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Abstract

Few-shot, fine-grained classification requires a model

to learn subtle, fine-grained distinctions between different

classes (e.g., birds) based on a few images alone. This

requires a remarkable degree of invariance to pose, ar-

ticulation and background. A solution is to use pose-

normalized representations: first localize semantic parts

in each image, and then describe images by characteriz-

ing the appearance of each part. While such represen-

tations are out of favor for fully supervised classification,

we show that they are extremely effective for few-shot fine-

grained classification. With a minimal increase in model

capacity, pose normalization improves accuracy between

10 and 20 percentage points for shallow and deep archi-

tectures, generalizes better to new domains, and is effec-

tive for multiple few-shot algorithms and network back-

bones. Code is available at https://github.com/

Tsingularity/PoseNorm_Fewshot.

1. Introduction

The ability to generalize with minimal fine-tuning is a

crucial property for learned neural models, not just to un-

seen data but also to unseen types of data. Consider the task

shown in Figure 1. We are given just a single image (or a

very small number) from a few bird species, and from this

information alone we must learn to recognize them. Hu-

mans are known to be very good at this few-shot learn-

ing task [19], but machines struggle: in spite of dramatic

progress in visual recognition and two years of focused re-

search, performance on several few-shot benchmarks re-

mains far below that of fully supervised approaches.

This is a problem in practice, especially for fine-grained

classification problems (such as that in Figure 1). In this set-

ting, distinct classes can number in the hundreds, while the

expertise and effort required to correctly label these classes

can make annotation expensive. Together, this makes the

collection of large labeled training sets for fine-grained clas-

sification difficult, sometimes prohibitively so. The ability

of neural networks to handle fine-grained, few-shot learning

can thus be crucial for real-world applications.

What is the reason behind the large gap between machine

and human performance on this task? An intuitive hypothe-

sis is that humans use a much more stable feature represen-

tation, which is invariant to large spatial deformations. For

example, in the bird classification task, we might charac-

terize a bird image using the attributes of its various parts:

the shape of the beak, the color of the wing, the presence

or absence of a crown. Such a characterization is invari-

ant not just to changes in the image background, but also to

variation in camera pose and articulation, allowing us to ef-

fectively perceive similarities and differences across a wide

range of bird species, and individual images of them.

Such a featurization is “pose normalized”, and was ex-

plored as a promising direction for fine-grained classifica-

tion before the re-discovery of convolutional networks [32].

Researchers found, however, that end-to-end training with

black-box architectures, and without pose normalization,

led to great improvement in the standard benchmarks (al-

beit with consistent modifications, such as bilinear pool-

ing [16]). Indeed, in recent years, winners on the annual

fine-grained classification challenges [1] have mostly fo-

cused on these black-box architectures. The intuitive idea

of pose normalization has fallen by the wayside.

In contrast, we argue that the dominance of black-box ar-

chitectures over pose-normalized representations is an arti-

fact of the fully-supervised classification problem. In these

settings, all classes to be distinguished are known a priori,

and we have significant amounts of training data for each

class. This reduces the need for pose and background in-

variance, since the training data will likely include a broad

range of variation within each class. At the same time,

leveraging category-specific biases in pose and background

will likely be beneficial, since the representation need not

generalize to new classes. These factors act in favor of

black-box architectures with no built-in inductive biases.

However, if we want the learnt model to adapt to new

classes from limited data, as in few-shot learning, the intu-

itive invariance of pose normalization becomes more useful.

In this paper, we revisit pose normalization for the task

of few-shot, fine-grained classification, and demonstrate its
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Figure 1. Left: The fine-grained few-shot recognition task. Objects share the same part structure and differences between categories are

subtle. Middle: Based on a simple pose estimator, a pose-normalized representation can capture semantic part information. Right: On

both shallow and deep backbones, pose normalization increases few-shot learning performance significantly. A shallow architecture with

our representation (4-layer ConvNet+Pose Normalization) even outperforms a much deeper blackbox network without it (ResNet18).

usefulness in this setting. Pose normalization is imple-

mented through an extremely simple modification to con-

volutional architectures, adding very few new parameters

(in contrast to prior methods that increase network size by a

factor of two or higher [34, 10]). Our method is orthogonal

to the choice of few-shot learning technique and backbone

neural architecture. We evaluate our approach on three dif-

ferent few-shot learning techniques, two differently-sized

backbone architectures, and three fine-grained classification

datasets of bird species and aircraft. We find that:

1. Pose normalization provides significant gains across

the board, in some cases providing a more than 20

point improvement in accuracy, while requiring no part

annotations for novel classes.

