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Abstract

In this paper, we address the task of semantic-guided

scene generation. One open challenge widely observed

in global image-level generation methods is the difficulty

of generating small objects and detailed local texture. To

tackle this issue, in this work we consider learning the

scene generation in a local context, and correspondingly

design a local class-specific generative network with se-

mantic maps as a guidance, which separately constructs

and learns sub-generators concentrating on the generation

of different classes, and is able to provide more scene de-

tails. To learn more discriminative class-specific feature

representations for the local generation, a novel classifica-

tion module is also proposed. To combine the advantage of

both global image-level and the local class-specific gener-

ation, a joint generation network is designed with an atten-

tion fusion module and a dual-discriminator structure em-

bedded. Extensive experiments on two scene image gener-

ation tasks show superior generation performance of the

proposed model. State-of-the-art results are established

by large margins on both tasks and on challenging public

benchmarks. The source code and trained models are avail-

able at https://github.com/Ha0Tang/LGGAN .

1. Introduction

Semantic-guided scene generation is a hot research topic

covering several main-stream research directions, including

cross-view image translation [21, 55, 38, 39, 46, 40] and

semantic image synthesis [51, 8, 36, 34]. The cross-view

image translation task proposed in [38] is essentially an ill-

posed problem due to the large ambiguity in the generation

if only a single RGB image is given as input. To alleviate

this problem, recent works such as SelectionGAN [46] try

to generate the target image based on an image of the scene

and several novel semantic maps, as shown in Fig. 1(bot-

tom). Adding a semantic map allows the model to learn the

correspondences in the target view with appropriate object

relations and transformations. On the other side, the seman-

tic image synthesis task aims to generate a photo-realistic

Figure 1: Examples of semantic image synthesis results on

Cityscapes (top) and cross-view image translation results on

Dayton (bottom) with different settings of our LGGAN.

image from a semantic map [51, 8, 36, 34], as shown in

Fig. 1(top). Recently, Park et al. [34] propose a spatially-

adaptive normalization for synthesizing photo-realistic im-

ages given an input semantic map. With the useful seman-

tic information, existing methods on both tasks achieved

promising performance in scene generation.

However, one can still observe unsatisfying perspectives,

especially on the generation of local scene structure and de-

tails as well as small scale objects, which we believe are

mainly due to several reasons. First, existing methods on

both tasks are mostly based on a global image-level gen-

eration, which accepts a semantic map containing several

object classes and aims to generate the appearance of all the

different classes, by using the same network design or using

shared network parameters. In this case, all the classes are

treated equally by the network. While different semantic

classes have distinct properties, specific network learning

for different semantic classes intuitively would benefit the

complex multi-class generation. Second, we observe that

the number of training samples of different scene classes is

imbalanced. For instance, for the Dayton dataset [49], the

cars and buses only occupy less than 2% with respect to all
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Figure 2: Overview of the proposed LGGAN, which contains a semantic-guided generator G and discriminator Ds. G

consists of a parameter-sharing encoder E, an image-level global generator Gg , a class-level local generator Gl and a weight

map generator Gw. The global generator and local generator are automatically combined by two learned weight maps from

the weight map generator to reconstruct the target image. Ds tries to distinguish the generated images from two modality

spaces, i.e., image space and semantic space. Moreover, to learn a more discriminative class-specific feature representation,

a novel classification module is proposed. All of these components are trained in an end-to-end fashion so that the local

generation and the global generation can benefit from each other. The symbols ⊕, ⊗ and s© denote element-wise addition,

element-wise multiplication and channel-wise Softmax, respectively.

pixels in the training data, which naturally makes the model

learning be dominated by the classes with the larger number

of training samples. Third, the size of objects in different

scene classes is diverse. As shown in the first row of Fig. 1,

larger-scale object classes such as road, sky usually occupy

bigger area of the image than smaller-scale classes such as

pole and traffic light. Since the convolutional network usu-

ally shares the parameters at different convolutional posi-

tions, the larger-scale object classes would thus take advan-

tage during the learning, further increasing the difficult in

generating well the small-scale object classes.

