we only train on the dataset Tang et al. [59],

and test on both Tang et al. [59] and Guo et al. [26].

6.1. Geometry compression

We evaluate geometry compression using two different

metrics: the Hausdorff metric (H) [11] measures the (max)

worst-case reconstruction error via:

H(S, Ŝ) = max

✓

max
x∈Sv

d(x, Ŝ),max
y∈Ŝv

d(y,S)

◆

, (2)

where Sv and Ŝv are the set of points on the ground truth

and decoded surface respectively. d(x,S) is the shortest

Euclidean distance from a point x2R3 to the surface S.

Another metric is the symmetric Chamfer distance (C):

C(S, Ŝ) = 1

2|Sv|

X

x∈Sv

d(x, Ŝ) + 1

2|Ŝv|

X

y∈Ŝv

d(y,S). (3)

For each metric, we compute a final score averaging all

volumes, which we refer to as Average Hausdorff Distance

and Average Chamfer Distance respectively.

Signs. We showcase the benefit of our data dependent prob-

ability model on rate in Table 1. Raw sign data, though

being binary, has an average size of 154.1KB per volume.

With naı̈vely computed probability of signs being positive

over the dataset, an arithmetic coder can slightly improve

the rate to 139.8 KB. This is because there are more positive

TSDF values than negative in the dataset. With our learned,

data dependent probability model, the arithmetic coder can

drastically compress the signs down to 2.9 KB per volume.

Topology Masking. To demonstrate the impact of utilizing

ground truth sign/topology, we construct a baseline with a

standard rate-distortion loss. Specifically, the distortion term

is simplified as Dx̂=
1

B

PB

n=1
kx̂n � xnk

2

2
. This baseline

is shown as no topology mask in Figure 5. Without

the error bound, its distortion is much higher than other

baselines. The second baseline, in addition to using the

same distortion term, losslessly compresses and streams the

signs during inference, as described in Section 4. Despite

the increased rate due to losslessly compressed signs, this

Figure 5: Topology Mask: When topology masking is ap-

plied during inference, an upper bound of error is guaranteed.

Moreover, when also applied as a training loss, topology

mask yields better rate-distortion. The difference is more

obvious with the Hausdorff distance, which measures the

worst case error.

(a) Number of layers. (b) Different block sizes.

Figure 6: Ablation studies: (a) Larger number of layers

in both the encoder and the decoder improves performance,

although with diminishing returns and increasing model size.

(b) Larger block size performs better at low rates, while

smaller blocks achieve better trade-off at higher rates.

baseline still achieves better rate-distortion trade-off. Finally,

using topology masking in both training and inference yields

the best rate-distortion performance.

Ablation studies. The impact of network architecture on

compression is evaluated in Figure 6. While having more

layers leads to better results, there are diminishing returns.

To keep the model size practical, we restricted our model

to three layers (<1.8MB). We also perform ablation for the

block-size (voxels/block). Since in all volumes, the voxel

size is 5 mm, a block with block-size 83 has the physical

size of 40mm3. Note that increasing the size of each block

reduces the number of blocks. Results show that if one has a

budget of more than 12 KB per volume, using block size 83

yields much better rate-distortion performance. Therefore in

the following experiments, ⇥3 layers with 83 blocks is used.

State-of-the-art comparisons. We compare with state-of-

the-art geometry compression methods, including two vol-

umetric methods: Tang et al. [59] and JP3D [55]; two

mesh compression: Draco [24] and Free Viewpoint Video

(FVV) [13]; as well as a point cloud compressor MPEG

VPCC [57]. See their parameters in the supplementary ma-

terial. For most of the methods, we sweep the rate hyper

1298

(a) Dataset Tang et al. [59] (b) Dataset Guo et al. [26]

Figure 7: Quantitative comparisons – Our method yields

the best rate-distortion among state-of-the-arts. Data points

marked with O are selected to have similar rates and whose

distortion is visualized qualitatively in Figure 10.

parameter to generate rate-distortion curves. The dataset [26]

contains high-resolution meshes (⇠250K vertices), which

has a negative impact on the Draco compression rate. Hence,

for Draco only, we decimate the meshes to 25K vertices

termed as Draco (decimated) to make it comparable to other

methods. Figure 7 shows that on both datasets, our method

significantly outperforms all prior art in both rate and distor-

tion. For instance, to achieve the same level of rate (marked

with O in Figure 7 (b)), the distortion of our method (0.12)

is 50% of Tang et al. [59] (0.25), and 14% of Draco (deci-

mated) (0.86) and MPEG (0.84). To achieve the same distor-

tion level (0.25), our method (26KB) only requires 33% of

the previous best performing method Tang et al. [59] (79KB).