2. In all settings, pose normalization outperforms black-

box modifications to the neural architecture, such as

bilinear pooling.

3. The advantages of pose normalization are apparent

even when as little as only 5% of the base class training

data is annotated with pose.

4. Pose normalization is effective for both shallow and

deep network architectures. Shallow networks with

pose normalization outperform deeper blackbox ones.

The large performance gains we observe, along with the

simplicity of the architecture itself, points to the power of

pose normalization in fine-grained, few-shot classification.

2. Related Work

Fine-grained recognition is a classic problem in com-

puter vision, and a recurring challenge [1]. While we focus

on bird species classification [26], the presented ideas apply

to other fine-grained tasks, such as identifying models of

aircraft [17], cars [15], or any other problem where objects

have a consistent set of parts. In the context of fine-grained

recognition, Farrell et al. [6] proposed the idea of pose nor-

malization: predicting the parts of the object and recording

the appearance of each part as a descriptor. Many versions

of the idea have since been explored, including varying the

kind of parts [32, 10, 33], the part detector [31], and the

combination of these ideas with neural networks [34]. The

last of these is the most similar to our work. However, all of

these approaches are concerned with fully supervised recog-

nition, whereas here we look at few-shot recognition.

Pose normalization has also served as inspiration for

black-box models where the parts are unsupervised. Lin

et al. [16] introduce bilinear pooling as a generalization

of such normalization, and we compare to this idea in our

work. Spatial Transformer Networks [14] instantiate unsu-

pervised pose normalization explicitly and train it end-to-

end. Other instantiations of this intuition have also been

proposed [4, 11, 21]. However, these unsupervised ap-

proaches add significant complexity and computation, mak-

ing it difficult to discern the benefits of pose-normalization

alone. In contrast, we focus on a lightweight, straightfor-

ward, semantic approach to show that pose normalization,

not added network power, is responsible for improved per-

formance.

Few-shot learning methods can be loosely organized

into the following three groups: 1) Transfer learning base-

lines train standard classification networks on base classes,

and then learn a new linear classifier for the novel classes

on the frozen representation. Recent work has shown this

to be competitive [3, 27, 18]. 2) Meta-learning techniques

train a “learner”: a function that maps small labeled train-

ing sets and test images to test predictions. Examples in-

clude ProtoNet [20], MatchingNet [25], RelationNet [22]

and MAML [7]. These learners might sometimes include

learnt data augmentation [28], which some methods train
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using pose annotations [5]. 3) Weight generation techniques

generate classification weights for new categories [8, 9].

Most few-shot learning methods use blackbox network

architectures, which function well given enough labeled

data, but may suffer in the highly constrained few-shot

learning scenario. Wertheimer and Hariharan [29] revisit

the bilinear pooling of Lin et al. [16] and find it to work

well. They also introduce a simple, effective localization-

normalized representation, but which is limited to coarse

object bounding boxes instead of fine-grained parts. Zhu et

al. [35] introduce a semantic-guided multi-attention mod-

ule to help zero-shot learning, but is fully unsupervised. We

compare to an unsupervised baseline in our experiments.

Pose normalization increases invariance to common

modes of variation. An alternative to increasing invariance

is to use learnt data augmentation [12, 28, 5]. However, this

typically requires large additional networks and significant

computation. Instead, we focus on a lightweight approach.

Note also that one of our baselines [8] already outperforms

a recent augmentation method [28].

In the following sections, we first overview few-shot

recognition. We then show that pose-normalization of fea-

tures can act as a plug-and-play network layer in a range of

few-shot learning algorithms.

3. Few-Shot Recognition

The goal of few-shot learning is to build a learner that

can produce an effective classifier given only a small la-

beled set of examples. In the classic few-shot setting, the

learner is first provided a large labeled set (the representa-

tion set, Drepre) consisting of many labeled images from

base classes Ybase. The learner must set its parameters, and

any hyper-parameters, using this data. It then encounters

a disjoint set of novel classes Ynovel from which it gets a

small set of reference images Drefer. The learner must then

learn a classifier for the novel classes from this set.