To tackle these issues, a straightforward consideration

would be to model the generation of different scene classes

specifically in a local context. By so doing, each class could

have its own generation network structure or parameters,

thus greatly avoiding the learning of a biased generation

space. To achieve this goal, in this paper we design a novel

class-specific generation network. It consists of several sub-

generators for different scene classes with a shared encoded

feature map. The input semantic map is utilized as the guid-

ance to obtain feature maps corresponding to each class spa-

tially, which are then used to produce a separate generation

for different class regions.

Due to the highly complementary properties of global

and local generation, a Local class-specific and Global

image-level Generative Adversarial Network (LGGAN) is

proposed to combine the advantage of these two. It mainly

contains three network branches (see Fig. 2). The first

branch is the image-level global generator, which learns a

global appearance distribution using the input, and the sec-

ond branch is the proposed class-specific local generator,

which aims to generate different objects classes separately

using semantic-guided class-specific feature filtering. Fi-

nally, the fusion weight-map generation branch learns two

pixel-level weight maps which are used to fuse the local and

global sub-networks in a weighted-combination of their fi-

nal generation results. The proposed LGGAN can be jointly

trained in an end-to-end fashion to make the local and global

generation benefit each other in the optimization.

Overall, the contributions of this paper are as follows:

• We explore scene generation from the local context,

which we believe is beneficial to generate richer scene de-

tails compared with the existing global image-level gen-

eration methods. A new local class-specific generative

structure has been designed for this purpose. It can ef-

fectively handle the generation of small objects and scene

details which are common difficulties encountered by the

global-based generation.

• We propose a novel global and local generative adver-

sarial network design able to take into account both the

global and local contexts. To stabilize the optimization of

the proposed joint network structure, a fusion weight-map

generator and a dual-discriminator are introduced. More-

over, to learn discriminative class-specific feature repre-

sentations, a novel classification module is proposed.

• Experiments for cross-view image translation on the Day-

ton [49] and CVUSA [52] datasets, and semantic im-

age synthesis on the Cityscapes [11] and ADE20K [59]

datasets demonstrate the effectiveness of the proposed

LGGAN framework, and show significantly better results
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compared with state-of-the-art methods on both tasks.

2. Related Work

Generative Adversarial Networks (GANs) [15] have been

widely used for image generation [23, 56, 7, 24, 17, 13, 42,

29, 41]. A vanilla GAN has two important components, i.e.,

a generator and a discriminator. The goal of the generator

is to generate photo-realistic images from a noise vector,

while the discriminator is trying to distinguish between the

real and the generated image. To synthesize user-specific

images, Conditional GAN (CGAN) [31] has been proposed.

A CGAN combines a vanilla GAN and an external infor-

mation, such as class labels [32, 33, 9], text descriptions

[26, 57, 25], object keypoint [37, 45], human body/hand

skeleton [1, 44, 3, 62], conditional images [61, 21], seman-

tic maps [51, 46, 34, 50], scene graphs [22, 58, 2] and atten-

tion maps [56, 30, 43].

Global and Local Generation in GANs. Modelling global

and local information in GANs to generate better results

has been used in various generative tasks [19, 20, 28, 27,

35, 16]. For instance, Huang et al. [19] propose TPGAN

for frontal view synthesis by simultaneously perceiving

global structures and local details. Gu et al. [16] propose

MaskGAN for face editing by separately learning every face

component, e.g., mouth and eye. However, these methods

are only applied to face-related tasks such as face rotation

or face editing, where all the domains have large overlap

and similarity. However, we propose a new local and global

image generation framework design for a more challeng-

ing scene generation task, and the local context modeling is

based on semantic-guided class-specific generation, which

is not explored by any existing works.