To showcase difference in distortion, we select a few

qualitative examples with similar rates, and visualize them

in Figure 10: the Draco (decimated) results are low-res, the

MPEG V-PCC results are noisy, while the results of Tang

et al. [59] suffer blocking artifacts.

Efficiency. To assess the complexity of our neural network,

we measure the runtime of the encoder and the decoder.

We freeze our graph and run it using the Tensorflow C++

interface on a single NVIDIA PASCAL TITAN Xp GPU.

Our range encoder implementation is single-threaded CPU

code, hence we include only the neural network inference

time. We measure 20 ms to run both encoder and decoder

on all the blocks of a single volume.

6.2. Texture compression

We compare our texture parametrization to UVAtlas [71].

In order to showcase the benefit of Morton packing, we also

have a block-based baseline where naı̈ve bin packing is used

without any spatio-temporal coherence, as shown in Table 2.

To preserve the high quality of the target dataset [26], we

generate high-res texture maps (4096x4096) for all experi-

ments. The texture maps of each sequence are compressed

with the H.264 implementation from FFMpeg with default

parameters. Per-frame compressed sizes of different meth-

Figure 8: Geometry / Qualitative – Examples from

the Guo et al. [26] dataset with different rates. (1st row)

Decompressed meshes. (2nd row) Shortest distance from

decompressed vertices to ground truth surface. Distance be-

tween [0, 2.5mm] is mapped to [0, 255] on the red channel.

Figure 9: Texture / Qualitative – A frame taken from the

comparison sequences in the supplementary video: (left)

raw rgb image from camera; (mid) rendered with UVAt-

las [71]; (right) rendered with our texture atlas. there is no

visible difference in quality.

ods are reported to showcase how texture parametrization

impacts the compression rate. In order to measure distor-

tion, each textured volume with its decompressed texture

atlas is rendered into the viewpoints of RGB cameras that

were used to construct the volumes, and compared with the

corresponding raw RGB image. For simplicity we only se-

lect 10 views (out of 58) where the subject face is visible.

When computing distortion, masks are used to ensure only

foreground pixels are considered, as shown in Figure 9.

Method Rate PSNR SSIM MS-SSIM

UVAtlas [71] 457 30.9 0.923 0.939

Ours (Naı̈ve) 529 30.9 0.924 0.939

Ours (Morton) 350 30.9 0.924 0.940

Table 2: Texture / Quantitative – Average KB per volume

from video compression is reported as Rate. With negligi-

ble difference in distortion under different metrics (PSNR,

SSIM [67] and MS-SSIM [66]), our method preserves better

spatio-temporal coherence and thus has better compression

rate. See qualitative results in the supplementary video.

1299

Figure 10: Qualitative vs. State-of-the-art – Examples are selected to have a similar rate but different distortions, which

correspond to the markers in Figure 7 (right) – flat Phong shading is used in all cases to reveal artifacts. In order to

achieve the same level of bitrate as other methods, Draco requires decimating input, which results in low-poly reconstruction.

MPEG-VPCC only compresses point clouds. Tang et al. [59] has visible block artifact. Our method achieves the best distortion.

7. Conclusions

We have introduced a novel system for the compression

of TSDFs and their associated textures achieving state-of-

the-art results. For geometry, we use a block-based learned

encoder-decoder architecture that is particularly well suited

for the uniform 3D grids typically used to store TSDFs. To

train better, we present a new distortion term to emphasize

the loss near the surface. Moreover, ground truth signs of the

TSDF are losslessly compressed with our learned model to

provide an error bound during decompression. For texture,

we propose a novel block-based texture parametrization algo-

rithm which encourages spatio-temporal coherence without

tracking and the necessity of UV coordinate compression.

As a result, our method yields a much better rate-distortion

trade-off than prior art, achieving 50% distortion, or when

distortion is fixed, 33% bitrate of Tang et al. [59].