In most techniques, we can divide the learner into three

modules: a feature-map extractor fθ, a feature aggregator

gφ, and a learning algorithm hw.

The feature map extractor fθ is usually implemented

as a deep convolutional neural network, with learnable pa-

rameters ✓. For each input image x, the network yields the

corresponding feature map tensor F=fθ(x)∈R
C⇥H⇥W ,

where C,H,W denote respectively the channel, height, and

width dimensions of the feature map.

The feature aggregator gφ is a transformation param-

eterized by �, converting feature maps into global feature

vectors: v=gφ(F )∈Rd, where d is the latent dimensional-

ity. Typically gφ is a global average pooling module.

The learning algorithm hw takes a dataset S of training

feature vectors and corresponding labels, and a test feature

vector v, and outputs a probability distribution over labels

p̂ for the latter: p̂(x)=hw(v, S). For our purposes we con-

sider three representative methods:

Transfer learning follows the standard network pretrain-

ing and fine-tuning procedure. hw is implemented by a sim-

ple linear classifier with a learned weight matrix and soft-

max activation. Functions fθ, gφ are trained concurrently

with hw, minimizing the standard cross-entropy loss over

data in Drepre. To adapt the model to novel classes, feature

extractor parameters ✓,� are frozen, and hw trains a new

linear classifier on the novel classes in Drefer.

Prototypical network [20] is a representative meta-

learning method that produces a prototype representation

for each class by averaging the feature vectors within that

class. hw is then a non-parametric classifier assigning class

probabilities based on the distance between a datapoint’s

feature vector and each class prototype. Every training

episode samples N classes from the base categories Ybase,

and a small support set and query set of images from within

each one. Support images form class prototypes, while N-

way classification on the query set produces the loss, and

corresponding update gradients to parameters ✓,�.

In Dynamic few-shot learning [8], hw is once again a

linear (or cosine) classifier, but instead of being directly

fine-tuned on Drefer, the classifier is generated by a learnt

weight generator G. The training process consists of

two stages. The first is standard classification training on

Drepre. During the second stage, the feature extractor pa-

rameters ✓,� are frozen. To train the generator G, the al-

gorithm randomly picks several “fake” novel classes from

Ybase, and treats them as if they were truly novel, perform-

ing classification with the classifier weights generated by G
and minimizing the classification loss on simulated “test”

examples from these classes.

4. Pose-Normalized Feature Vectors

Two intuitions motivate our proposed method. First, for

fine-grained recognition, the difference in appearances be-

tween two classes tends to be extremely small. In the few-

shot setting, it is even harder for an algorithm to capture

these subtle differences, as only a few examples are avail-

able for reference. Using pose normalization to focus the

feature representation on the most informative parts of each

image should then benefit the learning process. Second, be-

cause fine-grained recognition involves similar kinds of ob-

jects, they are likely to share the same semantic structures.

Thus it is highly probable that a pose estimator trained on

base classes will generalize, even to unseen novel classes.

We assume M distinct parts. Part annotations are avail-

able for (some) base-class training samples in Drepre, but

not for novel classes. We format part annotations for

each image x as an M×H×W location tensor m∗, where

H×W is the spatial resolution of the feature map.

We now present our method for extracting pose-
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Figure 2. The pose normalization framework for training and inference. The pose estimator takes an intermediate output of the network

backbone as input and generates pose heatmap predictions. The feature vector is calculated by applying each heatmap as an attention over

the feature map. The final representation is the concatenation of these vectors. In this example, the number of parts M=2.

normalized feature vectors. For this, the network must first

estimate pose. We use an extremely small, two-layer con-

volutional network qφ. This operates on a feature map ten-

sor F
0
∈R

C0
⇥H0

⇥W 0

extracted from an intermediate layer

of the feature map extractor fθ. qφ uses sigmoid activa-

tion in the final layer and produces a heatmap location pre-

diction for all annotated parts m=qφ(F
0)∈RM⇥H⇥W . We

deliberately use a small qφ and reuse computation in fθ to

minimize the effect the additional parameters might have

on the final performance of the classifier. Improved perfor-

mance should indicate that pose information is useful for

fine-grained few-shot learning, not a larger network.