Scene Generation. Scene generation tasks are a hot topic

as each image can be parsed into distinctive semantic ob-

jects [6, 2, 48, 14, 4, 5]. In this paper, we mainly fo-

cus on two scene generation tasks, i.e., cross-view image

translation [55, 38, 39, 46] and semantic image synthesis

[51, 8, 36, 34]. Most existing works on cross-view im-

age translation have been conducted to synthesize novel

views of the same objects [12, 60, 47, 10]. Moreover, sev-

eral works deal with image translation problems with dras-

tically different views and generate a novel scene from a

given different scene [55, 38, 39, 46]. For instance, Tang et

al. [46] propose SelectionGAN to solve the cross-view im-

age translation task using semantic maps and CGAN mod-

els. On the other side, the semantic image synthesis task

aims to generate a photo-realistic image from a semantic

map [51, 8, 36, 34]. For example, Park et al. propose Gau-

GAN [34], which achieves the best results on this task.

With the semantic maps as guidance, existing ap-

proaches on both tasks achieve promising performance.

However, we still observe that the results produced by these

global image-level generation methods are often unsatisfac-

tory, especially on detailed local texture. In contrast, our

proposed approach focuses on generating a more realistic

global structure/layout and local texture details. Both lo-

cal and global generation branches are jointly learned in an

end-to-end fashion that aims at using the mutually improved

benefits from each other.

3. The Proposed LGGAN

We start by presenting the details of the proposed Lo-

cal class-specific and Global image-level GANs (LGGAN).

An illustration of the overall framework is shown in Fig. 2.

The generation module mainly consists of three parts, i.e., a

semantic-guided class-specific generator modelling the lo-

cal context, an image-level generator modelling the global

layout, and a weight-map generator for fusing the local and

the global generators. We first introduce the used backbone

structure, and then present the design of the proposed local

and global generation networks.

3.1. The Backbone Encoding Network Structure

Semantic-Guided Generation. In this paper, we mainly

focus on two tasks, i.e., semantic image synthesis and cross-

view image translation. For the former, we follow Gau-

GAN [34] and use the semantic map Sg as the input of the

backbone encoder E, as shown in Fig. 2. For the latter, we

follow SelectionGAN [46] and concatenate the input image

Ia and a novel semantic map Sg as the input of the backbone

encoder E. By so doing, the semantic maps act as priors to

guide the model to learn the generation of another domain.

Parameter-Sharing Encoder. As we have three different

branches for three different generators, the encoder E is

sharing parameters to all the three branches to make a com-

pact backbone network. The gradients from all the three

branches contribute together to the learning of the encoder.

We believe that in this way, the encoder can learn both lo-

cal and global information and the correspondence between

them. Then the encoded deep representations from the input

Sg can be represented as E(Sg), as shown in Fig. 2.

3.2. The LGGAN Structure

Class-Specific Local Generation Network. As shown in

Fig. 1 and discussed in the introduction, the issue of train-

ing data imbalance between different classes and size dif-

ference between scene objects makes it extremely difficult

to generate small object classes and scene details. To over-

come this limitation, we propose a novel local class-specific

generation network design. It separately constructs a gener-

ator for each semantic class being thus able to largely avoid

the interference from the large object classes in the joint

optimization. Each sub-generation branch has independent

network parameters and concentrates on a specific class, be-

ing therefore capable of effectively producing similar gen-
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Figure 3: Overview of the proposed local class-specific generator Gl consisting of four steps, i.e., semantic class mask calcu-

lation, class-specific feature map filtering, classification-based discriminative feature learning and class-specific generation.

A cross-entropy loss with void class filtered is applied at each class feature representation for learning a more discrimina-

tive class-specific feature representation. A semantic-mask guided pixel-wise L1 loss is applied at the end for class-level

reconstruction. The symbols ⊗ and c© denote element-wise multiplication and channel-wise concatenation, respectively.

eration quality for different classes and yielding richer local

scene details.