Future work. There are a number of interesting avenues for

future work. In our architecture, we have assumed blocks to

be i.i.d., and dropping this assumption could further increase

the compression rate – for example, one could devise an

encoder that is particularly well suited to compress “human

shaped” geometry. Further, we do not make any use of tem-

poral consistency in 4D sequences, while from the realm

of video compression we know coding inter-frame knowl-

edge provides a very significant boost to compression perfor-

mance. Finally, while our per-block texture parametrization

is effective, it is not included in our end-to-end training

pipeline – one could learn a per-block parametrization func-

tion to minimize screen-space artifacts.

1300

References

[1] P. Alliez and C. Gotsman. Recent advances in compression of

3d meshes. In N. A. Dodgson, M. S. Floater, and M. A. Sabin,

editors, Advances in Multiresolution for Geometric Modeling,

pages 3–26. Springer Berlin Heidelberg, Berlin, Heidelberg,

2005. 2

[2] Johannes Ballé, Valero Laparra, and Eero Simoncelli. End-

to-end optimized image compression. In ICLR, 2017. 2, 3, 4,

13

[3] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin

Hwang, and Nick Johnston. Variational image compression

with a scale hyperprior. ICLR, 2018. 2, 3

[4] Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and

Bruno Lévy. Polygon mesh processing. CRC press, 2010. 2

[5] H. Briceño, P. Sander, L. McMillan, S. Gortler, and H. Hoppe.

Geometry videos: a new representation for 3d animations. In

Symp. Computer Animation, 2003. 2

[6] Brent Burley and Dylan Lacewell. Ptex: Per-face texture

mapping for production rendering. In Proceedings of the

Nineteenth Eurographics Conference on Rendering, EGSR

’08, pages 1155–1164, Aire-la-Ville, Switzerland, Switzer-

land, 2008. Eurographics Association. 5

[7] Daniel-Ricao Canelhas, Erik Schaffernicht, Todor Stoyanov,

Achim J Lilienthal, and Andrew J Davison. Compressed

voxel-based mapping using unsupervised learning. Robotics,

2017. 2

[8] Joel Carranza, Christian Theobalt, Marcus A. Magnor, and

Hans-Peter Seidel. Free-viewpoint video of human actors.

ACM Trans. Graph., 22(3):569–577, July 2003. ISSN 0730-

0301. 1

[9] P.A. Chou, T. Lookabaugh, and R.M. Gray. Entropy-

constrained vector quantization. IEEE Transactions on Acous-

tics, Speech, and Signal Processing, 37(1):31–42, January

1989. 12

[10] Philip A. Chou, Maxim Koroteev, and Maja Krivokuća. A

volumetric approach to point cloud compression, Part I: At-

tribute compression. IEEE Trans. Image Processing, March

2019. 2

[11] Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno.

Metro: Measuring error on simplified surfaces. cgf, 1998. 6

[12] R. A. Cohen, D. Tian, and A. Vetro. Attribute compression

for sparse point clouds using graph transforms. In IEEE Int’l

Conf. Image Processing (ICIP), Sept 2016. 2

[13] Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Den-

nis Evseev, David Calabrese, Hugues Hoppe, Adam Kirk, and

Steve Sullivan. High-quality streamable free-viewpoint video.

ACM Trans. on Graphics (TOG), 2015. 2, 6, 13

[14] T.M. Cover and J.A. Thomas. Elements of Information Theory.

John Wiley and Sons, 2006. 12

[15] B. Curless and M. Levoy. A volumetric method for building

complex models from range images. In Proc. 23rd annual

ACM conference on Computer graphics and interactive tech-

niques (SIGGRAPH’96), pages 303–312, 1996. 1, 2

[16] R. L. de Queiroz and P. A. Chou. Transform coding for point

clouds using a Gaussian process model. IEEE Trans. Image

Processing, 26(8), August 2017. 2

[17] Ricardo L. de Queiroz and Philip A. Chou. Compression of

3D point clouds using a region-adaptive hierarchical trans-

form. IEEE Trans. Image Processing, 25(8), August 2016.

2

[18] E. d’Eon, B. Harrison, T. Myers, and P. A. Chou. 8i vox-

elized full bodies — a voxelized point cloud dataset. input

documents M74006 & m40059, ISO/IEC JTC1/SC29/WG1

& WG11 JPEG & MPEG, January 2017. Available at

https://jpeg.org/plenodb/pc/8ilabs/. 3

[19] M. Dou, J. Taylor, H. Fuchs, A. Fitzgibbon, and S. Izadi.