Given the heatmap m and feature map F , we must con-

struct a feature vector v. Each channel in m is applied as

a spatial attention mask to the feature map, producing an

attention-normalized feature vector. Concatenating these

M part description vectors produces the final representation

vector for the image. Formally, denoting F (h,w)∈RC as

the feature vector for location (h,w) in feature map F , and

mi(h,w)∈R as the heatmap pixel value at position (h,w)
for the i-th part category, v∈RCM is calculated as:

vi =

PH,W

h,w F (h,w) ·mi(h,w)

✏+
PH,W

h,w mi(h,w)
(1)

v = [v0, . . . ,vi, . . . ,vM ] (2)

where ✏=10�5. The loss during training is the sum of the

pixel-wise log loss between the ground truth part location

heatmap m
∗ and the predicted heatmap m, and the original

few-shot classification loss:

Lpose = −
1

MHW

M,H,WX

i,h,w

[m⇤

i (h,w) logmi(h,w)

+ (1−m⇤

i (h,w)) log(1−mi(h,w))] (3)

Ltotal = Lfewshot + ↵ · Lpose (4)

where ↵ is a balancing hyper-parameter. To facilitate learn-

ing in the classification branch, feature vectors for few-

shot classification are initially produced from the ground

truth part annotation heatmap m
∗ instead of the predicted

heatmap m. Afterwards, the pose estimation network’s pa-

rameters � are frozen. In subsequent adaptation/fine-tuning

and evaluation/inference stages on novel classes, feature

vectors are calculated from the predicted heatmap m. An

overview of our approach is provided in figure 2.

Note that while we assume a fixed set of consistent part

labels during training, we do not require parts to consis-

tently appear across all objects, nor must any particular ob-

ject contain all the specified parts. Thus, our pose estimator

should generalize broadly: any fine-grained classification

of objects that depends on the appearance of various parts

(e.g., cars, furniture, insects) is amenable to this approach.

5. Experiments

5.1. Datasets and implementation details

We experiment with the CUB dataset [26] which con-

sists of 11,788 images from 200 classes. It also includes

15 part annotations for each image, thus M=15. Following

the evaluation setup in [29, 3], we randomly split the dataset

into 100 base, 50 validation and 50 novel classes. Base cat-

egory images form the representation set DCUB
repre. For each

validation and novel class, we randomly sample 20% of its

images to form the reference set DCUB
refer. The remaining

novel images form the query set DCUB
query , which is used for

evaluating algorithms. Note that our models have access to

part annotations only in base classes. No part annotation

information is available for any image in the validation or

novel classes, including both their reference and query sets.

NABird evaluation: There are only 50 novel classes

in CUB’s evaluation set, which can potentially make eval-

uation noisy. The accuracy differences between few-shot

learning algorithms also decrease significantly in the pres-
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ence of domain shift [3]. Thus, in order to verify the robust-

ness and generalization capacity of our proposed method,

we also evaluate our CUB models on another, much larger

bird dataset: NABird [23] (NA), which, after removing

overlap with CUB, contains 418 classes and 35,733 images.

As before, we randomly sample 20% of images from each

category to form the reference set DNA
refer. The remaining

images form the query set DNA
query .

Network backbone: For the feature map extractor fθ,

previous work [20, 29, 8] adopts a standard architecture:

a 4-layer, 64-channel convolution network with batch nor-

malization and ReLU. In this setting, the input image size

is 84×84 and the output feature map is 64×10×10. Deeper

backbones can significantly reduce the differences in per-

formance between these methods [3], so in addition to the

4-layer network, we also train and evaluate a ResNet18 [13]

backbone, with a few technical modifications that increase

performance across all models. We change the stride of

the last block’s first convolution and downsampling layers

from 2 to 1. The output size of the last block thus remains

at 14×14 instead of 7×7. We also add a 1×1 convolu-

tion with batch normalization to the last layer of the orig-

inal ResNet18, which reduces the number of channels from

512 to 32. The input size of our modified ResNet18 is still

224×224, but the output size becomes 32×14×14.

Pose estimation module: The layers of the pose esti-

mation network qφ are composed as Conv-BN-ReLU-Conv,

where Conv denotes 3×3 convolution. In the 4-layer Con-

vNet, qφ takes as input the feature map after the second con-

volution. The number of input/output channels for the two

convolution layers in qφ are 64/30 and 30/M where M is

the number of part categories. In the ResNet18, qφ takes

the third block’s feature map as input, and the correspond-

ing convolution channel sizes are 256/64 and 64/M . It can

be seen that the number of learnable parameters introduced

by qφ is small compared to the original backbone network.