The overview of the local generation network Gl is il-

lustrated in Fig. 3. The encoded features E(Sg) are first

fed into two consecutive deconvolutional layers to increase

the spatial size with the number of channels reduced two

times. Then the scaled feature map f ′ is multiplied by the

semantic mask of each class, i.e., Mi, to obtain a filtered

class-specific feature map for each one. The mask-guided

feature filtering operation can be written as:

Fi = Mi ∗ f
′, i = 1, 2, ..., c, (1)

where c is the number of semantic classes. Then the filtered

feature map Fi is fed into several convolutional layers for

the corresponding ith class and generate an output image

I lgi . For better learning each class, we utilize a semantic-

mask guided pixel-wise L1 reconstruction loss, which can

be expressed as follows:

Llocal
L1 =

c
∑

i=1

EIg,Il
gi
[||Ig ∗Mi − I lgi ||1]. (2)

The final output ILg from the local generation network can

be obtained in two ways. The first one is performing an

element-wise addition of all the class-specific outputs:

ILg = I lg1 ⊕ I lg2 ⊕ · · · ⊕ I lgc . (3)

The second one is performing a convolutional operation on

all the class-specific outputs, as shown in Fig. 3,

ILg = Conv(Concat(I lg1 , I
l
g2
, · · · , I lgc)), (4)

where Concat(·) and Conv(·) denote channel-wise con-

catenation and convolutional operation, respectively.

Class-Specific Discriminative Feature Learning. We ob-

serve that the filtered feature map Fi is not able to pro-

duce very discriminative class-specific generations, leading

to similar generation results for some classes, especially

for small-scale object classes. In order to have more di-

verse generation for different object classes, we propose a

novel classification-based feature learning module to learn

more discriminative class-specific feature representations,

as shown in Fig. 3. One input sample of the module is a

pack of feature maps produced from different local gener-

ation branches, i.e., {F1, ...,Fc}. First, the packed feature

map Fp∈R
c×n×h×w (with n, h, w as the number of fea-

ture map channels, height and width, respectively) is fed

into a semantic-guided averaging pooling layer, and we ob-

tain a pooled feature map with dimension of c×n×1×1.

Then the pooled feature map is connected with a fully con-

nected layer to predict classification probability of the c ob-

ject classes of the scene. The output after the FC layer is

Y
′

∈Rc×c, where c is the number of semantic classes, as for

each filtered feature map Fi (i=1, ..., c), we predict a c×1
one-hot vector for the probabilities of the c classes.

Since some object classes may not exist in the input se-
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mantic mask sample, the features from the local branches

corresponding to the void classes should not contribute to

the classification loss. Therefore, we filter the final cross-

entropy loss by multiplying it with a void class indicator

for each input sample. The indicator is an one hot vector

H={Hi}
c
i=1

with Hi=1 for a valid class and Hi=0 for a

void class. Then, the Cross-Entropy (CE) loss is defined as

follows:

LCE = −

c
∑

m=1

Hm

c
∑

i=1

1{Y (i) = i} log(f(Fi)), (5)

where 1{·} is an indicator function, i.e., having a return 1 if

Y (i)=i else 0. f(·) is a classification function which pro-

duces a prediction probability given an input feature map

Fi. Y is a label set of all the object classes.

Image-Level Global Generation Network. Similar to the

local generation branch, E(Sg) is also fed into the global

generation sub-network Gg for global image-level genera-

tion, as shown in Fig. 2. Global generation is capable to

capture the global structure information or layout of the tar-

geted images. Thus, the global result IGg can be obtained

through a feed-forward computation: IGg =Gg(E(Sg)). Be-

sides the proposed Gg , many existing global generators can

also be used together with the proposed local generator Gl,

making the proposed framework very flexible.