3d scanning deformable objects with a single rgbd sensor.

In 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 493–501, June 2015. 2

[20] M. Dou, S. Khamis, Y. Degtyarev, P. Davidson, S. R. Fanello,

A. Kowdle, S. Orts Escolano, C. Rhemann, D. Kim, J. Taylor,

P. Kohli, V. Tankovich, and S. Izadi. Fusion4d: real-time per-

formance capture of challenging scenes. ACM Transactions

on Graphics (TOG), 35(4):114, 2016. 2

[21] Mingsong Dou, Philip Davidson, Sean Ryan Fanello, Sameh

Khamis, Adarsh Kowdle, Christoph Rhemann, Vladimir

Tankovich, , and Shahram Izadi. Motion2fusion: Real-time

volumetric performance capture. ACM TOG (SIGGRAPH

Asia), 2017. 2

[22] Mingsong Dou, Philip Davidson, Sean Ryan Fanello, Sameh

Khamis, Adarsh Kowdle, Christoph Rhemann, Vladimir

Tankovich, and Shahram Izadi. Motion2fusion: real-time

volumetric performance capture. ACM Trans. on Graphics

(Proc. of SIGGRAPH Asia), 2017. 1, 2

[23] Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and

Thouis R. Jones. Adaptively sampled distance fields: A

general representation of shape for computer graphics. In

Proc. 27th Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’00. ACM, 2000. 2

[24] Frank Galligan, Michael Hemmer, Ondrej Stava, Fan Zhang,

and Jamieson Brettle. Google/draco: a library for compress-

ing and decompressing 3d geometric meshes and point clouds.

https://github.com/google/draco, 2018. 1, 2, 6,

13

[25] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry

images. ACM Trans. Graphics (SIGGRAPH), 21(3):355–361,

July 2002. ISSN 0730-0301. 2

[26] Kaiwen Guo, Peter Lincoln, Philip Davidson, Jay Busch,

Xueming Yu, Matt Whalen, Geoff Harvey, Sergio Orts-

Escolano, Rohit Pandey, Jason Dourgarian, Danhang Tang,

Anastasia Tkach, Adarsh Kowdle, Emily Cooper, Ming-

song Dou, Sean Fanello, Graham Fyffe, Christoph Rhemann,

Jonathan Taylor, Paul Debevec, and Shahram Izadi. The re-

lightables: Volumetric performance capture of humans with

realistic relighting. In ACM TOG, 2019. 1, 2, 3, 6, 7

[27] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,

P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and

A. Fitzgibbon. KinectFusion: Real-time 3D reconstruction

and interaction using a moving depth camera. In Proc. UIST,

2011. 1, 2

[28] C. L. Jackins and S. L. Tanimoto. Oct-trees and their use in

representing three-dimensional objects. Computer Graphics

and Image Processing, 14(3):249 – 270, 1980. ISSN 0146-

664X. 2

[29] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and

1301

E. Steinbach. Real-time compression of point cloud streams.

In IEEE Int’l Conference on Robotics and Automation, Min-

nesota, USA, May 2012. 2

[30] Michael Kazhdan and Hugues Hoppe. Screened poisson

surface reconstruction. ACM Transactions on Graphics (ToG),

2013. 2

[31] Maja Krivokuća, Maxim Koroteev, and Philip A. Chou. A vol-

umetric approach to point cloud compression. arXiv preprint

arXiv:1810.00484, 2018. 1

[32] Maja Krivokuća, Philip A. Chou, and Maxim Koroteev. A vol-

umetric approach to point cloud compression, Part II: Geom-

etry compression. IEEE Trans. Image Processing, submitted

for possible publication. 2

[33] Christian Lauterbach, Michael Garland, Shubhabrata Sen-

gupta, David P. Luebke, and Dinesh Manocha. Fast bvh con-

struction on gpus. Comput. Graph. Forum, 28(2):375–384,

2009. 5

[34] Yiyi Liao, Simon Donné, and Andreas Geiger. Deep marching

cubes: Learning explicit surface representations. In CVPR,

pages 2916–2925. IEEE Computer Society, 2018. 2

[35] C. Loop, Q. Cai, S. Orts Escolano, and P.A. Chou. Microsoft

voxelized upper bodies — a voxelized point cloud dataset. in-

put documents m38673/M72012, ISO/IEC JTC1/SC29/WG1

& WG11 JPEG & MPEG, May 2016. Available at

https://jpeg.org/plenodb/pc/microsoft/. 3

[36] C. Loop, Q. Cai, S. Orts-Escolano, and P. A. Chou. A closed-

form bayesian fusion equation using occupancy probabilities.