5.2. Baseline methods

For the few-shot learning algorithm, we denote trans-

fer learning, prototypical networks, and dynamic few-shot

learning as transfer, proto, and dynamic, respectively. We

compare our proposed pose normalization approach (PN)

with the following feature aggregation methods, across all

learning algorithms and network backbones:

Average pooling is the most straightforward method,

commonly adopted in previous work. All subsequent mod-

els use average pooling when a feature aggregator is not

otherwise specified.

We also present a baseline that trains this average-pooled

feature extractor and classifier jointly with a localizer, with

the latter discarded at test time. This Multi-Task model,

denoted MT, examines whether pose estimation functions

purely as a regularizer in few-shot training.

Bilinear pooling (BP) [16] is an effective module for ex-

panding the latent feature space and increasing expressive

power in fine-grained visual classifiers. Recent work [29]

found that BP can be adapted to prototypical networks, im-

proving performance without increasing parameter count.

Few-shot localization (FSL) [29] uses bounding box

annotations in the representation and reference sets. The

model learns to localize an object before classifying it,

thus improving few-shot classification accuracy. Since this

model’s localizer is learnt in a prototypical way, it doesn’t

introduce any additional convolutional layers.

Bounding box normalization (bbN) is a more direct

comparison to bounding box based methods that does not

require box annotations for novel classes. We use the PN

model but set M=2, and train the localizer to separate

images into foreground/background regions based on the

ground truth bounding boxes for base class training data.

Unsupervised pose normalization (uPN) is based on

unsupervised localization [29], a competitive localization

method where feature maps are partitioned into soft regions

based on feature distance from a set of learned parameter

vectors. Following the same core idea, we introduce M=15
learned, category-agnostic pose vectors, and spatially parti-

tion the feature map based on relative feature distance to

each vector at each location. We mean-pool over the re-

sulting 15 soft regions, as if they were 15 predicted part

locations, to produce a feature vector for the classifier. The

pose vectors are learned parameters, trained end-to-end and

jointly with the classifier architecture, requiring no part an-

notations or separate localization module.

In addition, we include an oracle version of our model:

Pose normalization with ground truth pose (PN gt).

5.3. Few-shot recognition results

We first train all models on DCUB
repre, using the validation

set to select the best hyper-parameters and stopping point

for each model. We then evaluate them on DCUB
query using the

limited set of labeled novel class images in DCUB
refer. For the

evaluation metric, we use the all-way evaluation [29, 12, 28]

rather than the commonly adopted 5-way task. The algo-

rithm is required to distinguish all novel classes simultane-

ously, a more challenging setup. For the number of refer-

ence images, we consider both the standard 1-shot/5-shot

and the all-shot setting proposed by [29], i.e. utilizing all

the labeled images for each novel category in DCUB
refer.

For CUB, all-shot results are shown in table 1. For 1 and

5 shot settings, we plot the mean of 600 randomly gener-

ated test episodes in figures 3 and 4. The 95% confidence

intervals are all less than 0.6 percentage points. Using the

above models trained on CUB, we then do the same evalua-

tion on NA, using DNA
refer and DNA

query . The number of novel

classes in NA is large (418), and the number of images per

class is unbalanced. We therefore only report the all-way
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Figure 3. Accuracy comparison on CUB. All models use a

ResNet18 prototypical network. Pose normalization dominates

other methods under all settings.

all-shot results in table 2, with both mean accuracy over all

test samples and mean accuracy per class. We average over

8 trials for the proto, proto+uPN, and proto+PN models in

each of the above mentioned settings. 95% confidence in-

tervals are all within 0.9 percentage points.

From these experimental results, we conclude that:

1. Pose normalization provides significant and consis-

tent performance gains over the (average-pooled)

baseline. Accuracy improves for both shallow and

deep network backbones, for all three few-shot learn-

ing approaches, and for both evaluation datasets. Un-

der the all-way, all-shot setting on CUB, the accuracy

gain is consistently greater than 15 points for the 4-

layer ConvNet, across all three learning algorithms,

and reaches 20 points on ResNet18. Shallow net-

works with pose normalization can even outperform

their deeper counterparts.