Pixel-Level Fusion Weight-Map Generation Network. In

order to better combine the local and the global generation

sub-networks, we further propose a pixel-level weight map

generator Gw, which aims at predicting pixel-wise weights

for fusing the global generation IGg and the local genera-

tion ILg . In our implementation, Gw consists of two Trans-

pose Convolution→InstanceNorm→ReLU blocks and one

Convolution→InstanceNorm→ReLU block. The number

of the output channels for these three block are 128, 64

and 2, respectively. The kernel sizes are 3×3 with stride 2

except for the last layer which has a kernel size of 1×1
with stride 1 for dense prediction. We predict a two-channel

weight map Wf using the following calculation:

Wf = Softmax(Gw(E(Sg))), (6)

where Softmax(·) denotes a channel-wise softmax function

used for normalization, i.e., the sum of the weight values at

the same pixel position is equal to 1. By so doing, we can

guarantee that information from the combination would not

explode. Wf is sliced to have a weight map Wg for the

global branch and a weight map Wl for the local branch.

The fused final generation result is calculated as follows:

ICg = IGg ⊗Wg + ILg ⊗Wl, (7)

where ⊗ is an element-wise multiplication operation. In

this way, the pixel-level weights predicted from Gw directly

operate on the output of Gg and Gl. Moreover, generators

Gw, Gg and Gl affect and contribute to each other in the

model optimization.

Dual-Discriminator. To exploit the prior domain knowl-

edge, i.e., the semantic map, we extend the single domain

vanilla discriminator [15] to a cross domain structure and

we refer to it as the semantic-guided discriminator Ds, as

shown in Fig. 2. It employs the input semantic map Sg and

the generated image ICg (or the real image Ig) as input:

LCGAN(G,Ds) =ESg,Ig [logDs(Sg, Ig)] +

ESg,IC
g

[

log(1−Ds(Sg, I
C
g ))

]

,
(8)

which aims to preserve scene layout and capture the local-

aware information.

For the cross-view image translation task, we also pro-

pose another image-guided discriminator Di, which takes

the conditional image Ia and the final generated image ICg
(or the ground-truth image Ig) as input:

LCGAN(G,Di) =EIa,Ig [logDi(Ia, Ig)] +

EIa,IC
g

[

log(1−Di(Ia, I
C
g ))

]

.
(9)

In this case, the total loss of our Dual-Discriminator D is

LCGAN=LCGAN(G,Di)+LCGAN(G,Ds).

4. Experiments

The proposed LGGAN can be applied to different gen-

erative tasks such as the cross-view image translation [46]

and the semantic image synthesis [34]. In this section, we

present experimental results and analysis on both tasks.

4.1. Results on CrossView Image Translation

Datasets and Evaluation Metric. We follow [46] and

perform cross-view image translation experiments on both

Dayton [49] and CVUSA datasets [52]. Similarly to

[38, 46], we employ Inception Score (IS), Accuracy (Acc.),

KL Divergence Score (KL), Structural-Similarity (SSIM),

Peak Signal-to-Noise Ratio (PSNR) and Sharpness Differ-

ence (SD) to evaluate the proposed model.

State-of-the-Art Comparisons. We compare our LGGAN

with several recently proposed state-of-the-art methods, i.e.,

Zhai et al. [55], Pix2pix [21], X-SO [39], X-Fork [38] and

X-Seq [38]. The comparison results are shown in Tables 1

and 2. We can observe that LGGAN consistently outper-

forms the competing methods on all metrics.

To study the effectiveness of LGGAN, we conduct ex-

periments with the methods using semantic maps and RGB

images as input, including Pix2pix++ [21], X-Fork++ [38],

X-Seq++ [38] and SelectionGAN [46]. We implement

Pix2pix++, X-Fork++ and X-Seq++ using their public

source code. Results are shown in Tables 1 and 2. We ob-

serve that LGGAN achieves significantly better results than
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Table 1: Quantitative evaluation of the Dayton dataset in the a2g direction. For all metrics except KL score, higher is better.

(∗) Inception Score for real (ground truth) data is 3.8319, 2.5753 and 3.9222 for all, top-1 and top-5 setups, respectively.