In Int’l Conf. on 3D Vision (3DV), October 2016. 2

[37] William E. Lorensen and Harvey E. Cline. Marching cubes:

A high resolution 3d surface construction algorithm. SIG-

GRAPH Comput. Graph., 21(4):163–169, August 1987. ISSN

0097-8930. 3, 12

[38] SP Luttrell. Image compression using a neural network. In

Proc. IGARSS, volume 88, pages 1231–1238, 1988. 2

[39] Adrien Maglo, Guillaume Lavoué, Florent Dupont, and

Céline Hudelot. 3d mesh compression: Survey, comparisons,

and emerging trends. ACM Computing Surveys (CSUR), 47

(3):44, 2015. 2

[40] K. Mamou, T. Zaharia, and F. Prêteux. TFAN: A low com-

plexity 3d mesh compression algorithm. Computer Animation

and Virtual Worlds, 20, 2009. 2

[41] Donald Meagher. Geometric modeling using octree encoding.

Computer graphics and image processing, 19(2):129–147,

1982. 2

[42] R. Mekuria, K. Blom, and P. Cesar. Design, implementation,

and evaluation of a point cloud codec for tele-immersive video.

IEEE Trans. Circuits and Systems for Video Technology, 27

(4):828–842, April 2017. 2

[43] G. M Morton. A computer oriented geodetic data base; and

a new technique in file sequencing. Technical report, IBM,

Ottawa, Canada, 1966. 5

[44] PAUL Munro and DAVID Zipser. Image compression by

back propagation: an example of extensional programming.

Models of cognition: A review of cognitive science, 2, 1989. 2

[45] Richard A Newcombe, Dieter Fox, and Steven M Seitz. Dy-

namicfusion: Reconstruction and tracking of non-rigid scenes

in real-time. In Proc. of Comp. Vision and Pattern Recognition

(CVPR), 2015. 1, 2

[46] A. Ortega and K. Ramchandran. Rate-distortion methods

for image and video compression. IEEE Signal Processing

Magazine, 15(6):23–50, Nov 1998. 12

[47] Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello,

Wayne Chang, Adarsh Kowdle, Yury Degtyarev, David Kim,

Philip L Davidson, Sameh Khamis, Mingsong Dou, et al.

Holoportation: Virtual 3d teleportation in real-time. In Proc.

of the Symposium on User Interface Software and Technology,

2016. 1

[48] Jeong Joon Park, Peter Florence, Julian Straub, Richard A.

Newcombe, and Steven Lovegrove. Deepsdf: Learning con-

tinuous signed distance functions for shape representation. In

CVPR, pages 165–174. Computer Vision Foundation / IEEE,

2019. 2

[49] J. Peng, Chang-Su Kim, and C. C. Jay Kuo. Technologies for

3d mesh compression: A survey. Journal of Vis. Comun. and

Image Represent., 16(6):688–733, December 2005. 2

[50] Fabián Prada, Misha Kazhdan, Ming Chuang, Alvaro Collet,

and Hugues Hoppe. Spatiotemporal atlas parameterization

for evolving meshes. ACM Trans. on Graphics (TOG), 2017.

2

[51] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.

Pointnet: Deep learning on point sets for 3d classification and

segmentation. In 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2016. 2

[52] Maurice Quach, Giuseppe Valenzise, and Frederic Dufaux.

Learning convolutional transforms for lossy point cloud ge-

ometry compression. arXiv preprint arXiv:1903.08548, 2019.

3

[53] J. Rossignac. Edgebreaker: Connectivity compression for

triangle meshes. IEEE Trans. Visualization and Computer

Graphics, 5(1):47–61, Jan. 1999. 2

[54] R. B. Rusu and S. Cousins. 3d is here: Point cloud library

(PCL). In IEEE Int’l Conf. on Robotics and Automation

(ICRA), pages 1–4, 2011. 2

[55] P. Schelkens, A. Munteanu, A. Tzannes, and C. Brislawn.