2. In all settings, pose normalization outperforms

other aggregation functions, including black-box

modifications (bilinear pooling), techniques based

on bounding box localization (FSL and bbN) and

unsupervised pose normalization. It also outper-

forms multi-task training, indicating that normaliza-

tion, rather than the additional auxiliary loss, is key.

3. Pose information is more effective than coarse ob-

ject location. In table 1, PN and bbN contribute simi-

lar quantities of new learnable parameters, but the fine-

grained pose information in PN causes it to outperform

bbN, which only focuses on a coarse bounding box. By

comparing PN with PN gt, we see that a better pose

estimator could potentially contribute an even larger

boost to performance.

5.4. Impact of the number of pose annotations

While part locations are often cheaper to obtain than

fine-grained expert class labels (see the careful labelling

Model 4-layer ConvNet ResNet18

transfer 33.42 46.47

transfer+PN 49.96 57.53

transfer+PN gt 56.40 58.54

proto 32.09 42.73

proto+MT 35.56 50.93

proto+BP 35.56 41.04

proto+FSL 39.60 47.43

proto+bbN 37.75 44.02

proto+uPN 46.24 53.18

proto+PN 49.56 63.44

proto+PN gt 59.55 62.63

dynamic 35.77 43.27

dynamic+PN 54.17 60.19

dynamic+PN gt 62.67 60.09

Table 1. Few-shot classification results for different models on the

CUB dataset. Models are organized by few-shot learning algo-

rithm, then by feature representation method. Pose normalization

gives a significant performance boost for all three few-shot learn-

ing algorithms, with both shallow and deep network backbones.

4-layer ConvNet ResNet18

Model mean per-class mean per-class

transfer 12.63 11.24 20.22 17.54

transfer+PN 24.60 21.76 28.36 25.57

proto 8.73 8.37 13.33 12.55

proto+MT 10.59 10.10 16.41 15.42

proto+BP 10.47 9.83 15.09 14.04

proto+FSL 12.34 11.61 15.62 14.81

proto+bbN 10.57 10.00 13.05 12.32

proto+uPN 18.91 17.51 22.12 20.77

proto+PN 21.02 19.47 32.66 30.59

dynamic 12.13 11.26 14.82 13.44

dynamic+PN 26.17 24.07 30.10 27.86

Table 2. Performance of CUB models on NA. The performance

boost introduced by pose normalization is still significant in this

new domain. Performance is consistent with CUB observations.
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Figure 4. Performance comparison for dynamic few-shot learning

models on CUB. The accuracy boost from pose normalization is

significant and consistent.

pipeline of [23]), it could still be the case that high-quantity

part annotations are difficult to collect. We therefore con-

sider an ablation of our model, where a limited number

of training images have part annotations. For the remain-

ing images, Lpose is not computed, and the predicted pose
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Figure 5. Few-shot test accuracy for pose normalization when

part annotations are sparse. The performance drop is surprisingly

small. Pose normalization outperforms bilinear pooling even when

only 5% of annotations are available during training.

heatmap produces feature vectors for classifier training in-

stead of the ground truth.

We evaluate prototypical networks on CUB with both

shallow and deep backbones, and vary the percentage of

images with part annotation. Results are given in figure 5.

Pose normalization is highly robust to annotation sparsity

during training (less than 5 points fluctuation when above

30% availability), and consistently outperforms BP even

with as few as 5% pose annotations available.

5.5. Evaluation on FGVC-Aircraft

We evaluate the generality of these conclusions on fine-

grained aircraft classification [17] (FGVC-Aircraft), which

contains 10,000 images spanning 100 aircraft models. Fol-

lowing the same ratio as CUB, we split the classes into 50

base, 25 validation and 25 novel. The reference/query split

is as described in Section 5.1. Since this dataset doesn’t

contain any part annotation, we use an independent dataset

OID-Aircraft [24] (OID) to jointly train our pose normal-

ization module. OID contains 6,357 images, ignoring those

shared with FGVC, and 5 part annotations per image (thus

M=5). OID contains no classification labels.