Method
Accuracy (%) Inception Score∗

SSIM PSNR SD KL

Top-1 Top-5 All Top-1 Top-5

Pix2pix [21] 6.80 9.15 23.55 27.00 2.8515 1.9342 2.9083 0.4180 17.6291 19.2821 38.26 ± 1.88

X-SO [39] 27.56 41.15 57.96 73.20 2.9459 2.0963 2.9980 0.4772 19.6203 19.2939 7.20 ± 1.37

X-Fork [38] 30.00 48.68 61.57 78.84 3.0720 2.2402 3.0932 0.4963 19.8928 19.4533 6.00 ± 1.28

X-Seq [38] 30.16 49.85 62.59 80.70 2.7384 2.1304 2.7674 0.5031 20.2803 19.5258 5.93 ± 1.32

Pix2pix++ [21] 32.06 54.70 63.19 81.01 3.1709 2.1200 3.2001 0.4871 21.6675 18.8504 5.49 ± 1.25

X-Fork++ [38] 34.67 59.14 66.37 84.70 3.0737 2.1508 3.0893 0.4982 21.7260 18.9402 4.59 ± 1.16

X-Seq++ [38] 31.58 51.67 65.21 82.48 3.1703 2.2185 3.2444 0.4912 21.7659 18.9265 4.94 ± 1.18

SelectionGAN [46] 42.11 68.12 77.74 92.89 3.0613 2.2707 3.1336 0.5938 23.8874 20.0174 2.74 ± 0.86

LGGAN (Ours) 48.17 79.35 81.14 94.91 3.3994 2.3478 3.4261 0.5457 22.9949 19.6145 2.18 ± 0.74

Table 2: Quantitative evaluation of the CVUSA dataset in a2g direction. For all metrics except KL score, higher is better. (∗)

Inception Score for real (ground truth) data is 4.8741, 3.2959 and 4.9943 for all, top-1 and top-5 setups, respectively.

Method
Accuracy (%) Inception Score∗

SSIM PSNR SD KL

Top-1 Top-5 All Top-1 Top-5

Zhai et al. [55] 13.97 14.03 42.09 52.29 1.8434 1.5171 1.8666 0.4147 17.4886 16.6184 27.43 ± 1.63

Pix2pix [21] 7.33 9.25 25.81 32.67 3.2771 2.2219 3.4312 0.3923 17.6578 18.5239 59.81 ± 2.12

X-SO [39] 0.29 0.21 6.14 9.08 1.7575 1.4145 1.7791 0.3451 17.6201 16.9919 414.25 ± 2.37

X-Fork [38] 20.58 31.24 50.51 63.66 3.4432 2.5447 3.5567 0.4356 19.0509 18.6706 11.71 ± 1.55

X-Seq [38] 15.98 24.14 42.91 54.41 3.8151 2.6738 4.0077 0.4231 18.8067 18.4378 15.52 ± 1.73

Pix2pix++ [21] 26.45 41.87 57.26 72.87 3.2592 2.4175 3.5078 0.4617 21.5739 18.9044 9.47 ± 1.69

X-Fork++ [38] 31.03 49.65 64.47 81.16 3.3758 2.5375 3.5711 0.4769 21.6504 18.9856 7.18 ± 1.56

X-Seq++ [38] 34.69 54.61 67.12 83.46 3.3919 2.5474 3.4858 0.4740 21.6733 18.9907 5.19 ± 1.31

SelectionGAN [46] 41.52 65.51 74.32 89.66 3.8074 2.7181 3.9197 0.5323 23.1466 19.6100 2.96 ± 0.97

LGGAN (Ours) 44.75 70.68 78.76 93.40 3.9180 2.8383 3.9878 0.5238 22.5766 19.7440 2.55 ± 0.95

Pix2pix++, X-Fork++ and X-Seq++, confirming the advan-

tage of the proposed LGGAN. A direct comparison with

SelectionGAN is also shown in the tables providing better

results on most metrics except pixel-level evaluation met-

rics, i.e., SSIM, PSNR and SD. SelectionGAN uses a two-

stage generation strategy and an attention selection mod-

ule, achieving slightly better results than ours on these three

metrics. However, we generate much more photo-realistic

results than SelectionGAN as shown in Fig. 4.