Jpeg2000. part 10. volumetric data encoding. In 2006 IEEE

International Symposium on Circuits and Systems, pages 4

pp.–3877, May 2006. 6, 13

[56] R. Schnabel and R. Klein. Octree-based point-cloud compres-

sion. In Eurographics Symp. on Point-Based Graphics, July

2006. 2

[57] Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Mad-

hukar Budagavi, Pablo Cesar, Philip A Chou, Robert A Cohen,

Maja Krivokuća, Sébastien Lasserre, Zhu Li, et al. Emerging

mpeg standards for point cloud compression. IEEE Journal

on Emerging and Selected Topics in Circuits and Systems, 9

(1):133–148, 2018. 2, 6, 13

[58] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias

Nießner, Gordon Wetzstein, and Michael Zollhöfer. Deep-

voxels: Learning persistent 3d feature embeddings. In CVPR,

pages 2437–2446. Computer Vision Foundation / IEEE, 2019.

1, 2

[59] Danhang Tang, Mingsong Dou, Peter Lincoln, Philip David-

son, Kaiwen Guo, Jonathan Taylor, Sean Fanello, Cem Ke-

skin, Adarsh Kowdle, Sofien Bouaziz, Shahram Izadi, and

Andrea Tagliasacchi. Real-time compression and streaming

of 4d performances. ACM Transaction on Graphics (Proc.

1302

SIGGRAPH Asia), 2018. 1, 2, 3, 4, 5, 6, 7, 8, 13

[60] D. Thanou, P. A. Chou, and P. Frossard. Graph-based com-

pression of dynamic 3d point cloud sequences. IEEE Trans.

Image Processing, 25(4), April 2016. 2

[61] George Toderici, Sean M O’Malley, Sung Jin Hwang, Damien

Vincent, David Minnen, Shumeet Baluja, Michele Covell,

and Rahul Sukthankar. Variable rate image compression with

recurrent neural networks. arXiv preprint arXiv:1511.06085,

2015. 2

[62] Costa Touma and Craig Gotsman. Triangle mesh compression.

In Proceedings of the Graphics Interface 1998 Conference,

June 18-20, 1998, Vancouver, BC, Canada, pages 26–34, June

1998. 2

[63] Godfried Toussaint. Solving geometric problems with the

rotating calipers, 1983. 5

[64] Jianqiang Wang, Hao Zhu, Zhan Ma, Tong Chen, Haojie Liu,

and Qiu Shen. Learned point cloud geometry compression.

arXiv preprint arXiv:1909.12037, 2019. 3

[65] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,

and Xin Tong. O-cnn: Octree-based convolutional neural

networks for 3d shape analysis. ACM Trans. Graph., 36(4):

72:1–72:11, July 2017. ISSN 0730-0301. 1, 2

[66] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale

structural similarity for image quality assessment. In The

Thrity-Seventh Asilomar Conference on Signals, Systems &

Computers, 2003, volume 2, pages 1398–1402. Ieee, 2003. 7

[67] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simon-

celli, et al. Image quality assessment: from error visibility to

structural similarity. IEEE transactions on image processing,

13(4):600–612, 2004. 7

[68] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d shapenets:

A deep representation for volumetric shapes. In CVPR, pages

1912–1920. IEEE Computer Society, 2015. ISBN 978-1-

4673-6964-0. 2

[69] Wei Yan, Shan Liu, Thomas H Li, Zhu Li, Ge Li, et al. Deep

autoencoder-based lossy geometry compression for point

clouds. arXiv preprint arXiv:1905.03691, 2019. 3

[70] C. Zhang, D. Florêncio, and C. Loop. Point cloud attribute

compression with graph transform. In 2014 IEEE Int’l Conf.

Image Processing (ICIP), Oct 2014. 2

[71] Kun Zhou, John Synder, Baining Guo, and Heung-Yeung

Shum. Iso-charts: stretch-driven mesh parameterization using

spectral analysis. In Proceedings of the 2004 Eurograph-

ics/ACM SIGGRAPH symposium on Geometry processing,

pages 45–54. ACM, 2004. 5, 7

1303