Each training iteration samples an image batch from OID

and FGVC. OID images are used to calculate Lpose, while

FGVC images use predicted pose heatmaps to get feature

vectors. Results are shown in Table 3. Although the pose

estimator is trained on disjoint images, it remains effective

at boosting aircraft recognition performance. We conclude

that pose normalization generalizes across fine-grained few-

shot classification tasks. Extending this approach to non-

fine-grained tasks or class-specific parts is not straightfor-

ward, but could be a valuable direction for future research.

4-layer ConvNet ResNet18

Model 1-shot 5-shot all-shot 1-shot 5-shot all-shot

proto 24.40 43.24 52.06 46.27 63.15 67.76

proto+PN 26.04 50.35 60.83 58.72 77.75 81.96

Table 3. Few-shot results under all three evaluation settings on the

FGVC-Aircraft dataset. Results averaged over five trials.

6. Analysis

6.1. Model interpretation

Accuracy notwithstanding, we would like for pose-

normalized representations to be human-interpretable, un-

like prior black-box representations. To investigate what

the model actually learns, we conduct two experiments to

analyze the learnt pose normalized representation. Both use

the proto+PN model with a ResNet18 backbone.

Part importance: Every type of bird is likely to have a

set of particularly distinguishable part attributes. To verify

that our model learns this, we conduct the following test.

For each class, we iterate over the parts and calculate the

test accuracy when the corresponding part feature vector is

removed from the representation. The magnitude of the re-

sulting drop in accuracy can be construed as the importance

of each part for this class as learned by the model. We vi-

sualize this learned importance for three species in figure 6

and compare it with species descriptions from a field guide.

Our network scores largely conform to expert judgments.

Nearest neighbors: Different birds might share the

same part attribute; for example, the California Gull and

the Ring-billed Gull have the same beak shape. Therefore

in pose normalization, the beak vectors for these two birds

should be close, as part vectors are designed to encode re-

gional information in a class-agnostic way. To verify this,

we find the top-5 images in the reference set with the closest

part vectors to a given vector from a query image/part pair.

Four random examples are given in figure 7. Generally, our

assumption holds - the vector describing the given part in

each query image does generalize to other species.

6.2. Pose estimation

Following prior work on evaluating pose estimation [30,

2] we calculate the normalized PCK (normalized using the

diagonal of the bounding box) at different thresholds for

both shallow and deep network backbones. Results are

given in figure 8. We see that both estimates can give ac-

curate results. While the deeper network backbone does

produce a better estimate, this boost is also quite limited.

We believe that a more sophisticated pose estimator could

lead to better results on few-shot recognition.

6.3. Unsupervised pose normalization

We note that unsupervised pose normalization also per-

forms well from a classification perspective (see table 1).
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Figure 6. Visualizing accuracy drop for selected bird species when removing individual part vectors (part importance). On the right are

quoted descriptions from bird experts on how to recognize those species. The estimated part importance matches well to expert judgments.

part 

location

query 

image

top5 images in the reference set 

with the nearest part representation 

breast

beak

belly

back

Figure 7. Images with the closest part vector to the query image,

for a given part location. Images are labeled with a green box if it

belongs to the same category as the query image. We see that part

representations capture semantically meaningful attributes of the

part location across classes.

Figure 8. Pose estimation results for different network backbones.

As shown in Figure 9, the deeper backbone with unsuper-

vised pose normalization does produce localized keypoints,

which might help classification. However, observe that

the semantic meaning of these keypoints is not consistent

heatmaps from unsupervised pose-normalization

4-layer 

ConvNet

same channel

different images

ResNet18

same channel

different images

ResNet18

different channels

same image

Figure 9. Visualization of unsupervised heatmaps. Semantic con-

tent is highly inconsistent, and difficult to interpret meaningfully.

across images (figure 9, top two rows). The prediction is

also unstable, with different channels sometimes providing

similar heatmaps (figure 9, bottom row). This inconsistency

could help to explain why machine-discovered parts under-

perform hand-designed ones in fine-grained, few-shot clas-

sification.

7. Conclusion

We show that a simple, lightweight pose normalization

module can lead to consistently large performance gains on

fine-grained few-shot recognition without any part annota-

tions at test time. Our results hold for shallow and deep

network backbones, multiple few-shot learning algorithms,

and multiple domains. In addition to significant accuracy

improvements, we also show that pose-normalized repre-

sentations are highly human-interpretable. We therefore

highly recommend pose normalization as a general area for

the fine-grained few-shot learning community to revisit.
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