Qualitative Evaluation. The qualitative results compared

with the leading method SelectionGAN [46] are shown

in Fig. 4. We observe that the results generated by the

proposed LGGAN are visually better than SelectionGAN.

Specifically, our method generates more clear details on ob-

jects such as cars, buildings, road, trees than SelectionGAN.

4.2. Results on Semantic Image Synthesis

Datasets and Evaluation Metric. We follow [34] and con-

duct extensive experiments on both Cityscapes [11] and

ADE20K [59] datasets. We use the mean Intersection-over-

Union (mIoU), pixel accuracy (Acc) and Fréchet Inception

Distance (FID) [18] as the evaluation metrics.

State-of-the-Art Comparisons. We compare the proposed

LGGAN with several leading semantic image synthesis

methods, i.e., Pix2pixHD [51], CRN [8], SIMS [36] and

GauGAN [34]. Results of the mIoU, Acc and FID met-

rics are shown in Table 3(left). We find that the proposed

LGGAN outperforms the existing competing methods by a

large margin on both mIoU and Acc metrics. For FID, the

Figure 4: Qualitative comparison in a2g direction on Day-

ton (top two rows) and CVUSA (bottom two rows).

proposed method is only worse than SIMS on Cityscapes.

However, SIMS has poor segmentation performance. The

reason is that SIMS produces an image by searching and

copying image patches from the training dataset. The gener-

ated images are more realistic since the method uses the real

image patches. However, the approach always tends to copy
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Figure 5: Qualitative comparison on Cityscapes (top three rows) and ADE20K (bottom three rows).

Table 3: (left) Our method significantly outperforms current leading methods in semantic segmentation scores (mIoU and

Acc) and FID. (middle) User preference study. The numbers indicate the percentage of users who favor the results of the

proposed LGGAN over the competing method. (right) Quantitative comparison of different variants of the proposed LGGAN

on the semantic image synthesis tasks. For mIoU, Acc and AMT, higher is better. For FID, lower is better.

Method
Cityscapes ADE20K

mIoU ↑ Acc ↑ FID ↓ mIoU ↑ Acc ↑ FID ↓

CRN [8] 52.4 77.1 104.7 22.4 68.8 73.3

SIMS [36] 47.2 75.5 49.7 N/A N/A N/A

Pix2pixHD [51] 58.3 81.4 95.0 20.3 69.2 81.8

GauGAN [34] 62.3 81.9 71.8 38.5 79.9 33.9

LGGAN (Ours) 68.4 83.0 57.7 41.6 81.8 31.6

AMT ↑ Cityscapes ADE20K

Ours vs. CRN [8] 67.38 79.54

Ours vs. Pix2pixHD [51] 56.16 85.69

Ours vs. SIMS [36] 54.84 N/A

Ours vs. GauGAN [34] 53.19 57.31

Setup of LGGAN mIoU ↑ FID ↓

S1: Ours w/ Global 62.3 71.8

S2: S1 + Local (add.) 64.6 66.1

S3: S1 + Local (con.) 65.8 65.6

S4: S3 + Class Dis. Loss 67.0 61.3

S5: S4 + Weight Map 68.4 57.7

objects with mismatched patches due to queries that can-

not be guaranteed to have results in the dataset. Moreover,

we follow the evaluation protocol of GauGAN and provide

AMT results, as shown in Table 3(middle). We observe that

users favor our synthesized results on both datasets com-

pared with other competing methods including SIMS.

Qualitative Evaluation. The qualitative results compared

with the leading method GauGAN [34] are shown in Fig. 5.

We can see that the proposed LGGAN generates much bet-

ter results with fewer visual artifacts than GauGAN.

Visualization of Learned Feature Maps. In Fig. 6, we ran-

domly show some channels from the learned class-specific

feature maps (30th to 32th, and 50th to 52th) on Cityscapes

to see if they clearly highlight particular semantic classes.

We show the visualization results on 3 different classes,

i.e., road, vegetation and car. We can easily observe that
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Figure 6: Visualization of learned class-specific feature maps on 3 different classes, i.e., road, vegetation and car.

Figure 7: Visualization of generated semantic maps compared with those from GauGAN [34] on Cityscapes.

each local sub-generator learns well the class-level deep

representations, further confirming our motivations.

Visualization of Generated Semantic Maps. We follow

GauGAN [34] and apply pretrained segmentation networks

on the generated images to produce semantic maps, i.e.,

DRN-D-105 [54] for Cityscapes and UperNet101 [53] for

ADE20K. The generated semantic maps of the proposed

LGGAN, GauGAN and the ground truths are shown in

Fig. 7. We observe that our LGGAN generates better se-

mantic maps than GauGAN, especially on local texture

(‘car’ in the first row) and small objects (‘traffic sign’ and

‘pole’ in the second row), confirming our initial motivation.

4.3. Ablation Study

We conduct extensive ablation studies on the Cityscapes

dataset to evaluate different components of our LGGAN.

Baseline Models. The proposed LGGAN has 5 baselines

(i.e., S1, S2, S3, S4, S5) as shown in Table 3(right): (i) S1

means only adopting the global generator. (ii) S2 combines

the global generator and the proposed local generator to pro-

duce the final results, in which the local results are produced

by using an addition operation as proposed in Eq. (3). (iii)

The difference between S3 and S2 is that S3 uses a convo-

lutional layer to generate the local results, as presented in

Eq. (4). (iv) S4 employ the proposed classification-based

discriminative feature learning module. (v) S5 is our full

model and adopts the proposed weight map fusion strategy.

Effect of Local and Global Generation. The results of the

ablation study are shown in Table 3(right). When using an

addition operation to generate the local result, the local and

global generation strategy improves mIoU and FID by 2.3

and 5.7, respectively. When adopting a convolutional op-

eration to produce the local results, the performance boosts

further, i.e., 3.5 and 6.2 gain on the mIoU and FID metrics,

respectively. Both results confirm the effectiveness of the

proposed local and global generation framework. We also

provide qualitative results of the local and global genera-

tion in Fig. 1. We observe that our full model, i.e., Global +

Local, generates visually better results than both the global

and local method, which further confirms our motivations.

Effect of Classification-Based Feature Learning. S4 sig-

nificantly outperforms S3 with around 1.2 and 4.3 gain on

the mIoU and FID metric, respectively. This means that

the model indeed learns a more discriminative class-specific

feature representation, confirming our design motivation.

Effect of Weight Map Fusion. By adding the proposed

weight map fusion scheme in S5, the overall performance

is further boosted with 1.4 and 3.6 improvement on the

mIoU and FID metric, respectively. This means the pro-

posed LGGAN indeed learns complementary information

from the local and the global generation branch. In Fig. 1,

we show some samples of the generated weight maps.

5. Conclusion

We propose Local class-specific and Global image-level

Generative Adversarial Networks (LGGAN) for semantic-

guided scene generation. The proposed LGGAN contains

three generation branches, i.e., global image-level gener-

ation, local class-level generation and pixel-level fusion

weight map generation, respectively. A new class-specific

local generation network is designed to alleviate the in-

fluence of imbalanced training data and size difference of

scene objects in joint learning. To learn more class-specific

discriminative feature representations, a novel classification

module is further proposed. Experimental results demon-

strate the superiority of the proposed approach and show

new state-of-the-art results on both cross-view image trans-

lation and semantic image synthesis tasks.
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